
Appendix: A Wrapped Normal Distribution on Hyperbolic Space for
Gradient-Based Learning

A. Derivations
A.1. Inverse Exponential Map

As we mentioned in the main text, the exponential map from TµHn to Hn is given by

z = expµ(u) = cosh (∥u∥L)µ+ sinh (∥u∥L)
u

∥u∥L
. (1)

Solving (1) for u, we obtain

u =
∥u∥L

sinh(∥u∥L)
(z − cosh(∥u∥L)µ).

We still need to obtain the evaluatable expression for ∥u∥L. Using the characterization of the tangent space (main text,
(2)), we see that

⟨µ,u⟩L =
∥u∥L

sinh(∥u∥L)

(
⟨µ, z⟩L − cosh(∥u∥L)⟨µ,µ⟩L

)
= 0,

cosh(∥u∥L) =− ⟨µ, z⟩L,
∥u∥L =arccosh(−⟨µ, z⟩L).

Now, defining α = −⟨µ, z⟩L, we can obtain the inverse exponential function as

u = exp−1
µ (z) =

arccosh(α)√
α2 − 1

(z − αµ). (2)

A.2. Inverse Parallel Transport

The parallel transportation on the Lorentz model along the geodesic from ν to µ is given by

PTν→µ(v) = v − ⟨exp−1
ν (µ),v⟩L

dℓ(ν,µ)2
(
exp−1

ν (µ) + exp−1
µ (ν)

)
= v +

⟨µ− αν,v⟩L
α+ 1

(ν + µ), (3)

where α = −⟨ν,µ⟩L. Next, likewise, for the exponential map, we need to be able to compute the inverse of the parallel
transform. Solving (3) for v, we get

v = u− ⟨µ− αν,v⟩L
α+ 1

(ν + µ).

Now, observing that

⟨ν − αµ,u⟩L =⟨ν,v⟩L +
⟨µ− αν,v⟩L

α+ 1
(⟨ν,ν⟩L + ⟨µ,ν⟩L)

=− ⟨µ,v⟩L = −⟨µ− αν,v⟩L,



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

we can write the inverse parallel transport as

v = PT−1
ν→µ(u) = u+

⟨ν − αµ,u⟩L
α+ 1

(ν + µ). (4)

The inverse of parallel transport from ν to µ coincides with the parallel transport from µ to ν.

A.3. Determinant of exponential map

We provide the details of the computation of the log determinant of expµ. Let µ ∈ Hn, let u ∈ Tµ(Hn), and let
v = expµ(u). Then the derivative is a map from the tangent space of Tµ(Hn) at u to the tangent space of Hn at v. The
determinant of this derivative will not change by any orthogonal change of basis. Let us choose an orthonormal basis of
Tu(Tµ(Hn)) ∼= Tµ(Hn) containing ū = u/∥u∥L:

{ū,u′
1,u

′
2, ...,u

′
n−1}

The desired determinant can be computed by tracking how much each element of this basis grows in magnitude under the
transformation.

The derivative in the direction of each basis element can be computed as follows:

d expµ(ū) =
∂

∂ϵ

∣∣∣∣
ϵ=0

expµ(u+ ϵū)

=
∂

∂ϵ

∣∣∣∣
ϵ=0

[
cosh(r + ϵ)µ+ sinh(r + ϵ)

u+ ϵū

∥u+ ϵū∥L

]
=sinh(r)µ+ cosh(r)ū. (5)

d expµ(u
′
k) =

∂

∂ϵ

∣∣∣∣
ϵ=0

expµ(u+ ϵu′
k)

=
∂

∂ϵ

∣∣∣∣
ϵ=0

[
cosh(r)µ+ sinh(r)

u+ ϵu′

r

]
=
sinh r

r
u′. (6)

