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Abstract

We present a theoretically founded approach for
high-dimensional Bayesian optimization based
on low-dimensional subspace embeddings. We
prove that the error in the Gaussian process model
is bounded tightly when going from the origi-
nal high-dimensional search domain to the low-
dimensional embedding. This implies that the
optimization process in the low-dimensional em-
bedding proceeds essentially as if it were run di-
rectly on an unknown active subspace of low di-
mensionality. The argument applies to a large
class of algorithms and GP models, including
non-stationary kernels. Moreover, we provide
an efficient implementation based on hashing
and demonstrate empirically that this subspace
embedding achieves considerably better results
than the previously proposed methods for high-
dimensional BO based on Gaussian matrix pro-
jections and structure-learning.

1. Introduction

Bayesian optimization (BO) has recently emerged as pow-
erful technique for the global optimization of expensive-to-
evaluate black-box functions (Brochu et al., 2010; Shahriari
et al., 2016; Frazier, 2018). Here ‘black-box’ means that we
may evaluate the objective at any point to observe its value,
possibly with noise but without derivative information. The
advantages of Bayesian optimization are sample-efficiency,
convergence to a global optimum, and a low computational
overhead. A critical limitation is the number of parameters
that BO can optimize. The limit is usually seen around
15 parameters for the most common form of BO that uses
Gaussian process (GP) regression as a surrogate model for
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the objective function. Thus, it is not surprising that ex-
panding BO to higher-dimensional search spaces is widely
acknowledged as one of the most important goals in the
field. For example, Frazier (2018, p. 16) states that “devel-
oping Bayesian optimization methods that work well in high
dimensions is of great practical and theoretical interest” .

This paper advances the field in the theory of high-
dimensional Bayesian optimization and improves the practi-
cal performance. Specifically, the contributions are:

1. A theoretically founded framework for Bayesian opti-
mization based on subspace embeddings. The core is a
rigorous proof that any GP-based BO algorithm proceeds
on the embedded space as it would if it was run directly on
an unknown active subspace of low dimensionality.

2. An extension of this result to large classes of parametrized
GP models. Note that the argument is agnostic to the ac-
quisition criterion used by the BO algorithm and thus can
be easily combined with many state-of-the-art methods, in-
cluding batch acquisition, multifidelity modeling, network
architecture search, and many more.

3. The Hashing-enhanced Subspace BO (He SBO) method
for high-dimensional problems has i) strong accuracy guar-
antees and ii) low computational overhead, while being iii)
conceptually simple. In particular, it avoids complex correc-
tions of projections that caused complications previously.

4. An experimental evaluation that demonstrates state-of-
the-art performance when the proposed embedding is com-
bined with a low-dimensional BO algorithm, e.g., Knowl-
edge Gradient (KG) (Frazier et al., 2009) or BLOSSOM (BM)
(McLeod et al., 2018).

Related Work. Bayesian optimization has recently re-
ceived significant interest for the optimization of expensive-
to-evaluate black-box functions. We refer to (Brochu et al.,
2010; Shahriari et al., 2016; Frazier, 2018) for an overview.
Aside of the general setting of optimizing an objective black-
box function, several extensions have been studied, includ-
ing constrained (Gardner et al., 2014; Hernandez-Lobato
et al., 2015; Picheny et al., 2016) and multifidelity opti-
mization (Kennedy & O’Hagan, 2000; Huang et al., 2006;
Swersky et al., 2013; Kandasamy et al., 2016; Poloczek
et al., 2017), expensive functions with derivative informa-
tion (Wu et al., 2017; Eriksson et al., 2018), and neural
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network architecture search (Klein et al., 2017; Kandasamy
et al., 2018).

Kandasamy et al. (2015) extended Bayesian optimization to
higher-dimensional search spaces composed of disjoint low-
dimensional subspaces that can be optimized over separately
if the latent additive structure is learned. The ADD algorithm
of Gardner et al. (2017) and SKL of Wang et al. (2017) use
sophisticated sampling procedures to learn the decomposi-
tion, and Rolland et al. (2018) and Mutny & Krause (2018)
extended the idea to overlapping subspaces. Inferring the
latent structure of the search space from data via extensive
sampling introduces a considerable computational load in
practice, which limits the applicability to objective functions
with high evaluation cost (see Sect. 3). This bottleneck was
recently addressed by Wang et al. (2018) whose ensemble
BO method (EBO) uses an ensemble of additive GP mod-
els for scalability. We evaluated ADD, EBO and SKL from
this line of research and found EBO indeed more scalable
than SKL, but still considerably more expensive than the
other approaches that we evaluated.

