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Abstract
Popular machine learning estimators involve reg-
ularization parameters that can be challenging to
tune, and standard strategies rely on grid search
for this task. In this paper, we revisit the tech-
niques of approximating the regularization path
up to predefined tolerance ε in a unified frame-
work and show that its complexity is O(1/ d

√
ε)

for uniformly convex loss of order d ≥ 2 and
O(1/

√
ε) for Generalized Self-Concordant func-

tions. This framework encompasses least-squares
but also logistic regression, a case that as far as
we know was not handled as precisely in previ-
ous works. We leverage our technique to provide
refined bounds on the validation error as well as
a practical algorithm for hyperparameter tuning.
The latter has global convergence guarantee when
targeting a prescribed accuracy on the validation
set. Last but not least, our approach helps reliev-
ing the practitioner from the (often neglected) task
of selecting a stopping criterion when optimizing
over the training set: our method automatically
calibrates this criterion based on the targeted ac-
curacy on the validation set.

1. Introduction
Various machine learning problems are formulated as mini-
mization of an empirical loss function f plus a regularization
function Ω whose calibration is controlled by a hyperparam-
eter λ. The choice of λ is crucial in practice since it directly
influences the generalization performance of the estimator,
i.e., its score on unseen data sets. The most popular method
in such a context is cross-validation (or some variant, see
(Arlot & Celisse, 2010) for a detailed review). For sim-
plicity, we investigate here the simplest case, the holdout
version. It consists in splitting the data in two parts: on
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the first part (training set) the method is trained for a pre-
defined collection of candidates ΛT := {λ0, . . . , λT−1},
and on the second part (validation set), the best parameter
is selected among the T candidates.

For a piecewise quadratic loss f and a piecewise linear
regularization Ω (e.g., the Lasso estimator), Osborne et al.
(2000); Rosset & Zhu (2007) have shown that the set of
solutions follows a piecewise linear curve w.r.t. to the pa-
rameter λ. There are several algorithms that can generate
the full path by maintaining optimality conditions when
the regularization parameter varies. This is what LARS is
performing for Lasso (Efron et al., 2004), but similar ap-
proaches exist for SVM (Hastie et al., 2004) or generalized
linear models (GLM) (Park & Hastie, 2007). Unfortunately,
these methods have some drawbacks that can be critical in
many situations:

• their worst case complexity, i.e., the number of linear
segments, is exponential in the dimension p of the problem
(Gärtner et al., 2012) leading to unpractical algorithms. Re-
cently, Li & Singer (2018) have shown that for some specific
design matrix with n observations, a polynomial complexity
of O(n × p6) can be obtained. Note that even in a more
favorable cases of linear complexity in p, the exact path can
be expensive to compute when the dimension p is large.

• they suffer from numerical instabilities due to multiple
and expensive inversion of ill-conditioned matrix. As a
result, these algorithms may fail before exploring the entire
path, a common issue for small regularization parameter.

• they lack flexibility when it comes at incorporating dif-
ferent statistical learning tasks because they usually rely on
specific algebra to handle the structure of the regularization
and loss functions. As far as we know, they can be applied
only to a limited number of cases and we are not aware of a
general framework that bypasses these issues.

• they cannot benefit of early stopping. Following Bottou &
Bousquet (2008), it is not necessary to optimize below the
statistical error for suitable generalization. Exact regulariza-
tion path algorithms need to maintain optimality conditions
as the hyperparameter varies, which is time consuming.

To overcome these issues, an ε-approximation of the solu-
tion path was proposed and optimal complexity was proven
to be O(1/ε) by (Giesen et al., 2010) in a fairly general
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Lasso Logistic regr.
fi(z) (yi − z)2/2 log(1 + ez)− yiz
f∗i (u) ((u− yi)2 − y2

i )/2 Nh(u+ yi)
Vf∗,x(u) ‖u‖22/2 w4(‖u‖2x/‖u‖2)‖u‖2u

Table 1. w4(τ) = (1−τ) log(1−τ)+τ

τ2

and Nh(x) = x log(x) + (1− x) log(1− x)

setting. Then, Mairal & Yu (2012) provided an interesting
algorithm whose complexity is O(1/

√
ε) for the Lasso case.

