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Abstract
This work proposes the first set of simple, prac-
tically useful, and provable algorithms for two
inter-related problems. (i) The first is low-rank
matrix recovery from magnitude-only (phaseless)
linear projections of each of its columns. This
finds important applications in phaseless dynamic
imaging, e.g., Fourier ptychographic imaging of
live biological specimens. Our guarantee shows
that, in the regime of small ranks, the sample
complexity required is only a little larger than the
order-optimal one, and much smaller than what
standard (unstructured) phase retrieval methods
need. (ii) We also study a dynamic extension of
the above which allows the low-dimensional sub-
space from which each image/signal (each column
of the low-rank matrix) is generated to change
with time. We introduce a simple tracking algo-
rithm that also has a provable guarantee when the
subspace changes are piecewise constant.

1. Introduction
In recent years, there has been a resurgence of interest in
the classical “phase retrieval (PR)” problem (Fienup, 1982;
Gerchberg & Saxton, 1972). This involves recovering an n-
length signal x∗ from the magnitudes of its Discrete Fourier
Transform (DFT) coefficients. While practical PR methods
have existed for a long time, the focus of the recent work
has been on obtaining convergence guarantees for these and
newer algorithms. For this, the generalized PR problem has
been introduced which replaces DFT by inner products with
arbitrary design vectors, ai. Thus, the goal is to recover x∗

from yi := |〈ai,x∗〉|, i = 1, 2, . . . ,m. This line of work in-
cludes convex relaxation methods (Candes et al., 2013a;b) as
well as non-convex methods (Netrapalli et al., 2013b; Can-
des et al., 2015; Chen & Candes, 2015; Zhang et al., 2016;
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Wang et al., 2016). It is easy to see that, without extra as-
sumptions, PR requires m ≥ n. The best known guarantees
– see (Chen & Candes, 2015) and follow-up works – prove
exact recovery high probability (whp) with order-optimal
number of measurements (samples): m = Cn. Here and
below, C is reused often to refer to a constant more than
one. Much of the above work assumes that the ai’s are inde-
pendent and identically distributed (iid) standard Gaussian
vectors. There is also very recent work on guarantees for
PR methods that only need a random initialization (instead
of a carefully designed spectral initialization). Due to lack
of space we do not discuss these here. These need more
than Cn measurements.

A natural approach to reduce the sample complexity is to im-
pose structure on the unknown signal(s). There is little work
on structured PR with the exception of sparse PR which
has been extensively studied e.g., (Jaganathan et al., 2012;
Shechtman et al., 2014; Szameit et al., 2012). Low-rankness
is the other common structure. There seem to be two natural
approaches to exploit it. The first is to consider recovery
from phaseless dense linear projections of the entire low-
rank matrix. However, this model implicitly assumes that
the signal/image, whose measurements are available, can
be reshaped into a low-rank matrix. This is an assumption
that is often not valid. A more reasonable (and commonly
used) model is to assume that a set, or a time sequence, of
signals/images together form a low-rank matrix and we have
phaseless linear projections of each signal or image. This
latter model finds applications in many dynamic imaging
problems where the phase cannot be recovered. For exam-
ple, in Fourier ptychography, it allows for imaging of slowly
changing dynamic scenes such as live biological specimens
in vitro. Similarly, it can also be used for various other
dynamic phaseless imaging problems that occur in X-ray
and sub-diffraction imaging or in astronomy.

We study the above problem: recover a low-rank matrix
from phaseless linear projections of each of its columns. We
also study its dynamic extension, which is a more useful
problem setting when dealing with a long time sequence
of signals/images. Versions of these problems were briefly
studied in (Vaswani et al., 2017; Nayer & Vaswani, 2018;
2019) where a set of heuristics were proposed and experi-
mentally evaluated, along with a partial attempt to analyze
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the first step of one of them. An application to dynamic
ptychography was demonstrated in (Jagatap et al., 2018).

Phaseless Columnwise Low Rank Matrix Recovery (Ph-
Co-LRMR). This involves recovering a rank r matrix
X∗ ∈ Rn×q from measurements of the form

yik := |aik′x∗k|, i = 1, . . . ,m, k = 1, . . . , q. (1)

Here and below, we use ′ to denote vector or matrix trans-
pose. Also, x∗k is the k-th column of X∗. Let X∗

SV D
=

U∗Σ∗B∗ denote its singular value decomposition so that
U∗ ∈ Rn×r, B∗ ∈ Rr×q, and Σ∗ ∈ Rr×r is a diagonal
matrix. Observe that this notation is a little non-standard, if
the SVD was U∗Σ∗V∗′, we are letting B∗ := V∗′. Thus,
columns of U∗ and rows of B∗ are orthonormal. We use
σ∗max, σ

∗
min to denote the maximum and minimum singular

values of X∗ and κ = σ∗max/σ
∗
min to denote its condition

number. Also, let

B̃∗ := Σ∗B∗.

