A Framework for Bayesian Optimization in Embedded Subspaces

A. Proof of Claim 5

Proof of Claim 5. First note that z € [0, 1] directly implies
2119 < 2 < 2'79 which proves both lower bounds. It
remains to prove the upper bounds of . We study the
mapping f: [0,1] = R,z + z — 279, Clearly f(0) =
f(1) = 0 < 4. Setting the derivative to zero and solving for
z we have
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Very similar arguments prove the claim for the mapping
f:00,1] = R,z 2170 — 2. Again, f(0) = f(1) =0 <
0. Setting the derivative to zero and solving for z yields
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B. The Dilation Issue in REMBO

In their seminal work proposing the REMBO variants, Wang
et al. (2016b) noted that their random Gaussian embedding
A has a dilation that necessitates to scale REMBO’s search
space to [—v/d, ++/d]¢ to ensure the optimal remains in the
search domain. However, REMBO might select a point y
such that the random embedding Ay is outside the actual
box X'. In such a case it projects Ay onto the boundary of
X before evaluating f. This may lead to over-exploration
of the boundary regions, which leads to particularly bad
performance when optimal point lies in the interior. (Bi-
nois et al., 2015) proposed a new warping kernel ky, to
address this issue by an improved preservation of distances

among such points. This method was further improved in
(Binois et al., 2019). The analysis in Sect. C below shows
that REMBO applies these complex corrections frequently.
In contrast, the count-sketch avoids such complex correc-
tions. By construction of the inverse count-sketch S the
columns of the matrix are orthogonal, since each row has
only a single non-zero entry. Moreover, for any fixed co-
ordinate (dimension) d; of the low-dimensional space we
have that the number of coordinates in the high dimen-
sional space that map to d; is concentrated at D /d, i.e., this
number has mean D/d and a variance that drops (quickly)
as D increases. The reason is that h picks the target of
each dimension uniformly at random. The dilation of S is
thus roughly /D/d, and the search domain Y = [—1, 1]¢
is mapped to SY = {Sy |y € Y} ¢ X = [-1,1)P
with low distortion (1 =+ ¢) as given in Definition 1. More-
over, note that the back-projection is realized by solely
copying the coordinates and multiplying them by {—1, 1},
which assert that no point is projected outside the domain X’
Thus, He SBO avoids complex corrections in contrast to the
REMBO variants described above.

C. Analysis of Correction Efforts in REMBO

We examine how often the REMBO variants choose points to
sample whose projection to the high-dimensional space is
outside of the search domain X'. Note that these points are
corrected by projecting them back onto the boundary 0X.
Table 1 shows the results on Branin with input D = 100 and
three different choices for the target dimension d. We see
that for larger values of d almost all points chosen by REMBO
are projected outside of X'. Note that all three algorithms use

Table 1. The fraction of steps of the three REMBO variants that
project the sample point outside X. The data was collected by
running the algorithms on Branin with input dimension D = 100
over 30 replications.

d=2 d=3 d=14
ky 0.95+0.006 0.993 +0.0008 0.9999 £ 0.0001
kz 0.93+0.009 0.992+0.001 0.9996 + 0.0002
ky 0.88+0.02 0.992 £ 0.003 0.9997 + 0.0002

the same random projection in each iteration, their decisions
what points to sample are affected by the respective kernel.
In particular, we see that kx performs better than £, as
intended by Wang et al. (2016b), whereas k, of Binois
et al. (2015) performs best among these. Note that the
approach proposed in this paper completely avoids the need
for corrections.



A Framework for Bayesian Optimization in Embedded Subspaces

D. Details on Experiments

We provide details needed to replicate the experiments in
Table 2. All REMBO variants and He SBO-EI use identical
initial datasets in every replication to initialize the surrogate
models, obtained via random Latin hypercube designs. For
the other algorithms we used their preferred strategies to ob-
tain the same number of initial data points. We implemented
HeSBO-EI and all REMBO variants in Python 2.7 us-
ing GPy. They use a GP model with the 2-Matérn kernel
and constant mean function. The acquisition function was
optimized by L-BFGS-B leveraging its gradient (Frean &
Boyle, 2008).