The latter result was then extended by (Giesen et al., 2012)
to objective function with quadratic lower bound while pro-
viding a lower and upper bound of order O(1/

√
ε). Unfor-

tunately, these assumptions fail to hold for many problems,
including logistic regression or Huber loss.

Following such ideas, (Shibagaki et al., 2015) have pro-
posed, for classification problems, to approximate the regu-
larization path on the hold-out cross-validation error. Indeed,
the latter is a more natural criterion to monitor when one
aims at selecting a hyperparameter guaranteed to achieve the
best validation error. The main idea is to construct upper and
lower bounds of the validation error as simple functions of
the regularization parameter. Hence by sequentially varying
the parameters, one can estimate a range of parameter for
which the validation error gap (i.e., the difference with the
validation error achieved by the best parameter) is smaller
than an accuracy εv > 0.

Contributions. We revisit the approximation of the so-
lution and validation path in a unified framework under
general regularity assumptions commonly met in machine
learning. We encompass both classification and regression
problems and provide a complexity analysis along with ex-
plicit optimality guarantees. We highlight the relationship
between the regularity of the loss function and the complex-
ity of the approximation path. We prove that its complex-
ity is O(1/ d

√
ε) for uniformly convex loss of order d ≥ 2

(see Bauschke & Combettes (2011, Definition 10.5)) and
O(1/

√
ε) for the logistic loss thanks to a refined measure

of its curvature throughout its Generalized Self-Concordant
properties (Sun & Tran-Dinh, 2017). As far as we know,
the previously known approximation path algorithms cannot
handle these cases. We provide an algorithm with global
convergence property for selecting a hyperparameter with
a validation error εv-close to the optimal hyperparameter
from a given grid. We bring a natural stopping criterion
when optimizing over the training set making this criterion
automatically calibrated.

Our implementation is available at https://github.
com/EugeneNdiaye/safe_grid_search.

Notation. Given a proper, closed and convex function
f : Rn → R ∪ {+∞}, we denote dom f = {x ∈ Rn :

λmin λmax
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Figure 1. Illustration of the approximation path for the Lasso at
accuracy ε = ‖y‖22 /20. We choose λmax = ‖X>y‖∞ and
λmin = λmax/50. The shaded gray region shows the interval
where any ε-path must lie. The exact path is computed with the
LassoLars on diabetes data from sklearn.

f(x) < +∞}. If f is a twice continuously differentiable
function with positive definite Hessian ∇2f(x) at any x ∈
dom f , we denote ‖z‖x =

√
〈∇2f(x)z, z〉. The Fenchel-

Legendre transform of f is the function f∗ : Rn → R ∪
{+∞} defined by f∗(x∗) = supx∈dom f 〈x∗, x〉 − f(x).
The support function of a nonempty set C is defined as
σC(x) = supc∈C〈c, x〉. If C is closed, convex and contains
0, we define its polar as σ◦C(x∗) = supσC(x)≤1〈x∗, x〉. We
denote by [T ] the set {1, . . . , T} for any non zero integer T .
The vector of observations is y ∈ Rn and the design matrix
X = [x1, . . . , xn]> ∈ Rn×p has n observations row-wise,
and p features (column-wise).

2. Problem setup
Let us consider the class of regularized learning methods
expressed as convex optimization problems, such as (regu-
larized) GLM (McCullagh & Nelder, 1989):

β̂(λ) ∈ arg min
β∈Rp

f(Xβ) + λΩ(β)︸ ︷︷ ︸
Pλ(β)

(Primal). (1)

We highlight two important cases: the regularized least-
squares and logistic regression where the loss functions are
written as an empirical risk f(Xβ) =

∑
i∈[n] fi(x

>
i β) with

the fi’s given in Table 1. The penalty term is often used to
incorporate prior knowledges by enforcing a certain regular-
ity on the solutions. For instance, choosing a Ridge penalty
(Hoerl & Kennard, 1970) Ω(·) = 1

2 ‖·‖
2
2 improves the stabil-

ity of the resolution of inverse problems while Ω(·) = ‖·‖1
imposes sparsity at the feature level, a motivation that led to
the Lasso estimator (Tibshirani, 1996); see also (Bach et al.,
2012) for extensions to other structured penalties.