Chen et al. (2012); Wang et al. (2016b) bypassed scala-
bility issues by leveraging the observation that for many
applications only a small number of tunable parameters
have a significant effect on the objective function. This
phenomenon is known as “active subspace” and “effective
dimensionality”. Wang et al. (2016b) used a projection
matrix with standard Gaussian entries and showed that the
active subspace is rank-preserved but strongly dilated. Thus,
they expanded the low-dimensional search space to ensure
that its projection to the high-dimensional space contains an
optimal solution with reasonable probability. Their REMBO
algorithm fits a GP model to the low-dimensional space and
projects points back to the high-dimensional space using the
inverse random projection. Points whose high-dimensional
image is outside the search domain X are convex-projected
to the boundary 90X, which may lead to over-exploration
of the boundary regions. Binois et al. (2015) suggested
a new warping kernel k, to address this issue by an im-
proved preservation of distances among such points. Re-
cently, Binois et al. (2019) proposed a novel choice of the
low-dimensional search space to handle the distortion of
Gaussian projections. Djolonga et al. (2013) and Eriks-
son et al. (2018) propose learning the active subspace, in
the latter paper from derivative information, and therefore
avoid the random projection. We compare to the methods
in (Wang et al., 2016b; Binois et al., 2015) in Sect. 3. We
also compare to the BOCK algorithm of Oh et al. (2018)
that is based on a cylindrical transformation. This provides
scalability to high dimensional problems and an implicit
prior that the optimizer is in the interior of the search space.

Outline. Sect. 2 introduces probabilistic subspace embed-
dings and the He SBO method, followed by the theoretical

foundation. The experimental evaluation is given in Sect. 3
and the discussion is in Sect. 4. Sections denoted by letters
are found in the Supplement.

2. Probabilistic Subspace Embeddings of
Gaussian processes

This section introduces probabilistic subspace embeddings
and their use in BO. Sect. 2.2 motivates the approach. The
theoretical foundation is given in Sect. 2.3 and generalized
to large classes of popular kernels in Sect. 2.4.

2.1. The HeSBO Algorithm

Given an objective function f defined on the high-
dimensional domain X' = [—1, +1]P, we suppose that there
exists an unknown d.-dimensional active subspace Z. Infor-
mally, the objective f is invariant to coordinate changes out-
side Z. Note that we do not suppose that Z is axis-aligned
with X'. Our approach is to choose a d-dimensional sub-
space ) of X randomly such that the optimization process
proceeds on ) essentially as it would on Z with good prob-
ability. This enables to run a BO method on Y in order to
find an 2* € argmax,cx f(x). The proposed embedding
can easily be combined with many GP-based BO methods:
Algorithm 1 shows the generic BO algorithm (Shahriari
et al., 2016; Frazier, 2018) with the embedding incorporated
via the highlighted steps. We call this Hashing-enhanced
Subspace Bayesian Optimization (HeSBO).

The embedding is constructed in Algorithm 2 that initializes
two hash functions which implicitly represent the embed-
ding matrix S’ (see Sect. 2.2 for details): The hash func-
tion h chooses one single non-zero entry for each of the
D dimensions, and the function o determines the sign of
the corresponding non-zero entry. Algorithm 3 maps the
low-dimensional vector y € ) to the high-dimensional do-
main X. The algorithm iterates over the high-dimensional
coordinates: for each entry it invokes the two above hash
functions to determine the associated coordinate in the low-
dimensional vector y and the sign that the corresponding
value of y is multiplied with. Note that by construction
the columns of the matrix are orthogonal. Moreover, for
any fixed coordinate (dimension) d; of the low-dimensional
space we have that the number of coordinates in the high
dimensional space that map to d; is concentrated at D/d,
i.e., this number has mean D/d and a variance that drops
(quickly) as D increases. The reason is that h picks the tar-
get of each dimension uniformly at random. The dilation is
thus roughly \/D/d, and the search domain Y = [—1, 1]¢
is mapped to S’Y = {S"y | y € Y} C X = [-1,1]P with
low distortion. We contrast this with REMBO’s search space
that was chosen as [—+/d, ++/d]? to cope with dilations;
see Sect. B. It is critical to note that the operations of copy-
ing the coordinates and multiplying them by {—1, 1} assert
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that no point is projected outside X'. Thus, He SBO avoids
complex corrections in contrast to the REMBO variants. The
analysis in Sect. C in the supplement shows that REMBO
applies these corrections frequently.

Algorithm 1 The Generic BO Algorithm with the proba-
bilistic subspace embedding
1: Input: Objective f : X — R; acquisition criterion «
(e.g., EI); target dimension d € N.
2: Output: An optimizer z* € argmax,cx f(x).