In the second line of the computation of the directional derivative with respect to u′
k, we used the fact that ∥u+ ϵu′

k∥L =√
⟨u,u⟩L + ϵ⟨u,u′

k⟩L + ϵ2⟨u′
k,u

′
k⟩L = ∥u∥L + O(ϵ2) and that O(ϵ2) in the above expression will disappear in the

ϵ → 0 limit of the finite difference. All together, the derivatives computed with respect to our choice of the basis elements
are given by (

sinh(r)µ+ cosh(r)ū,
sinh r

r
u′
1,

sinh r

r
u′
2, · · · ,

sinh r

r
u′
n−1

)
The desired determinant is the product of the Lorentzian norms of the vectors of the set above. Because all elements
of Tµ(Hn) are orthogonal with respect to the Lorentzian inner product and because ∥sinh(r)µ+ cosh(r)ū∥L = 1 and
∥sinh(r)/r · u′∥L = sinh(r)/r, we get

det

(
∂ expµ(u)

∂u

)
=

(
sinh r

r

)n−1

. (7)

A.4. Determinant of parallel transport

Next, let us compute the determinant of the parallel transport. Let v ∈ Tµ0
Hn, and let u = PTµ0→µ(v) ∈ TµHn. The

derivative of this map is a map from Tv(Tµ0
(Hn)) to Tu(Hn). Let us choose an orthonormal basis ξk (In Lorentzian

sense). Likewise above, we can compute the desired determinant by tracking how much each element of this basis grows
in magnitude under the transformation.



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

Denoting α = −⟨µ0,µ⟩L, we get

dPTµ0→µ(ξ) =
∂

∂ϵ

∣∣∣∣
ϵ=0

PTµ0→µ(v + ϵξ)

=
∂

∂ϵ

∣∣∣∣
ϵ=0

[
(v + ϵξ) +

⟨µ− αµ0,v + ϵξ⟩L
α+ 1

(µ0 + µ)

]
=ξ +

⟨µ− αµ0, ξ⟩L
α+ 1

(µ0 + µ) = PTµ0→µ(ξ). (8)

and see that each basis element ξk is mapped by dPTµ0→µ to

(PTµ0→µ(ξ1),PTµ0→µ(ξ2) · · · , PTµ0→µ(ξn))

Because parallel transport is a norm preserving map, ∥PTµ0→µ(ξ)∥L = 1. That is,

det

(
∂ PTµ0→µ(v)

∂v

)
= 1. (9)



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

B. Visual Examples of Hyperbolic Wrapped Distribution G(µ,Σ)
Figure 1 shows examples of hyperbolic wrapped distribution G(µ,Σ) with various µ and Σ. We plotted the log-density
of these distributions by heatmaps. We designate the µ by the × mark. The right side of these figures expresses their
log-density on the Poincaré ball model, and the left side expresses the same one on the corresponding tangent space.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 1: Visual examples of hyperbolic wrapped distribution on H2. Log-density is illustrated on B2 by translating each
point from H2 for clarity. We designate the origin of hyperbolic space by the × mark.



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

C. Additional Numerical Evaluations
C.1. Synthetic Binary Tree

We qualitatively compared the learned latent space of Vanilla and Hyperbolic VAEs. Figure 2 shows the embedding vectors
of the synthetic binary tree dataset on the two-dimensional latent space. We evaluated the latent space of Vanilla VAE with
β = 0.1, 1.0, 2.0, and 3.0, and Hyperbolic VAE. Note that the hierarchical relations in the original tree were not used
during the training phase. Red points are the embeddings of the noiseless observations. As we mentioned in the main text,
we evaluated the correlation coefficient between the Hamming distance on the data space and the hyperbolic (Euclidean for
Vanilla VAEs) distance on the latent space. Consistently with this metric, the latent space of the Hyperbolic VAE captured
the hierarchical structure inherent in the dataset well. In the comparison between Vanilla VAEs, the latent space captured
the hierarchical structure according to increase the β. However, the posterior distribution of the Vanilla VAE with β = 3.0
collapsed and lost the structure. Also, the blue points are the embeddings of noisy observation, and pink × represents the
origin of the latent space. In latent space of Vanilla VAEs, there was bias in which embeddings of noisy observations were
biased to the center side.