We write the SVD as above to make it easier to specify the
dynamic problem setting. Also, the QR decomposition of an

estimate of B̃∗, denoted B̂, will be written as B̂
QR
= RBB

with B being an r × q matrix with orthonormal rows (or

equivalently B̂′
QR
= B′(RB)′).

The only assumption we need on X∗ is right incoherence
(incoherence of right singular vectors). In our notation, this
means

max
k
‖b∗k‖2 ≤ µ2r/q

with µ ≥ 1 being a constant. Notice that this implies that
‖b̃∗k‖2 ≤ σ∗max

2µ2r/q and ‖x∗k‖2 ≤ µ2κ2‖X‖2F /q.

For guarantees, we assume aik
iid∼ N (0, I) (iid standard

Gaussian).

Dynamic Ph-Co-LRMR or Phaseless Subspace Track-
ing (ST). The low-rank assumption is equivalent to as-
suming that x∗k = U∗b̃∗k where U∗ specifies a fixed r-
dimensional subspace. For long signal/image sequences, a
better model (allows r to be smaller) is to let the subspace
change with time. As is common in time-series analysis, the
simplest model for time-varying quantities is to assume that
they are piecewise constant. We adopt this approach here.
Let k0 = 1, and let kj denote the j-th subspace change time,
for j = 1, 2, . . . , J . Assume that

x∗k = U∗j b̃
∗
k, for all kj ≤ k ≤ kj+1, j = 0, 1, . . . , J, (2)

where U∗j is an n× r matrix with orthonormal columns that
represent the subspace it spans (we call it a “basis matrix”).
Let kJ+1 = qfull denote the total number of frames. Thus
X∗ is now n× qfull.

The goal is to track the subspaces Span(U∗j ) on-the-fly;
of course “on-the-fly” for subspace tracking means with
a delay of at least r. Once this can be done, it is easy to
also recover the matrix columns x∗k (by solving a simple
r-dimensional PR problem to recover the b̃∗k’s).

Notation. We use ‖.‖ to denote the l2-norm of a vector or
the induced 2-norm matrix. A tall matrix with orthonormal
columns is referred to as a “basis matrix”. For two basis
matrices W,D, we define the subspace error (distance) as
SE(W,D) = ‖D⊥′W‖ = ‖W⊥

′D‖ = ‖(I−WW′)D‖.
This measures the largest principal angle between the two
subspaces. We often use terms like “estimate W” when
the goal is to really estimate its column span, Span(W).
Since we are working with real valued vectors and ma-
trices, the phase-invariant distance is just the sign invari-
ant distance and is defined as dist(x∗, x̂) = min(‖x∗ −
x̂‖, ‖x∗+ x̂‖). Define the corresponding matrix distance as
mat-dist(X∗, X̂)2 :=

∑q
k=1 dist(x∗, x̂)2.

We reuse the letters c, C to denote different numerical con-
stants in each use with the convention that C ≥ 1 and c < 1.

Contributions. This work has two key contributions.

1. It provides the first complete solution approach and
guarantee for Ph-Co-LRMR (LRMR from column-
wise phaseless linear projections). In the regime of
small ranks r, we show that the required sample com-
plexity is close to optimal. We also demonstrate the
practical advantage of our proposed approach, AltMin-
LowRaP (Alt-Min for Phaseless Low Rank Recovery)
over existing work, via extensive simulation experi-
ments and a few experiments for recovering real videos
(that are only approximately low-rank) from simulated
coded diffraction pattern (CDP) measurements; see
Fig. 1.

2. This work provides the first simple algorithm and a
provable guarantee for Phaseless Subspace Tracking
(ST) which is a dynamic extension of Ph-Co-LRMR.

Our proposed algorithm for Ph-Co-LRMR, AltMinLowRaP,
relies on three key ideas. The first is a clever spectral initial-
ization for obtaining the first estimate of Span(U∗). The
second is the observation that, if U∗ were known, we only
need to solve q small (r-dimensional) standard PR problems
to recover the b̃∗k’s. Third, given an estimate of b̃∗k’s, we can
obtain a new improved estimate of Span(U∗) by solving a
least squares (LS) problem. The key insight that helps ob-
tain a significant sample complexity reduction over standard
PR is the observation that, for both the initialization and the
update steps for U∗, conditioned on X∗, we have access
to mq mutually independent measurements. These are not
identically distributed, however, the right incoherence as-
sumption on X∗ ensures that the distributions are similar
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(a) Original (b) AltMinLowRaP (c) RWF
Figure 1. Comparison of recovery performance for the mouse video. The images are shown at t = 60, 78. For more video results, see
(Nayer et al., 2019).

enough so that concentration holds with mq samples.