3: Construct embedding S’: Y — X with Algorithm 2.
4: Sample initial points Yy € ) using a space filling design
and let Dy = (Y5, {observation for f(S'y) | y € Yo}).
5: Estimate the hyperparameters 6, for the GP prior on )
given Dy. Then calculate the posterior conditioned
on 6y and Dy.
6: forn =1to N do
7. Compute y" ! € argmaxyey a(y, Dy,).
8:  Evaluate f(S'y"*1), for the projection of y" ! to X
via Algorithm 3. Let 2" ! be the (noisy) observation.
9:  Update the posterior distribution with the new obser-
vation D, 1 = D, U (y"*1, 27+,
10: end for
11: Return z*€argmax,cx f(z) if observations are
noise-free, or a point with maximum expected value
under the posterior given Dy otherwise.

2.2. Motivation for the Embedding

Next we provide the motivation and background for the pro-
posed embedding, before we prove its theoretical properties
in Sect. 2.3. Random projections have often been used to
reduce the dependence on the dimension of an algorithm’s
running time, memory, or communication cost. The semi-
nal result of Johnson & Lindenstrauss (1984), JL for short,
states that any set of n points in a D-dimensional space
can be embedded into d € O(logn/e?) dimensions such
that all pairwise /5 distances are preserved up to a (1 & ¢)-
factor. This can be achieved probabilistically by a linear

Algorithm 2 Construction of an inverse subspace embed-
ding S’ implicitly given by (h, o), see details in the text.

1: Input: Input dimension D, target dimension d.
2: Output: Implicit representation of a linear map
S R - RD, by two hash functions h and o.

3: Initialize a pairwise independent and uniform hash func-
tion h: [D] — [d].

4: Initialize a 4-wise independent and uniform hash func-
tiono: [D] — {—1,1}.

5: Return (h, o), which implicitly defines S, see detailed
description in Sect. 2.2.

Algorithm 3 Computes S’y € X via the inverse subspace
embedding S’ implicitly given by (h, o)

1: Input: Low-dimensional vector y € Y C R%.
Output: High-dimensional vector z = S’y € XCRP.
fori=1to D do

zi = 0(i) - Yn@i)
end for
Return z.

AN AN

map where each entry of the embedding G € R¥*P is an
i.i.d. rescaled standard Gaussian. Much effort was put into
making the construction computationally more efficient and
sparse (Achlioptas, 2003; Ailon & Chazelle, 2009; Ailon
& Liberty, 2009; Kane & Nelson, 2014). Sarlds (2006)
was the first who generalized such embeddings to entire
linear subspaces with target dimension roughly O(d. /€?)
which is optimal, see (Nelson & Nguyén, 2014). Charikar
et al. (2004) introduced an alternative projection, called
count-sketch, based on hashing to identify heavy hitters in
a large vector, often a data stream, based on a summary
stored in a low-dimensional vector. The count-sketch can
be formalized as a sparse matrix with only one non-zero
entry per column that is drawn randomly in {—1,1}. We
give an example of such a map reducing from five to three
dimensions:

Z1
0O 01 -1 0 To I3 — X4
-1 0 0 0 O x3 | = —x1
0 1 0 O 1 T4 To + Ty
x5

This is equivalent to uniformly hashing each entry x; to
a random coordinate j = h(i) € [d] and multiplying it
by a random sign o; € {—1,1} for all ¢ € [D]. The
low-dimensional summary y = Sx is given by Vj €
[d]: yj = >_;. n@s)=; (i)z;. Charikar et al. (2004) showed
that &; = o()y(;) is a good estimate for 2;. We recover
this idea for the projection from the low-dimensional to the
high-dimensional domain, = ~ S’y, in Algorithms 2 and
3. This type of embedding is not capable of preserving
pairwise distances for arbitrary sets of points, as JL does.
However, Clarkson & Woodruff (2013) showed that it yields
a subspace embedding for an entire linear subspace with
constant probability. Informally, they used the fact that a d.-
dimensional (active) subspace can have only O(d,) coordi-
nates that are large (have high leverage) and thus important.
These are exactly the heavy hitters which can be estimated
reasonably well. The other low values mostly cancel in the
sum with random signs (up to a small error). Nelson &
Nguyen (2013) improved and simplified their analysis and
complemented with a tight lower bound, settling the target
dimension of subspace embeddings via the count-sketch to
O(d?/(26)), where § is the failure probability. We define
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e-subspace embeddings more formally.