(a) A tree representation of the training
dataset

!!!!!!"

!!!!!"" !!!!"!"

!!!"!"" !!"!!"" !"!!"!" "!!!"!"

!!"!"!"

"!!""!!
"!!!""!

(b) Vanilla (β = 0.1) (c) Vanilla (β = 1.0)

(d) Vanilla (β = 2.0) (e) Vanilla (β = 3.0) (f) Hyperbolic

Figure 2: The visual results of Vanilla and Hyperbolic VAEs applied to an artificial dataset generated by applying a random
perturbation to a binary tree. The visualization is being done in the Poincaré ball. Red points are the embeddings of the
original tree, and the blue points are the embeddings of all other points in the dataset. Pink × represents the origin of
hyperbolic space. Note that the hierarchical relations in the original tree was not used during the training phase.



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

C.2. MNIST

Vannila VAE Hyperbolic VAE

n ELBO LL ELBO LL

2 −145.53±.65 −140.45±.47 −143.23±0.63 −138.61±0.45

5 −111.32±.38 −105.78±.51 −111.09±0.39 −105.38±0.61

10 −92.49±.52 −86.25±.52 −93.10±0.26 −86.40±0.28

20 −85.17±.40 −77.89±.36 −88.28±0.34 −79.23±0.20

Table 1: Quantitative comparison of Hyperbolic VAE against Vanilla VAE on the MNIST dataset in terms of ELBO and
log-likelihood (LL) for several values of latent space dimension n. LL was computed using 500 samples of latent variables.
We calculated the mean and the ±1 SD with five different experiments.

We showed the numerical performance of Vanilla and Hyperbolic VAEs for MNIST data in the main text in terms of the
log-likelihood. In this section, we also show the evidence lower bound for the same dataset in Table 1.

C.3. Atari 2600 Breakout

To evaluate the performance of Hyperbolic VAE for hierarchically organized dataset according to time development, we
applied our Hyperbolic VAE to a set of trajectories that were explored by an agent with a trained policy during multiple
episodes of Breakout in Atari 2600. We used a pretrained Deep Q-Network to collect trajectories, and Figure 3 shows
examples of observed screens.

Figure 3: Examples of observed screens in Atari 2600 Breakout.

We showed three trajectories of samples from the prior distribution with the scaled norm for both models in the main text.
We also visualize more samples in Figure 4 and 5. For both models, we generated samples with ∥ṽ∥2 = 0, 1, 2, 3, 5, and
10.

Vanilla VAE tended to generate oversaturated images when the norm ∥ṽ∥ was small. Although the model generated several
images which include a small number of blocks as the norm increases, it also generated images with a constant amount
of blocks even ∥ṽ∥ = 10. On the other hand, the number of blocks contained in the generated image of Hyperbolic VAE
gradually decreased according to the norm.



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

(a) ∥ṽ∥2 = 0 (b) ∥ṽ∥2 = 1 (c) ∥ṽ∥2 = 2

(d) ∥ṽ∥2 = 3 (e) ∥ṽ∥2 = 5 (f) ∥ṽ∥2 = 10

Figure 4: Images generated by Vanilla VAE with constant norm ∥ṽ∥2 = a.

(a) ∥ṽ∥2 = 0 (b) ∥ṽ∥2 = 1 (c) ∥ṽ∥2 = 2

(d) ∥ṽ∥2 = 3 (e) ∥ṽ∥2 = 5 (f) ∥ṽ∥2 = 10

Figure 5: Images generated by Hyperbolic VAE with constant norm ∥ṽ∥2 = a.