Assuming constant condition number, our guarantee shows
that the sample complexity, mq, for recovering a rank r
matrix of size n × q to ε accuracy is just Cnr5 log(1/ε).
In the regime of small ranks r, this is close to the optimal
complexity of 2nr. Ignoring log factors, when q ≈ n, this
implies that only about r5 samples per signal are required.
For small r, this is a significant improvement over standard
PR approaches which necessarily require m ≥ Cn. More-
over, our guarantee for the dynamic setting (phaseless ST)
shows that, if the subspace remains constant for a certain
period of time before it changes, and if the largest principal
angle of the change is not too small, we can both detect and
track the changed subspace to within ε error with finite delay.
This delay can be made small by increasing the number of
measurements m per column.

2. Ph-Co-LRMR: Phaseless Column-wise
Low-Rank Matrix Recovery

The goal is to recover X∗ = U∗B̃∗ from measurements
of the form (1). We adopt an alternating minimization
(AltMin) approach (Netrapalli et al., 2013a). We can
rewrite yik = |aik′U∗b̃∗k| = |(U∗′aik)′, b̃∗k|. If U∗ were
known, the problem of recovering each b̃∗k’s is an easy r-
dimensional standard PR problem. Any PR solution can be
used, here we use reshaped Wirtinger flow (RWF) (Zhang
et al., 2016). Since U∗ has orthonormal columns, the de-
sign vectors (U∗′aik)’s are also standard Gaussian random
vectors. Given an estimate of the b̃∗k’s, one can update
the estimate of Span(U∗) by standard LS followed by QR
decomposition on its output to obtain a matrix with orthonor-
mal columns. Thus, given an initial estimate of Span(U∗),
we have a simple alt-min algorithm that alternates between
r-dimensional PR for updating the b̃∗k’s and LS for updating
U∗.

Since we only have an estimate of U∗ at each iteration, the
measurements for the PR step are not noise-free. The t-th
iteration, it sees noise proportional to the SE(Ut,U∗). As

a result the error in its estimate will be of the same level.
Thus, there is no advantage in running the full RWF. Instead
one can obtain a speed-up by letting the number of RWF
iterations, TRWF,t, at the t-th step grow with t.

To obtain the initialization, we develop a clever modification
of the truncated spectral initialization idea from (Chen &
Candes, 2015; Vaswani et al., 2017). First assume that r is
known. We initialize Û as the first r left singular vectors of
the following matrix.

YU =
1

mq

∑
ik

y2
ikaika

′
ik1{|a′ikx∗k|2≤ 9

mq

∑
ik |a′ix∗k|2}.

(3)
To simply understand why this works, consider the
above matrix with the indicator function removed. Then
it is not hard to see that its expected value equals
(1/q)[U∗(Σ∗2)U∗′ + 2trace(Σ∗2)I], and so its span of
top r singular vectors equals Span(U∗). Hence, with large
enough mq, the same should approximately hold for the
original matrix. However, when using YU with the indica-
tor function removed, a few “bad” measurements (those with
very large magnitude y2

ik compared to their empirical mean
over i, k) can heavily bias its value. Hence a larger lower
bound on mq will be needed to get a good initialization
with high probability (whp). On the other hand, includ-
ing the indicator function truncates the summation to only
sum over the “good” measurements. Mathematically, this
helps ensure that YU is close to a matrix that can be writ-
ten as

∑
ik wikwik

′ with wik’s being sub-Gaussian vectors
(instead of sub-exponential in the case without truncation).

We can also use YU to correctly estimate r whp by relying
on the fact that when m and q are large the gap between
its r-th and (r + 1)-th singular value is close to σ∗min

2/q.
With this idea, we estimate r as given in the first step of
Algorithm 1.

By defining the n×m matrix Ak := [a1,k,a2,k, . . . ,am,k]
and yk := [y1,k,y2,k, . . . ,ym,k]′, and letting |z| denote
element-wise magnitude of a vector, we can rewrite (1) as
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Algorithm 1 AltMin-LowRaP: Alt-Min for Phaseless Low
Rank Recovery

1: Parameters: T , TRWF,t, ω.
2: Partition mtot measurements and design vectors into

one for initialization and 2T disjoint sets for rest.
3: Set r̂ as the largest index j for which λj(YU ) −
λn(YU ) ≥ ω where YU is in (3).

4: U0 ← Û0 ← top r̂ singular vectors of YU defined in
(3).