Definition 1 (e-subspace embedding, cf. Sarlés (2006);
Woodruff (2014)). Given a matrix V. € RP*4 with or-
thonormal columns, an integer d < D and an approxima-
tion parameter ¢ € (0, %), an e-subspace embedding for V
isamap S: RP — R? such that Vx € R?:

(L—e) [Val < ISVl < (1+¢) [Vallz, (D)

or, equivalently (cf. Paul et al. (2014); Cohen et al. (2016))
IV'S'SV — 14|y <e. (2)

Note that (1) is closer to the original JL property preserv-
ing Euclidean norms and thus distances, but generalized
to the entire subspace spanned by V, while (2) is often
analytically more convenient and intuitively states that the
isometry property V'V = I is approximately preserved un-
der the random projection. Note that the definition directly
implies that the singular values of an embedded subspace
are preserved up to (1 & ) multiplicative distortion, which
in particular means that its rank is preserved.

2.3. Theoretical Foundation for the Embedding

Assuming the existence of a low-dimensional active sub-
space, Wang et al. (2016b) showed that preserving the rank
and controlling the dilation ensures that an optimal point is
contained in a low-dimensional projection of this subspace.
We improve on their analysis by leveraging the above def-
inition. Our main theoretical contribution is to show that
any e-subspace embedding preserves the mean and variance
functions of a Gaussian process with linear kernel, i.e., the
standard inner product in Euclidean space. In Sect. 2.4 we
further extend this result to other important classes of kernel
functions like polynomial kernels, (squared) exponential
and Matérn kernels. Note that the guarantee is independent
of how the subspace embedding is achieved algorithmically.

Priors based on Gaussian process regression are popular in
BO. Let the error distribution be normal with mean 0 and
positive semidefinite kernel K (z,y). Then the predictive
distribution, given data matrix X = (x1,...,2;) and the
vector of their function evaluations f = (f(x1),..., f(x;)),
is also normal with mean and variance functions

pu(z) =K (@)K~ f, 2)
o?(x) = K(z,x) — k' (2) K~ k(z), 3)

where z € A and k(x) denotes the vector given by
(K(xz,21)... K(z,2;))’, and the kernel matrix is defined by
K, ;= K(x;,x;),1,7 € [l]. By K~ we denote the Moore-
Penrose pseudoinverse which coincides with the standard
inverse but generalizes to non-invertible cases. For the sake
of illustration, assume for the moment that we have the
simple linear kernel K (z,y) = 2y, i.e., the standard inner

product. Then Equations (2) and (3) simplify to

o) = ' X(X'X)f, )
o?(x) =2’z — 2/ X(X'X)" X'z, (5)

Now, to bound the effect of an e-subspace embedding S un-
der the assumption of low effective dimensionality, consider
V, an orthonormal basis for the active subspace, and v+,
an orthonormal basis for its nullspace. We can replace any
point x = Vy + V%tzby 2T = Vy, its projection to the
subspace, since f(z) = f(Vy+V+iz) = f(Vy) = f(z 7).
We stress that V and V- can be arbitrary bases for those
subspaces. While Definition 1 and our results do not depend
on the representative, it will be convenient to choose V' de-
rived from a singular value decomposition (SVD). Our main
result states that the Gaussian process in this subspace is
simulated very accurately conditioned on the (probabilistic)
event that we have an e-subspace embedding.

Theorem 2. Consider a Gaussian process that acts directly
in the unknown active subspace of dimension d. with mean
and variance functions (), 0%(+). Let ji(-), 52 (-) be their
approximations using an e-subspace embedding for the ac-
tive subspace. Then we have for every x € X

L |p(x) = ()| < 5e ||z | X f]]

2. |o?(z) — 62%(x)| < 12¢ [E

Proof. We can express x = Vy and by the SVD we have
X = VXU'. Then for the mean function and its approxima-
tion we have by the triangle inequality

lu(z) — ()]
=2’ X(X'X)" f— 2/ SX(X'S'SX)” f|
<X (X'X)"f -2’ SX(X'X) f] (6)

+ |2/ SSX(X'X)" f—2'S'SX(X'S'SX)" f]. (D
We bound both terms separately
(6) < |y'V'VSU' (USV'VEU')” f
—y'V'S'SVEU(USV'VESU')™ f|
< |yl IV'S'SV —I|||sU'(Usv'vED)~ f
<elyll|VEUUEH U f|| =<yl |[VvE-Uf]
=yl [ X~ f]]

and for the second summand (7),

(7)< |y'V'S'SVEU' (USV'VEU') f
—y'V'S'SVSU'(USV'S'SVEU')™ f|

< |yV'S'SVEU'US V'VETU'f
—y'V'S'SVEU'US™ (V'S'SV)" S~ U' f|

< |y V' SSV|||(vV's'sv)T = V'V || U f]]