For the other algorithms we used the reference implemen-
tations provided by the authors, see the hyperlinks in the
references. ADD was provided by Gardner in personal com-
munication. For the neural network parameter search bench-
mark discussed in Sect. 3, we had to omit ADD because of
software incompatibilities with this benchmark and SKL
due to its high running time.

Table 2. The fraction of steps of the three REMBO variants that
project the sample point outside X. The data was collected by
running the algorithms on Branin with input dimension D = 100
over 30 replications.

Feature Choice

number of initial data points 10
sampling approach Latin hypercube design

provided by pyDOE
kernel Matérn 5/2- ARD
Search space [-1,1]¢
Method of GP fitting GPy package (1.9.2)
Number of replications 100
Reported statistic Median
Error bars Standard error of median
Processor Xeon Haswell E5-2695 Dual
2.3 GHz 14-core
Number of CPUs 1

E. Additional Plots for all Conducted
Experiments

This section provides the plots for all experiments that we

conducted as part of the evaluation. This includes plots

already shown in Sect. 3 and additional plots that were

omitted due to space constraints. The plots are organized
according to the same subsections.

E.1. Performance Evaluation

The performances on Branin as a function of the evaluations
are given in Fig. 5.

The performances on Hartmann6 as a function of the evalu-

ations are given in Fig. 6.

The performances on Rosenbrock as a function of the evalu-
ations are given in Fig. 7.

The performances on Styblinski-Tang as a function of the
evaluations are given in Fig. 8.

E.2. Robustness

The robustness plots on Branin and Hartmann6 are given in
Fig. 9

E.3. Scalability

The performances on Branin, Rosenbrock and Styblinski-
Tang as a function of the running time are given in Fig. 10.
E.4. High Dimensional Network Architecture Search

The performances on neural network optimization as a func-
tion of the evaluations are given in Fig. 11.
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Figure 5. Performance plots for Branin as a function of the evaluations for the projection based algorithms (top), the state-of-the-art
algorithms (middle row) and a close-up to the best algorithms (bottom) for different input dimensions D = 25 (left), D = 100 (middle
column), and D = 1000 (right).
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HARTMANNG
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Figure 6. Performance plots for Hartmann-6 as a function of the evaluations for the projection based algorithms (left) and the state-of-the-art
algorithms (right) for different input dimensions D = 25 (top), D = 100 (middle), and D = 1000 (bottom).
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Figure 7. Performance plots for Rosenbrock as a function of the evaluations for the projection based algorithms (top), the state-of-the-art
algorithms (middle row) and a close-up to the best algorithms (bottom) for different input dimensions D = 25 (left), D = 100 (middle
column), and D = 1000 (right).
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Figure 8. Performance plots for Styblinski-Tang as a function of the evaluations for the projection based algorithms (top), the state-of-
the-art algorithms (middle row) and a close-up to the best algorithms (bottom) for different input dimensions D = 25 (left), D = 100
(middle column), and D = 1000 (right).
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Figure 9. The robustness analysis for Branin (left) and Hartmann6 (right) for D = 25 (top), D = 100 (middle), D = 1000 (bottom) and

different values of d.
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Figure 10. The scalability analysis for all algorithms (left) and a close-up on the best (right) with input dimension D = 100 each and
different target dimensions for d: Branin d = 4 (top), Rosenbrock d = 4 (mid) and Styblinski-Tang d = 12 (bottom). Note that in the
plot on the bottom right, ADD’s performance equals EBO on the Styblinski-Tang d = 12, that is why it is not visible.
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Figure 11. The performance comparison of projection based algorithms (top) and state-of-the-art algorithms (bottom) on the MNIST
neural network benchmark with input dimension D = 100 and target dimension d = 12.