5: for t = 0 : T do
6: b̂tk ← RWF ({y(t)

k ,Ut′A
(t)
k }, TRWF,t) for each

k = 1, 2, · · · , q
7: Set X̂t = UtB̂t

8: Compute QR decomp: B̂t QR
= Rt

BBt

9: Ĉk ← Phase(A
(T+t)
k

′x̂tk) for each k = 1, 2, · · · , q
10: Compute Ût+1 as arg minŨ

∑q
k=1 ‖Ĉky

(T+t)
k −

A
(T+t)
k

′Ũbtk‖2

11: Compute QR decomp: Ût+1 QR
= Ut+1Rt+1

U

12: end for
yk = |Ak

′x∗k|, k = 1, 2, . . . , q. This simplifies the writing
of Algorithm 1. Also, as is commonly done in existing
literature, e.g., (Netrapalli et al., 2013a), in order to obtain a
provable guarantee in a simple fashion, a new (independent)
set of m measurements in each new update of U∗ and of the
b̃∗k’s is used. Since we prove geometric convergence of the
iterates, this increases the required sample complexity by a
factor of only log(1/ε)). In simulations, this is not done.

Theorem 2.1 (Guarantee for AltMinLowRaP). Consider
Algorithm 1. Assume that the yik’s satisfy (1) with aik be-
ing iid standard Gaussian; X∗ satisfies right-incoherence
with parameter µ; and that the product µκ is a constant.
Set T := C log(1/ε), TRWF,t = C(log r + log κ2 +
t(log(0.7)/ log(1 − c))), and ω = 0.25σ∗min

2/q. Assume
that, for the initialization step and for each new update,
we use a new set of m measurements with m satisfying
mq ≥ Cκ6µ2nr5 and m ≥ C max(r, log q, log n). Pick
T = C log(1/ε). Then, w.p. at least 1− Cn−10,

SE(U∗,UT ) ≤ ε, mat-dist(X̂T ,X∗) ≤ ε‖X∗‖F

and dist(x̂Tk ,x
∗
k) ≤ ε‖x∗k‖ for each k. Moreover, after the

t-th iteration,

SE(U∗,Ut) ≤ 0.7tδinit, t = 0, 1, 2, . . . , T

where δinit = c
κ2r and similar bounds also hold on the error

in estimating x∗ks.

The time complexity is mqnr log2(1/ε) and memory com-
plexity is mqn log(1/ε).

We prove this in Sec. 5, proofs of the key lemmas can be
found in (Nayer et al., 2019).

Theorem 2.1 implies that the sample complexity mtot =
(2T + 1)m needs to satisfy mtotq ≥ Cκ6µ2nr5 log(1/ε)
along with mtot ≥ C max(r, log q, log n) log(1/ε)). The
lower bound on just m is essentially redundant (except for
very large q). As discussed earlier, in the regime of small r,
this is close to the optimal value of (n+ q)r. Also, clearly,
it is significantly better than that of standard PR that does
not use any structural assumptions. These need m = Cn.

The sample complexity gain is to be expected because we
are exploiting extra structure. But what is also expected is
that time complexity increases when doing that. For a given
value of m and q, this is indeed true. AltMinLowRaP is
about r times slower than the best PR methods such as TWF
or RWF. These need time of order mqn log(1/ε) to recover
a set of q n-length signals. However, if we instead consider
the time needed if, for each method, we use the least number
of measurements needed for the method to provably give
an ε-accurate estimate of the signals, then, in fact, we can
argue that AltMinLowRaP is faster. More precisely, if we let
mq = Cnr4 log2(1/ε) for AltMinLowRaP and mq = Cnq
for TWF/RWF, then AltMinLowRaP is faster as long as
r5 < q.
3. Dynamic Ph-Co-LRMR or Phaseless ST
Consider the subspace tracking (ST) problem. This assumes
that the matrix X∗ is of size n × qfull with the columns
corresponding to a time sequence of signals or images. Thus
measurements of the columns are obtained sequentially and
hence there is benefit in developing an online (mini-batch)
algorithm that works with measurements of short batches of
α consecutive columns. The resulting algorithm is a simple
modification of the static case idea along with a carefully
designed subspace change detection step. To understand the
change detection strategy, let k̂j denote the estimated change
times. Consider an α frame interval contained in [kj , kj+1).
Assume that an ε-accurate estimate of the previous subspace
U∗j−1 has been obtained by k̂j−1 + Tα and that this time is
before kj . Define the matrix

YU,det := (I − Ûj−1Ûj−1
′)YU (I − Ûj−1Ûj−1

′)

With a little bit of work (see proof of Lemma C.1 of (Nayer
et al., 2019)), one can show that YU,det is close to a matrix
Edet whose eigenvalues satisfy

λmax(Edet)− λmin(Edet)

≥ 0.5(SE(U∗j−1,U
∗
j )− 2ε)2σ∗min

2/α.