< (L+e)2e lyll [ X f]
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The last inequality follows from the following two observa- <ellyl (lyl|[V'S'SV —I||||=U'(X'X) US|
tions. First, the inverse singular values are approximated to +lyll H U (X' X))~ UZH)
within a factor (1 £ 2¢) by Observation 1 in (Geppert et al., ) e
2017). Thus ||(V'S'SV)~ — V'V|| < 2. Second, we have <e(l+e) |yl |ZUUEVVETUUS
2 I

ly'V'S'SVI < [y'V'S'SV =y V'V + Iyl < 2 |ly|l® . =1

<Y HV'S'SV = I+ [yl < (1 +¢) |yl For the last summand, observe
Summing up, the triangle inequality implies (11) < |$/S/SXU27V/V27U/X,S/SI

- _ o — Q! —N =77 vl
(@) = ()| < (6) + (7) < 5e [ly] | XS] TSSXUST(VIS'SY) SV XS Sa

<||(v's'sv)” — 1| ||o's'sxUs~||?
<2 |yV's'svsuus|?
<2 (||ly(V'S'SV - )SU'US™ ||

+ |y v'vsuus|)?
<2 (yll|V'S"SV —I||||sU'UE ||

Similarly, we can show for the variance function that

|0 (2) — 5% ()]
=o'z — ' X(X'X)" X'z

—a'S' Sz + 2'S'SX(X'S'SX)” X' Sx|
< |2’z —2'S'Sx|

—1\2
+ e X(X'X) " X'x +yll U UsT|)
— 112
—2'S'SX(X'S'SX)”X'S' Sx| <2e(1+e)? |ly|* ||xU'US||
! rQr 2 _—
< |2’z — 2'S" Sz (8) < 8¢yl )
'X(X'X) X'z —2'S'SX(X'X)” X'
- ’x ( ) =T SSX( ) :c‘ ® The second part of Theorem 2 follows by triangle inequality
+ |2/ SX(X'X)” X'z
—2'§'SX (X' X)” X'S' S| (10) |0%(x) — 3% (x)] < (8) +(9) + (10) + (11)
+|2/S'SX (X' X) " X'S' S < 12¢ [Jy||*. O
—2'S'SX(X'S'SX)”X'S' Sx (11)

2.4. Generalization to other Popular Kernels

Again we bound items (8)-(11) separately. We have Sarlds (2006) original argument to construct a subspace

(8) < [y V'Vy —y'V'S'SVy| embedding relies on an additive approximation for inner
products. The analysis is conducted on unit norm vectors
and extends to the entire space by linearity. The assumption
is thus not restrictive but simplifies the presentation. We
show small error approximation guarantees for several pop-
(9) < YV'VESU'(X'X)" X'z ular classes of kernels. For the linear kernel K (z,y) = 2'y,

—y’V’S’SVZU'(X’X)_X':E‘ this is an immediate consequence of Definition 1 via the

parallelogram rule (Arriaga & Vempala, 2006):
1 Qf ! !/ — !/
< llylliv*s'sv —1j HZU (X)X xH Corollary 3. If S is an e-subspace embedding for V then
<elyll ||ZU/UE*V/VE*U/UZV,VZJH forallz,y € {v e RP | v="Vu,uc R} we have
<ely| |EUUSTVVETUUS |yl

< llyl* IV's'sV — 1|l < e lyl*,

and

'y —e |zl lyll < 2"S"Sy < 'y + e [|z]| [lyll -

2 =
=ellyll”, '

We begin with the polynomial kernel K (x,y) = (z'y + ¢)P.

Lemmad. Let K(x,y) = (2'y+ ¢)P,p € N be the polyno-

(10) < |x'S’SX(X’X)_UZV’Vy mial kernel with ¢ > 2. Let S be ang-subspace embeddi;;g
s o /ot for V. Then for all v,y € {v € R” | v = Vu,u € R*}

oSSXOON] USVISSVYL iy o = fly) = 1 we have K (z,y) ~ K(Sx, 5y)] <

and

< |[|la's"sX (X' X) US| [V'S'SV — 1] |y epK (z,y).
<elyll||y'V'S'SVEU'(X'X) US|
<elyll (Hy'(V’S’SV _ I)EU'(X’X)_UEH Proof. By Corollary 3 we have

+ |y v'VEr (X'x)"Us|) K(z,y) = (2'S'Sy + c)?
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< @y +elzllyl +¢”

p
o (1 cloll)

'y +c
and

K(z,y) = (2/S'Sy + )
> (2'y — ezl lyll + ¢)?

p
o (1 Nl gl
(@'y +¢) ( Eﬂc’y—kc

Thus by Bernoulli’s inequality

|K(@.y) = K(@.y)| = @y + ¢ = @SSy + )|

p
e (1 (11 el
< |@y+e) < ( 6zzc/y—kc
i o (1 1 ol
cfivror (11 el
< (@'y+ )P epllzll |yl < epK (). O

Next we bound the approximation guarantee under e-
subspace embeddings for the (squared) exponential kernel
K(z,y) = exp <7Hz?7py|‘p) for p € {1, 2}. To this end, we
begin with a claim proven in the Sect..