In practice, obtaining β̂(λ), an exact solution to Problem (1)
is unpractical and one aims achieving a prescribed precision
ε > 0. More precisely, a (primal) vector β(λ) := β(λ,ε) (we
will drop the dependency in ε for readability) is referred
to as an ε-solution for λ if its (primal) objective value is
optimal at precision ε:

Pλ(β(λ))− Pλ(β̂(λ)) ≤ ε . (2)

https://github.com/EugeneNdiaye/safe_grid_search
https://github.com/EugeneNdiaye/safe_grid_search
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We recall and illustrate the notion of approximation path in
Figure 1 as described by Giesen et al. (2012).
Definition 1 (ε-path). A set Pε ⊂ Rp is called an ε-path for
a parameter range [λmin, λmax] if

∀λ ∈ [λmin, λmax],∃ an ε-solution β(λ) ∈ Pε . (3)

We call path complexity Tε the cardinality of the ε-path.

To achieve the targeted ε-precision in (2) over a whole path
and construct an ε-path 1, we rely on duality gap evaluations.
For that, we compute εc-solutions2 (for an accuracy εc < ε)
over a finite grid, and then we control the gap variations
w.r.t. λ to achieve the prescribed ε-precision over the whole
range [λmin, λmax]; see Algorithm 1. We now recall the
Fenchel duality (Rockafellar, 1997, Chapter 31):

θ̂(λ) ∈ arg max
θ∈Rn

−f∗(−λθ)− λΩ∗(X>θ)︸ ︷︷ ︸
Dλ(θ)

(Dual). (4)

For a primal/dual pair (β, θ) ∈ domPλ×domDλ, the dual-
ity gap is the difference between primal and dual objectives:

Gλ(β, θ) = f(Xβ) + f∗(−λθ) + λ(Ω(β) + Ω∗(X>θ)) .

Weak duality yields Dλ(θ) ≤ Pλ(β) and

Pλ(β)− Pλ(β̂(λ)) ≤ Gλ(β, θ) , (5)

explaining the interest of the duality gap as an optimal-
ity certificate. Using (5), we can safely construct an ap-
proximation path for Problem (1) : if β(λ) is an ε-solution
for λ, it is guaranteed to remain one for all parameters
λ′ such that Gλ′(β(λ), θ(λ)) ≤ ε. Since the function
λ′ 7→ Gλ′(β(λ), θ(λ)) does not exhibit a simple dependence
in λ, we rely on an upper bound on the gap encoding the
structural regularity of the loss function (e.g., 1-dimensional
quadratics for strongly convex functions). This bound con-
trols the optimization error as λ varies while preserving
optimal complexity on the approximation path.

3. Bounds and approximation path
We introduce the tools to design an approximation path.

3.1. Preliminary results and technical tools

Definition 2. Given a differentiable function f and x ∈
dom f , let Uf,x(·) and Vf,x(·) be non negative functions
that vanish at 0. We say that f is Uf,x-convex (resp. Vf,x-
smooth) at x when Inequality (6) (resp. (7)) is satisfied for
any z ∈ dom f

Uf,x(z − x) ≤ f(z)− f(x)− 〈∇f(x), z − x〉 , (6)
Vf,x(z − x) ≥ f(z)− f(x)− 〈∇f(x), z − x〉 . (7)
1note that such a path depends on exact solutions β̂(λ)’s
2the c stands for computational in εc

This extends µ-strong convexity and ν-smoothness (Nes-
terov, 2004) and encompasses smooth uniformly convex
losses and generalized self-concordant ones.

Smooth uniformly convex case: In this case, we have

Uf,x(z − x) = U(‖z − x‖),
Vf,x(z − x) = V(‖z − x‖),

where U(·) and V(·) are increasing from [0,+∞) to
[0,+∞] vanishing at 0; see Azé & Penot (1995). Exam-
ples of such functions are U(t) = µ

d t
d and V(t) = ν

d t
d

where d, µ and ν are positive constants. The case d = 2
corresponds to strong convexity and smoothness; in general
they are called uniformly convex of order d, see (Juditski &
Nesterov, 2014) or (Bauschke & Combettes, 2011, Ch. 10.2
and 18.5) for details.