On the other hand, in an α frame interval contained in
[k̂j−1 + Tα, kj), this quantity can be upper bounded by
SE(Ûj−1,U

∗
j−1)2σ∗max

2/α ≤ ε2σ∗max
2/α. Thus, this

quantity is small when the change has not occurred, and
is large when the subspace has changed sufficiently. By
using a large enough lower bound on the product mα, and
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Figure 2. Error versus time plot with time in seconds. In the left plot m = 80, n = 200, q = 400 and in the right plot m = 150, n = 600,
q = 1000. We compare with LRPR2 which is the only other existing Low-Rank Phase Retrieval algorithm (Vaswani et al., 2017), RWF
(Zhang et al., 2016) and projected RWF. Notice that the first step (initialization) of LRPR2 is slower than our proposed method. This is
likely due to the fact that the estimates of the rank are different for the two algorithms and thus the errors are also slightly different in the
two cases. For the purpose of better illuatration, we only plot the error and time at the end of every 10 iterations for RWF and proj-RWF.

concentration bounds, the same can be shown for the dif-
ference between the max and min eigenvalues of YU,det.
We summarize the complete algorithm in Algorithm 2. It
toggles between the “update” mode and the “detect” mode.
It starts in the update mode, and enters the detect mode after
T iterations of the update are done.

Once we have an ε-accurate estimate of the current sub-
space, it is straightforward to also recover the corresponding
signals x∗k. This can simply be done via projected PR to
recover b̃∗k’s. See last line of Algorithm 2. This borrows a
similar idea from (Narayanamurthy & Vaswani, 2018).

Theorem 3.1 (Phaseless ST). Consider Algorithm 2. Pick
any value of m ≥ C max(r, log n, log qfull). For this
m, set α = Cκ6µ2nr5

m . Set T := C log(1/ε), and the
change detection threshold ω = c/(κ

√
r). Assume that

kj+1 − kj ≥ α(T + 2) and that at, each change time,
kj , SE(Uj−1,Uj)

2 > c/(κ
√
r). Then, w.p. at least

1− Cn−10,

1. we can detect the change with a delay of at most 2α,
while ensuring no false detections: kj ≤ k̂j ≤ kj+2α;

2. for any ε > 0, we can get an ε-accurate estimate with
a delay of at most (T +3)α; and we have the following
subspace error bounds:

SE(U(k),U∗j ) ≤


SE(U∗j−1,U

∗
j ) + ε if k ∈ J−1

(0.7)` c
κ
√
r

if k ∈ J`,
ε if k ∈ JT+1

Here, J−1 := [kj , kj + 3α], J` := [kj + (3 +
`)α, kj + (3 + ` + 1)α] for ` = 0, 1, 2, . . . , T and
JT+1 := [kj + (T + 4)α, kj+1].

Offline PST-large returns X̂ that satisfies
mat-dist(X̂,X∗) ≤ ε.

For its proof, see (Nayer et al., 2019).The above result shows
that, if the subspace remains constant for at least α log(1/ε)
frames, and if the amount of subspace change (largest prin-
cipal angle of subspace change) is of order 1/

√
r or larger,

then we can both detect the change and track the changed
subspace to ε error within a delay of order α log 1/ε. More-
over, for only at most 3α frames after a change, the sub-
space error does not reduce and is essentially bounded by
the amount of change. After this, it decays exponentially
every α frames.

Notice from the expression for α that, if we pick the small-
est allowed value of m, then the required α (and hence the
required delays) will be large. However, we are allowed to
tradeoff m and α. If we let m grow linearly with n, then we
will only need α ≈ r4, which is, in fact, close to the mini-
mum required delay of r. This also matches what is seen in
existing works on provable ST in other settings (e.g., robust
ST, ST with missing data, or streaming PCA with missing
data) (Narayanamurthy & Vaswani, 2018; Mitliagkas et al.,
2014). These are able to allow close to optimal detection
and tracking delays but all these assume that m increases
linearly with n. Also, the only other work that can also prov-
ably handle time-varying (piecewise constant) subspaces is
(Narayanamurthy & Vaswani, 2018).

Improved Phaseless ST: PST-all. Notice from Theorem
3.1 that Algorithm 2 can only provably detect and track sub-
space changes that are larger than a small threshold. While
this makes sense for detection, it should be possible to track
all types of changes. By including a simple modification in
Algorithm 2 (include the “update” step during the detection
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Figure 3. Plot of subspace error versus time at each α frames. Notice that for the cases where SE(U∗
0,U

∗
1) = 0.8 both algorithms are

able to detect and track changes whereas when SE(U∗
0,U

∗
1) = 0.01, 0.2 only the PST-all algorithm works.

mode as well), we can empirically demonstrate that this is
indeed true. See Fig 3. The proof that this is the case should
also be possible, but needs careful changes to the analysis
of the subspace update step. It requires the ability to deal
with two different subspaces in one α-frame epoch. This is
part of ongoing work. The modified algorithm is presented
in (Nayer et al., 2019)