Claim 5. Let z € [0,1]. Fix§ € (0,3). Then we have
0<z—2"<§and0 < 2179 — 2 <6,

Lemma 6. Let K(x,y) = exp(—|z—y||’/IP),p €
{1,2} be the (squared) exponential kernel. Let S be an ¢-
subspace embedding for V.. Then for all x,y € {v € R? |
v =Vu,u € R} we have |K(z,y) — K(Sx,Sy)| < e.

Proof. S is an e-subspace embedding. Thus for any x, y in
the embedded subspace there exists some § € (—1, 1) with
|0] < e such that

K(,y) — K(o,y)|

- -y ISz — Sy|?
- eXp _T —eXp —172

|z —y||” |z —y|”
eXp _T _eXp _(1“!_5)172

= |K(z,y) — K(x,y)““s‘ <4| <¢,

where the last line holds by Claim 5 since K(z,y) =
exp(—|le —y[*/1?) € [0,1].

Note that the approximation guarantee of Definition 1 im-
plies that the (non-squared) Euclidean norms are approx-
imated to within /14+¢ < 1+ecand /1 —¢ > 1—¢
respectively. The proof thus applies unchanged to the sim-
ple exponential kernel K (x,y) = exp(— ||l —y|| /I). O

The Matérn kernel is defined as

1=v v Y v
K(ay)zi(y)(“ﬁm—yn) By<“7||x—y||>,

where v > 0 is a parameter and B,, is a second kind Bessel
function. For parameters of the form v = p + %, p € Nthe
above characterization simplifies and can in particular be
expressed as the product of a polynomial of degree p and an
exponential function. To this end for z, y and length scale
parameter [ let p = v/2v ||z — y|| /1. Then

K(z,y) = K(p) = (1 + poly(p)) exp(—p),

where poly(p) = >°F_, ¢;p’ for coefficients ¢; > 0,i € [p],
depending on v and p. The limiting cases are the simple
exponential kernel for p = 0,v = % and the squared expo-
nential kernel for v — oo. The Matérn kernel converges
quickly for larger values p > 3,v > % and is nearly indis-
tinguishable from the limiting case for finite and noisy data.
We thus give two examples which are most interesting in
machine learning (Rasmussen & Williams, 2006):

forp=1: K3z/5(p) = (1 + p) exp (—p),
forp =2: K5/5(p) = (1+ p+p?/3) exp (—p).

Lemma 7. Let K(x,y) be the Matérn kernel with parame-
terv=p+ %,p € N. Let S be an e-subspace embedding
for V.. Then for all z,y € {v € RP | v = Vu,u € R} we
have |K (z,y) — K(Sz, Sy)| < 2e.

Proof. K(x,y) is normalized since it is bounded by the lim-
iting squared exponential kernel K (p) < exp(—Cp?) < 1
for some absolute constant C' > 0, cf. (Rasmussen &
Williams, 2006). S is an e-subspace embedding. Thus
for any z,y in the embedded subspace there exists some
§ € (—3,%) with [§| < e such that |z —y|| = (1 +
) ||Sx — Sy||. Thus we have

‘K(p) - f((p)‘
’ 1+ poly(p) 1+ poly((1+d)p) ‘

exp(p) exp((1+9)p)
1+poly(p)  (1+poly(p)\" "’
= exp(p) < exp(p) > (12
1+ poly(p)\"** 1+ poly((1+4)p)
* ‘( o) op(@+ap | Y

Since K(p) € [0,1] it follows again from Claim 5 that
(12) = |K(p) — K(p)**°| < |8] < e. In the second term
the denominators are equal, since (exp(p))'T® = exp(p(1+
J)), so we continue only with the enumerators of (13). The
first term is always greater than the second for positive 4.
Moreover note that poly ((1+6)p) > (14 ) poly(p) since
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in each term we have (1 + §)* > (1 + J). For negative &
this is reversed but then also (1 + &)? < (1 + 6) is reversed.
It can be shown similarly to Claim 5 that

(1+ poly(p)'™* — (1 + (1 + 8) poly(p))
< 16| exp((1 + 6)p) < £ exp((1 + 6)p).