Generalized self-concordant case: a C3 convex function
f is (Mf , ν)-generalized self-concordant of order ν ≥ 2
and Mf ≥ 0 if ∀x ∈ dom f and ∀u, v ∈ Rn:∣∣〈∇3f(x)[v]u, u〉

∣∣ ≤Mf ‖u‖2x ‖v‖
ν−2
x ‖v‖3−ν2 .

In this case, Sun & Tran-Dinh (2017, Proposition 10) have
shown that one could write:

Uf,x(y − x) = wν(−dν(x, y)) ‖y − x‖2x ,

Vf,x(y − x) = wν(dν(x, y)) ‖y − x‖2x ,

where the last equality holds if dν(x, y) < 1 for the case
ν > 2. Closed-form expressions of wν(·) and dν(·) are re-
called in Appendix for logistic, quadratic and power losses.

Approximating the duality gap path. Assume we have
constructed primal/dual feasible vectors for a finite grid
of parameters ΛT = {λ0, . . . , λT−1}, i.e., we have at
our disposal (β(λt), θ(λt)) for all λt ∈ ΛT . Let us de-
note Gt = Gλt(β(λt), θ(λt)), and for ζt = −λtθ(λt),
∆t = f(Xβ(λt)) − f(∇f∗(ζt)). For any function φ :
Rn → [0,+∞] that vanishes at 0, ρ ∈ R, we define

Qt,φ(ρ) = Gt +ρ · (∆t − Gt) + φ(−ρ · ζt) . (8)

The terms Gt and ∆t represent a measure of the optimization
error at λt. The notation introduced in (8) will be convenient
to write concisely upper and lower bounds on the duality gap.
This is the goal of the next lemma which leverages regularity
of the loss function f , as introduced in Definition 2. This
provides control on how the duality gap deviates when one
evaluates it for another (close) parameter λ.

Lemma 1. We assume that −λθ(λt) ∈ dom f∗ and
X>θ(λt) ∈ dom Ω∗. If f∗ is Vf∗-smooth (resp. Uf∗-
convex)3, then for ρ = 1 − λ/λt, the right (resp. left)

3we drop x in Uf,x and write Uf if no ambiguity holds.
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(a) Uniform unilateral approximation path (as in Proposition 3)
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Figure 2. Illustration of the construction of ε-paths for the Lasso on synthetic dataset generated with sklearn as X, y =
make regression(n = 30, p = 150) at accuracy ε = ‖y‖22 /40 and εc = ε/10. We choose λmax = ‖X>y‖∞ and λmin = λmax/20.
For Lasso the bounds are piece-wise quadratic. The shaded gray regions correspond to the regions where the true value of the duality gap
lies. We obtain a path complexity of Tε = 6 (resp. Tε = 4) for the unilateral (resp. bilateral) path over [λmin, λmax].

hand side of Inequality (9) holds true

Qt,Uf∗ (ρ) ≤ Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) . (9)

Proof. Proof for this result and for other propositions and
theorems are deferred to the Appendix.

The function φ, chosen as Vf∗ (resp. Uf∗) for the upper
(resp. lower) bound, essentially captures the regularity
needed to approximate the duality gap at λ when using pri-
mal/dual vector (β(λt), θ(λt)) for λt close to λ. When the
function satisfies both inequalities, tightness of the bounds
can be related to the conditioning Uf∗/Vf∗ of the dual loss
f∗. Equality holds for Uf∗ ≡ Vf∗ ≡ 1

2‖·‖
2
2 (least-squares),

showing the tightness of the bounds.

From Lemma 1, we have Gλ(β(λt), θ(λt)) ≤ ε as soon as
Qt,Vf∗ (ρ) ≤ ε where ρ = 1 − λ/λt varies with λ. Hence,
we obtain the following proposition that allows to track the
regularization path for an arbitrary precision on the duality
gap. It proceeds by choosing the largest ρ = ρt such that
the upper bound in Equation (9) remains below ε and leads
to Algorithm 1 for computing an ε-path.

Proposition 1 (Grid for a prescribed precision).
Given (β(λt), θ(λt)) such that Gt ≤ εc < ε, for all λ ∈
λt ×

[
1− ρ`t(ε), 1 + ρrt (ε)

]
, we have Gλ(β(λt), θ(λt)) ≤ ε

where ρ`t(ε) (resp. ρrt (ε)) is the largest non-negative ρ s.t.
Qt,Vf∗ (ρ) ≤ ε (resp. Qt,Vf∗ (−ρ) ≤ ε).