4. Related Work
Other work on phaseless low-rank recovery. The only
other work that also studies Ph-Co-LRMR is (Vaswani et al.,
2017). This introduced a series of heuristics to solve the
Ph-Co-LRMR problem and evaluated them experimentally.
It also attempted to provide a guarantee for obtaining an ini-
tial estimate of X∗ also via a spectral initialization method.
However, their guarantee is far from optimal even in the
setting of small r. If we compare their main result (their
Theorem 3.2) with ours, (i) it required the following lower
bound on just m: m ≥ C max(

√
n, r4)/ε2 in addition to a

lower bound on mq that also depends on 1/ε2. The depen-
dence on 1/ε2 is what makes this very large. (ii) However
they only analyzed initialization, so another way is to com-
pare their guarantee with just our Lemmas 5.1 and 5.3. They
still need a lower bound of m ≥ C

√
n which is a signifi-

cantly stronger requirement than ours. Also the lower bound
of r3 (ii) Finally, their result also needed a bound on each
entry of b̃∗k rather than just right incoherence.

There is no other work on phaseless ST except a recent
short conference paper (Nayer & Vaswani, 2018) that pro-
posed a complicated algorithm which relied on impractical
assumptions of subspace change. It does not contain any
guarantees.

Another seemingly related work is (Sanghavi et al., 2017).
This attempts to recover an n× r matrix U∗ from measure-
ments yi = ‖a′iU∗‖2. If r = 1, this is the standard PR
problem. In the general case, this is related to covariance
sketching, but not to our problem.

Dynamic structured data recovery. Our work can be

Algorithm 2 Phaseless ST

1: k̂0 ← 0, j ← 0, `← 0
2: Mode← update
3: for k ≥ 0 do
4: if Mode = update then
5: if k = k̂j + (`+ 1)α then
6: if ` = 0 then
7: Ûj,` ← top r singular vectors of Yu

8: end if
9: b̂τ ← RWF ((yτ , Ûj,`

′Aτ ), TRWF,t), for
τ ∈ [k − α+ 1, k]

10: Compute QR decomposition B̂
QR
= RBB

11: Ĉτ ← Phase
(
A′τÛj,`b̂τ

)
, for τ ∈ [k − α +

1, k]

12: Ûj,`+1 ← arg minU

∑
τ∈[k−α+1,k] ‖Ĉτyτ −

Aτ
′Ub̂τ‖2

13: Compute QR decomposition Ûj,`+1
QR
=

Uj,`+1RU

14: `← `+ 1
15: end if
16: if ` = L then
17: Uj ← Uj,`, Mode← detect
18: end if
19: end if
20: if Mode = detect then
21: if

(
λmax

(
YU,det

)
− λmin

(
YU,det

)
≥ w

)
then

22: j ← j + 1, k̂j ← k, `← 0, Mode← update
23: end if
24: end if
25: Output U(k) ← Ûj,`

26: end forOffline PST: For each k ∈ [k̂j , k̂j+1), output
x̂k = Ûb̂k with Û = basis([Ûj , Ûj+1]) and b̂k is a
(at most) 2r-length vector obtained by RWF.

interpreted as another key addition to a decade long body
of work on dynamic structured high-dimensional data re-



Phaseless PCA: Low-Rank Matrix Recovery from Column-wise Phaseless Measurements

covery. Other problems in this category that have been
extensively studied include dynamic compressive sensing
(Vaswani & Zhan, 2016), dynamic robust PCA (or robust
ST), see (Narayanamurthy & Vaswani, 2018) and references
therein, and ST with missing data (Balzano et al., 2018). In
terms of works with complete provable guarantees, there
is the nearly optimal robust ST (NORST) approach and its
precursors (Narayanamurthy & Vaswani, 2018), and recent
papers on streaming PCA with missing data (Mitliagkas
et al., 2014; Gonen et al., 2016). For robust ST, the problem
setting itself implies m = n/2, while in the streaming PCA
case, m = cn is used. This is why both achieve close to
optimal tracking delays (at least when the added unstruc-
tured noise is nearly zero). As noted earlier, our method
can also achieve this if we let m grow with n. Unlike our
work, most of these approaches (except NORST) cannot
work with time-varying subspaces though.