So (13) < e and thus |K (p) — K(p)| < 2e. O

When generalizing Theorem 2 for the kernel functions
above, we face two problems. First, since the implicit fea-
ture space may have infinite dimension it is unclear whether
the singular value decomposition (SVD) exists. To see that
it does, note that the rank of the kernel matrix might grow as
large as the number of points. But it remains bounded and
it was shown in (Bell, 2014) that any bounded rank linear
operator has an SVD. Second, we have to argue that we have
a subspace embedding restricted to the space spanned by the
feature vectors. Recall that in the original proof of Sarlds
(2006), it is sufficient to have an additive error guarantee
for the inner product of unit vectors as shown above.

Corollary 8. The claims of Theorem 2 hold when using the
normalized kernel functions with ¢ replaced by the additive
error bounds given in Lemmas 4 - 7.

3. Numerical Results

We demonstrate the performance of the proposed embed-
ding technique on a variety of functions, combining it with
KG of Cornell-MOE (Wu & Frazier, 2016; Wu et al.,
2017), BM (McLeod et al., 2018), and ET that was also used
for REMBO, referred to as HeSBO-KG, HeSBO-BM, and
HeSBO-ET respectively. The evaluation compares He SBO
to the state-of-the-art for high-dimensional BO (see Sect. 1):
REMBO-ky that fits a GP model to Y using the distances
in ), and REMBO-kx that uses distances after projection
to X. This addresses the problem that REMBO-ky tends
to over-explore the boundary of X" since those points may
appear distant when selected in J (Wang et al., 2016b, cf.
p. 371). REMBO-ky (Binois et al., 2015) uses a more so-
phisticated warping to handle points mapped to the bound-
ary of X better. All REMBO variants use the ET criterion.
ADD (Gardner et al., 2017), SKL (Wang et al., 2017), and
EBO (Wang et al., 2018) represent methods that learn the
structure of the search space. They were omitted for 1000-
dimensional test functions due to high computational cost.
BOCK (Oh et al., 2018) uses a cylindrical transformation of
the space to achieve an excellent performance on problems
of higher dimension. We implemented HeSBO-ET and all
REMBO variants in Python 3 using GPy. The code for the
embedding is available at github.com/aminnayebi/HesBO.
For all other algorithms we used the authors’ reference im-
plementations (see the bibliography).

Experimental Setup. We report the the function values of
the recommended solutions as a function of (1) the number
of steps performed by the algorithm, or (2) of the wall-
clock time. For the latter it is important to note that all
experiments were performed on dedicated machines with
identical resources. Error bars are shown at the median £
two standard errors of the median, averaged over at least 100
replications. See Sect. D for more details. When algorithms
show large discrepancies in the performance, we only plot
the best for clarity. See Sect. E for additional plots that show
all algorithms.

Performance on Test Functions. We compared the al-
gorithms on the following test functions: (1) Branin, (2)
Hartmann-6, (3) Rosenbrock, and (4) Styblinski-Tang (Styb-
Tang) with input dimension D € {25,100,1000}. The
first three have a low-dimensional active subspace: 2 di-
mensions for Branin and Rosenbrock, 6 for Hartmann-6.
StybTang is defined on all D dimensions. The proposed
subspace embedding in combination with KG and BM, two
state-of-the-art methods for low-dimensional BO, outper-
forms the state-of-the-art on all benchmarks, including the
high-dimensional StybTang, except for Hartmann-6. Look-
ing closer, we found that EI, KG and BM—without the
embedding— did not converge on the 6-d Hartmann func-
tion within this budget, hence we believe that this is not
caused by the embedding but likely due to the algorithms’
default settings. Fig. 1 shows the results for D = 100; see
Sect. E for D € {25,1000}. ADD’s performance is compa-
rable to He SBO-ET but has considerably higher computa-
tional cost. We will revisit to this aspect below.