Conversely, given a grid4 of T parameters ΛT =
{λ0, . . . , λT−1}, we define εΛT , the error of the approx-
imation path on [λmin, λmax] by using a piecewise constant
approximation of the map λ 7→ Gλ(β(λt), θ(λt)):

εΛT := max
λ∈[λmin,λmax]

min
λt∈ΛT

Gλ(β(λt), θ(λt)) . (10)

4we assume a decreasing order λt+1 < λt, reflecting common
practices for GLM, e.g., for the Lasso.

This error is however difficult to evaluate in practice so we
rely on a tight upper bound based on Lemma 1 that often
leads to closed-form expressions.
Proposition 2 (Precision for a given grid). Given a grid
of parameters ΛT , the set {β(λ) : λ ∈ ΛT } is an εΛT -
path with εΛT ≤ maxt∈[T ]Qt,Vf∗ (1−λ?t /λt) where for all
t ∈ {0, . . . , T − 1}, λ?t is the largest λ ∈ [λt+1, λt] such
that Qt,Vf∗ (1− λ/λt) ≥ Qt+1,Vf∗ (1− λ/λt+1).

Construction of dual feasible vector. We rely on gradi-
ent rescaling to produce a dual feasible vector:
Lemma 2. For any β(λt) ∈ Rp, the vector

θ(λt) =
−∇f(Xβ(λt))

max(λt, σ◦dom Ω∗(X
>∇f(Xβ(λt)))

,

is feasible: −λθ(λt) ∈ dom f∗, X>θ(λt) ∈ dom Ω∗.
Remark 1. When the regularization is a norm, Ω(·) = ‖·‖
then σ◦dom Ω∗ is the associated dual norm ‖·‖∗.

The dual θ(λt) in Lemma 2 implies that Gt and ∆t converge
to 0 when β(λt) converges to β̂(λt) (Ndiaye et al., 2017).

Finding ρ. Following Proposition 1, a 1-dimensional
equation Qt,Vf∗ (ρ) = ε needs to be solved to obtain an
ε-path. This can be done efficiently at high precision by
numerical solvers if no explicit solution is available.

As a corollary from Lemma 1 and Proposition 2, we recover
the analysis by Giesen et al. (2012):
Corollary 1. If the function f∗ is ν

2‖·‖2-smooth, the left
(ρ`t) and right (ρrt ) step sizes defined in Proposition 1 have
closed-form expressions:

ρ`t =

√
2νδt ‖ζt‖2+ δ̃2

t − δ̃t
ν ‖ζt‖2

, ρrt =

√
2νδt ‖ζt‖2+ δ̃2

t + δ̃t

ν ‖ζt‖2
,

where δt := ε − Gt and δ̃t := ∆t − Gt. This is simplified
to δt = ε− εc and δ̃t = 0 when max(Gt,∆t) ≤ εc.
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Algorithm 1 training path

Input: f,Ω, ε, εc, [λmin, λmax]
Initialization: t = 0, λ0 = λmax, Λ = {λmax}
repeat

Get β(λt) solving (1) to accuracy Gt ≤ εc < ε
Compute the step size ρ`t(ε) following Proposition 3, 4, 5.
Set λt+1 = max(λt × (1− ρ`t), λmin)
Λ← Λ ∪ {λt+1} and t← t+ 1

until λt ≤ λmin

Return: {β(λt) : λt ∈ Λ}

3.2. Discretization strategies

We now establish new strategies for the exploration of the
hyperparameter space in the search for an ε-path.

For regularized learning methods, it is customary to start
from a large regularizer5 λ0 = λmax and then to perform
the computation of β̂(λt+1) after the one of β̂(λt), until the
smallest parameter of interest λmin is reached. Models
are generally computed by increasing complexity, allowing
important speed-ups due to warm start (Friedman et al.,
2007) when the λ’s are close to each other. Knowing λt, we
provide a recursive strategy to construct λt+1.

Adaptive unilateral. The strategy we call unilateral con-
sists in computing the new parameter as λt+1 = λt × (1−
ρ`t(ε)) as in Proposition 1.