Existing work on low-rank matrix recovery. Low-rank
matrix sensing (LRMS) involves recovering a low-rank X∗

from yi = 〈Ai,X
∗〉 with Ai being dense matrices. This

is the easier “global” measurements’ setting, i.e., each yi
contains information about the entire X∗. Initial solution
approaches for LRMS borrow ideas from the compressive
sensing literature, which is another instance of a problem
with global measurements (of the sparse vector). In both
these cases, it is possible to prove a simple (sparse or low-
rank) restricted isometry property (RIP) which simplifies
the rest of the analysis. Our problem setting is different
from and more difficult than the above two since the mea-
surements are not global. In this sense it can be compared to
low-rank matrix completion (LRMC) but of course its mea-
surement model is not like LRMC either. LRMC involves
completely local measurements. Because of this, to allow
for correct “interpolation”, it requires assuming that X∗

has dense rows and columns. This is imposed by assuming
denseness (incoherence) of its left and right singular vectors.
In our setting, since we have global measurements of each
column, but not of the entire matrix, only right incoherence
suffices.

Thus, even the linear version of our setting (suppose phase
information was available) is clearly different from both
LRMS and LRMC. However since no other complete guar-
antees exist for our problem or even for its linear version, we
briefly compare our sample complexity with that of LRMC
methods. The first iterative LRMC solution, AltMinCom-
plete (Netrapalli et al., 2013a), needed a sample complexity
of about nr5 log(1/ε). This is comparable to what we need.
The best known guarantee is for a projected gradient descent
solution from (Cherapanamjeri et al., 2016) and this needs
Ω(nr2 log2 n log2(κ/ε) samples.

5. Proof of Theorem 2.1: overall lemmas
The proof is any easy consequence of the lemmas stated
below and are proved in (Nayer et al., 2019).

Observe that U0 = Û0 since this initial estimate is obtained
by SVD. We will also sometimes refer to it as Uinit.

Lemma 5.1 (Rank estimation and Initialization of U∗).
Pick a δinit < 0.25. Assume mq ≥ κ4nr3/δ2init and
m ≥ κ4r2 log max(n, q)/δ2init. Set the rank estimation
threshold ω = 0.3σ∗min

2/q. Assume also that µκ ≤ C.
Then, w.p. at least 1 − Cn−10, the rank is correctly esti-
mated and

SE(U∗,Uinit) ≤ δinit

Definition 5.2. Define gtk := Ut′x∗k and ek := (I −
UtUt′)x∗k.

It is easy to see that x∗k = Ugk + ek and so yik =
|(U′aik)′gk + a′ikek|. Thus, we have a noisy PR prob-
lem to solve with the noise magnitude proportional to
‖ek‖ ≤ SE(Ut,U∗)‖x∗k‖. Also, the solution estimates
gtk = (Ut′U∗)b̃∗k which is just a rotated version of b̃∗k. We
show in the next lemma that the error dist(gtk, b̂

t
k), is pro-

portional to SE(Ut,U∗). By triangle inequality the same
is true for the error in x̂tk := Utb̂tk.

Lemma 5.3 (Recovery of b̃∗k’s). At iteration t, assume that
SE(U∗,Ut) ≤ δt. Pick a δb < 1. If m ≥ Cr, and if
we set TRWF,t = C log δt/ log(1 − c), then w.p. at least
1 − 2q exp

(
−cδ2bm

)
, the following is true for each k =

1, 2, · · · , q

dist
(
gtk, b̂

t
k

)
≤Cδt‖b̃∗k‖ = Cδt‖x∗k‖,

dist(x̂tk,x
∗
k)≤Cδt‖x∗k‖,

mat-dist(Gt, B̂t)≤Cδt‖B̃∗‖F = Cδt‖X∗‖F (4)

Thus, if m ≥ C max(r, log n, log q)/δ2b , then the above
bounds hold w.p. at least 1− Cn−10.

If each b̂tk is close enough to gtk (which is a rotated version
of b̃∗k), then, we would expect Bt to also satisfy the inco-
herence assumption. We show next that this is indeed true
when δt ≤ 0.25

C
√
rκ

.

Lemma 5.4 (Incoherence of B∗ implies incoherence of Bt).
At iteration t, assume that SE(U∗,Ut) ≤ δt with δt ≤
0.25
C
√
rκ

. If B∗ is µ-incoherent, then, w.p. 1− 2q exp(−δ2bm),
Bt is µ̂-incoherent with µ̂ = Cκµ.

Finally, the next claims shows that the LS step to update
Û reduces its error by a factor of 0.7 at each iteration. Its
proof relies on the previous two lemmas.

Claim 5.5 (Descent Lemma). At iteration t, assume that
SE(U∗,Ut) ≤ δt. If δt ≤ c

rκ2 , mq ≥ Cκ2µ̂2nr2/δ2t and
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m ≥ C max(r, log n, log q) then w.p. at least 1− cn−10,

SE(U∗,Ut+1) ≤ 0.7δt := δt+1.

Proof of Theorem 2.1. The SE(U∗,Ut) bounds are an im-
mediate consequence of the initialization lemma, Lemma
5.1, and the above claim, Claim 5.5, along with setting
δinit = c/κ2r and δt = 0.7t−1δinit. The other bounds then
follow by using Lemma 5.3.