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

C.4. Word Embeddings

We showed the experimental results of probabilistic word embedding models with diagonal variance in the main text.
Table 2 shows the same comparison with the reference model by Nickel & Kiela (2017). We also show the results with
unit variance (Table 3). When the dimensions of the latent variable are small, the performance of the model on hyperbolic
space did not deteriorate much by changing the variance from diagonal to unit. However, the same change dramatically
worsened the performance of the model on Euclidean space.

Euclid Hyperbolic Nickel & Kiela (2017)

n MAP Rank MAP Rank MAP Rank

5 0.296±.006 25.09±.80 0.506±.017 20.55±1.34 0.823 4.9
10 0.778±.007 4.70±.05 0.795±.007 5.07±.12 0.851 4.02
20 0.894±.002 2.23±.03 0.897±.005 2.54±.20 0.855 3.84
50 0.942±.003 1.51±.04 0.975±.001 1.19±.01 0.86 3.98
100 0.953±.002 1.34±.02 0.978±.002 1.15±.01 0.857 3.9

Table 2: Experimental results of the reconstruction performance on the transitive closure of the WordNet noun hierarchy
for several latent space dimension n. We calculated the mean and the ±1 SD with three different experiments.

Euclid Hyperbolic

n MAP Rank MAP Rank

5 0.217±.008 55.28±3.54 0.529±.010 22.38±.70

10 0.698±.030 6.54±.65 0.771±.006 5.89±.29

20 0.832±.016 3.08±.16 0.862±.002 2.80±.13

50 0.910±.006 1.78±.071 0.903±.003 1.94±.03

100 0.882±.008 4.75±2.01 0.884±.003 2.57±.09

Table 3: Experimental results of the word embedding models with unit variance on the WordNet noun dataset. We calcu-
lated the mean and the ±1 SD with three different experiments.



A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

D. Network Architecture
Table 4 shows the network architecture that we used in Breakout experiments. We evaluated Vanilla and Hyperbolic VAEs
with a DCGAN-based architecture (Radford et al., 2015) with the kernel size of the convolution and deconvolution layers
as 3. We used leaky ReLU nonlinearities for the encoder and ReLU nonlinearities for the decoder. We set the latent
space dimension as 20. We gradually increased β from 0.1 to 4.0 linearly during the first 30 epochs. To ensure the initial
embedding vector close to the origin, we initialized γ for the batch normalization layer (Ioffe & Szegedy, 2015) of the
encoder as 0.1. We modeled the probability distribution of the data space p(x|z) as Gaussian, so the decoder output a
vector twice as large as the original image.

Encoder

Layer Size

Input 80× 80× 1
Convolution 80× 80× 16
BatchNormalization
Convolution 40× 40× 32
BatchNormalization
Convolution 40× 40× 32
BatchNormalization
Convolution 20× 20× 64
BatchNormalization
Convolution 20× 20× 64
BatchNormalization
Convolution 10× 10× 64
Linear 2n

Decoder

Layer Size

Linear 10× 10× 64
BatchNormalization
Deconvolution 20× 20× 32
BatchNormalization
Convolution 20× 20× 32
BatchNormalization
Deconvolution 40× 40× 16
BatchNormalization
Convolution 40× 40× 16
Deconvolution 80× 80× 2
Convolution 80× 80× 2

Table 4: Network architecture for Atari 2600 Breakout dataset.

References
Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In

Proceedings of the 32nd International Conference on International Conference on Machine Learning, volume 37, pp.
448–456, 2015.

Nickel, M. and Kiela, D. Poincaré embeddings for learning hierarchical representations. In Advances in Neural Information
Processing Systems 30, pp. 6338–6347. 2017.

Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversar-
ial networks. CoRR, abs/1511.06434, 2015.


	Derivations
	Inverse Exponential Map
	Inverse Parallel Transport
	Determinant of exponential map
	Determinant of parallel transport

	Visual Examples of Hyperbolic Wrapped Distribution G(*, )
	Additional Numerical Evaluations
	Synthetic Binary Tree
	MNIST
	Atari 2600 Breakout
	Word Embeddings

	Network Architecture