100 dim Branin

100 dim Hartmanné

30 — HeSBOEI
> HeSBOKG
+— HeSBO-BM

o 10 20 30 0 s 6 70 & o 20

a 60 £
Number of evaluations

4
Number of evaluations

100 dim Rosenbrock 100 dim Styblinski-Tang

Figure 1. Performances on Branin (ul) with target dimension d =
4, on Hartmann-6 (ur) with d = 6, on Rosenbrock (bl) with d = 4,
and on StybTang (br) with d = 12. The input dimension is D =
100. We see that the proposed embedding in combination with KG
and BM achieves considerably better solutions at the same number
of function evaluations than the state-of-the-art. An exception is
Hartmann, where BOCK, SKL, and ADD perform best.
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Robustness to Target Dimension d and Input Dimen-
sion D. We study the robustness of the embedding
based algorithms with respect to the target dimension d
chosen for the embedding and the input dimension D. Fig 2
shows the performances on Hartmann-6 with input dimen-
sions D € {25,1000}. We see that HeSBO-ETI achieves

25 dim Hartmanng 1000 dim Hartmanné

—a— RemboK, (d=2)
—¥— RemboK, (d=4)
Rombo.K, (6=8)
HoSBO1 (¢-2)
> HoSBOEI (0=4)
—— HeSBO-EI (4=8)

Figure 2. Robustness regarding the target dimension d on
Hartmann-6 with input dimensions D = 25 (1) and D = 1000 (r).
The performance of the new subspace embedding He SBO-ET is
robust for the different target dimensions and outperforms the best
REMBO variant kx for all choices of d.

essentially the same performance for all target dimensions d
across the different input dimensions D. Note that in partic-
ular He SBO-EI’s performance does not degrade when the
target dimension d is chosen smaller than six, the dimen-
sionality of Hartmann-6. We also tested the robustness on
Hartmann-6 with input dimension D = 100 and for Branin,
and observed a similar robustness in both cases. He SBO-EI
and the three REMBO variants use the same GP model and
the same acquisition function EI, thus we attribute the con-
siderably better robustness to the hashing based subspace
embedding proposed in Sect. 2.

Analysis of the Scalability. We study the scalability of
the algorithms in Fig. 3. Here we examine the performance
as a function of the wall-clock time that essentially equals
the computational overhead of the respective methods. We

100 dim Branin

100 dim StybTang

4 SKL

g ~1500 — HoSBOEI
K

- HoSBO-
—— HeSBO.BM

5 10 15 20 25 30 5 10 15 20 2 B
“Time (seconds) Time (soconds)

Figure 3. Comparison of the running times on Branin with target
dimensions d = 4 (1) and on 100d-StybTang with d = 12 (r). The
input dimension is D = 100. We see that the proposed subspace
embedding achieves considerably better solutions at the same
computational cost compared to the other baselines, in particular
REMBO. HeSBO-ETI and He SBO-BM perform best here.

observe that the embedding-based approaches He SBO-EI
and He SBO-BM obtain considerably better solutions than

the other algorithms at the same cost.

Neural Network Parameter Search. We evaluate the
algorithms on a 100-dimensional neural network (NN) op-
timization task proposed by Oh et al. (2018). Here we are
given a NN with one hidden layer of size ten. The goal
is to choose the weights between the hidden layer and the
outputs in order to minimize the loss on the MNIST data
set (LeCun et al., 2017). The other weights and biases are
optimized by Adam (Kingma & Ba, 2014). We refer to their
paper for details. Fig. 4 summarizes the observed perfor-
mances on this benchmark for target dimension d = 12.
We note in passing that d = 6 and d = 24 gave similar
results. HeSBO-KG and BOCK obtain the best performance,

100 dim MNIST 100 dim MNIST

Function values

Figure 4. The NN benchmark with target dimension d = 12. We
observe that He SBO—KG and BOCK achieve the best performance.
Note that He SBO—EI outperforms EBO that operates on the high-
dimensional domain.

followed by HeSBO—-EI. Particularly remarkable for this
benchmark is that the simple, embedding-based He SBO-EI
finds better solutions than EBO, although the latter oper-
ates directly on the high-dimensional search space. This
suggests that this high-dimensional problem possesses a
low-dimensional approximation of sufficient accuracy.

4. Conclusion

Enabling Bayesian optimization to high dimensional prob-
lems is seen of great practical and theoretical interest, e.g.,
see (Frazier, 2018). This paper advances both directions.
We have proven for a large class of GP-based BO methods
that the optimization process would proceed essentially as it
would if invoked directly on the active subspace. The exper-
imental evaluation demonstrated the practical value of the
proposed embedding technique on a variety of benchmarks.
In particular, He SBO performs better than the state-of-the-
art for high-dimensional BO based on random embeddings
and structure learning. It is important to note that the sub-
space embedding has a negligible computational overhead
and is agnostic to the way data is acquired. It is thus straight-
forward to combine it with existing methods, e.g., for batch
acquisition (Chevalier & Ginsbourger, 2013; Marmin et al.,
2015; Shah & Ghahramani, 2015; Wu & Frazier, 2016;
Wang et al., 2016a; Wu et al., 2017). We look forward to
“exotic” applications, e.g., in multifidelity optimization.
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