5.1. Proofs of the above lemmas: key ideas
The two lemmas that need the most effort to prove are
Lemma 5.1 and Claim 5.5. The overall idea for proving
Lemma 5.1 is borrowed from (Vaswani et al., 2017; Chen
& Candes, 2015). But there are many important differences
because we define YU differently in this work (the threshold
in the indicator function now sums over all mq measure-
ments). This simple change enables us to get a significantly
improved result. It lets us use concentration over all the
mq measurements (and design vectors) in each of the three
steps of the proof. This is what helps eliminate the lower
bound m ≥ Cr4 on just m that was needed in (Vaswani
et al., 2017). However, this also means that the proofs are
much more involved (more quantities now vary with k). It
also means that we need the product µκ to be a constant.

Overall idea of proof of Claim 5.5 is as follows. Using the
top level approach of (Netrapalli et al., 2013a),

SE(U∗,Ut+1) ≤ MainTerm

0.9σ∗min −MainTerm
.

with MainTerm is defined as

maxW∈SW |Term1(W)|+ maxW∈SW |Term2(W)|
minW∈SW Term3(W)

.

Here, SW = {W ∈ Rn×r : ‖W‖F = 1} is the space of
all n× r matrices with unit Frobenius norm,

Term1(W) :=
∑
ik

bk
′W′aikaik

′U∗(B̃∗B′bk − b̃∗),

Term2(W) :=
∑
ik

(cikĉik − 1)(aik
′W′bk)(aik

′x∗k),

Term3(W) :=
∑
ik

(aik
′W′bk)2,

and cik, ĉik are the phases (signs) of aik
′x∗k and aik

′x̂k.

Consider a fixed W first. Pick a δ < 1. We can show that,
if mq is large enough, whp,

(1− δ)m ≤ Term3 ≤ (1 + δ)m

To bound Term1, we begin by showing that E[Term1] = 0.
We then use a simple modification of the Bernstein-type
inequality of (Vershynin, 2012), followed by using careful

linear algebra tricks and Lemma 5.3 to show that, if mq is
large enough, whp,

|Term1| ≤ mδ‖B̃∗(B′B− I)‖ ≤ Cmδδt‖X∗‖F
for any δ < 1. For Term2, we use Cauchy-Schwarz to get

|Term2| ≤
√

Term3
√

Term31, where

Term31 :=
∑
ik

(cikĉik − 1)2(aik
′x∗k)2

Consider Term31. Notice that (cikĉik− 1)2 takes only two
values - zero or one. It is zero when the signs are equal,
else it is one. Thus, to start bounding E[Term31], we can
use Lemma 1 of (Zhang et al., 2016). The idea is this: the
probability that the signs are unequal is large only when
(aik

′x∗k)2 is comparable in magnitude to dist2(x∗k, x̂k); and
is very small otherwise. Since we have already bounded
this distance by a small value (Lemma 5.3), whp, we are
able to show that, with the same probability, E[Term31] ≤
mδ3t ‖X∗‖2F . Careful use of concentration bounds then im-
plies that, if mq is large enough, whp, the same order bound
holds for |Term31|. Thus,

|Term2| ≤ Cm
√

1 + δ
√
δtδt‖X∗‖F

The above provides main ideas, the actual proofs need
carefully developed epsilon-net arguments to bound the
max or min of each of the terms over SW (the argument
for the min needs particular care). Combining everything
and using ‖X∗‖F ≤

√
rσ∗max

2, we can conclude that
SE(U∗,Ut+1) ≤ C(δ+

√
δt)
√
rκ2 δt. We then set δ, δt to

show that this bound is below 0.7δt.

6. Numerical Evaluation
Ph-Co-LRMR. Here we demonstrate the superiority of our
algorithm with respect to few existing PR algorithms. We
consider r unknown setting and show that our algorithm
works well while performed for 100 independent trials.The
results are summarized in Fig. 2. Notice that our algorithm
outperforms existing techniques, The complete details of
experiments are provided in (Nayer et al., 2019).

Dynamic Ph-Co-LRMR. Here we validate the PST and
PST-all algorithms. For this experiment we generate the data
similarly as in the previous experiment and we use n = 300,
r = 2, k1 = 2992, qfull = 6000, m = 100, α = 250 and
consider two values of subspace change: SE(U∗0,U

∗
1) =

0.01, 0.8. The results for the two algorithms are shown in
Fig. 3. Notice that in the first case PST does not improve
the estimation error while PST-all does and in the second
case both algorithms succeed.

Video Reconstruction. For the video results we consider
the Coded Diffraction Pattern (CDP) measurements of the
video. We provide the visual results in Fig 1. The details
regarding the setup can be found in (Nayer et al., 2019).
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