Proposition 3 (Unilateral approximation path). Assume
that f∗ is Vf∗-smooth. We construct the grid of param-
eters Λ(u)(ε) = {λ0, . . . , λTε−1} by

λ0 = λmax, λt+1 = λt × (1− ρ`t(ε)) ,

and (β(λt), θ(λt)) s.t. Gt ≤ εc < ε for all t. Then, the set
{β(λt) : λt ∈ Λ(u)(ε)} is an ε-path for Problem (1).

This strategy is illustrated in Figure 2(a) on a Lasso case, and
stands as a generic one to compute an approximation path
for loss functions satisfying assumptions in Definition 2.

Adaptive bilateral. For uniformly convex functions, we
can make a larger step by combining the information given
by the left and right step sizes. Indeed, let us assume that
we explore the parameter range [λmin, λmax]. Starting from
a parameter λt, we define the next step, given by Propo-
sition 1, λ`t := λt(1 − ρ`t). Then it exists λt′ ≤ λ`t such
that λrt′ := λt′(1 + ρrt′) = λ`t . Thus a larger step can be
done by using λt′ = λt × (1− ρ`t)/(1 + ρrt′). However ρrt′
depends on the (approximated) solution β(λt′ ) that we do
not know before optimizing the problem for parameter λt′
when computing sequentially the grid points in decreasing
order i.e., λt′ ≤ λt. We overcome this issue in Lemma 3
by (upper) bounding all the constants in Qt′,Vf∗ (ρ) that

5for the Lasso one often chooses λ0 = λmax :=
∥∥X>y∥∥∞

depend on the solution β(λt′ ), by constants involving only
information given by β(λt).

Lemma 3. Assuming f uniformly smooth yields
‖∇f(Xβ(λt′ ))‖∗ ≤ R̃t, where R̃t := V∗f−1

(
f(Xβ(λt)) +

2εc
ρ`t(ε)

)
. If additionally f is uniformly convex, this yields

∆t′ ≤ ∆̃t, where ∆̃t := R̃t × U−1
f (εc) as well as

Gλ(β(λt′ ), θ(λt′ )) ≤ Qt′,Vf∗ (ρ) ≤ Q̃t,Vf∗ (ρ), where

Q̃t,Vf∗ (ρ) = εc + ρ · (∆̃t − εc) + Vf∗
(
|ρ| · R̃t

)
.

Let us now define ρ(b)
t (ε) =

ρ`t(ε) + ρ̃rt (ε)

1 + ρ̃rt (ε)
, where ρ`t(ε) is

defined in Proposition 1 and ρ̃rt (ε) is the largest non negative
ρ such that Q̃t,Vf∗ (ρ) ≤ ε in Lemma 3.

Proposition 4 (Bilateral Approximation Path). Assume that
f is uniformly convex and smooth. We construct the grid
Λ(b)(ε) = {λ0, . . . , λTε−1} by

λ0 = λmax, λt+1 = λt × (1− ρ(b)
t (ε)) ,

and (β(λt), θ(λt)) s.t. Gt ≤ εc < ε for all t. Then the set
{β(λt) : λt ∈ Λ(b)(ε)} is an ε-path for Problem (1).

This strategy is illustrated in Figure 2(b) on a Lasso example.

Uniform unilateral and bilateral. In some cases, it may
be advantageous to have access to a predefined grid be-
fore launching a hyperparameter selection procedure such
as hyperband (Li et al., 2017) or for parallel computa-
tions. Given the initial information from the initialization
(β(λ0), θ(λ0)), we can build a uniform grid that guarantees
an ε-approximation before solving any optimization prob-
lem. Indeed, by applying Lemma 3 at t = 0, we have
Gλ(β(λt), θ(λt)) ≤ Q̃0,Vf∗ (ρ). We can define ρ̃`0(ε) (resp.
ρ̃r0(ε)) as the largest non-negative ρ s.t. Q̃0,Vf∗ (ρ) ≤ ε (resp.
Q̃0,Vf∗ (−ρ) ≤ ε) and also

ρ0(ε) =

{
ρ̃`0(ε) for unilateral path,
ρ̃`0(ε)+ρ̃r0(ε)

1+ρ̃r0(ε) for bilateral path.
(11)

Proposition 5 (Uniform approximation path).
Assume that f is uniformly convex and smooth, and define

the grid Λ(0)(ε) = {λ0, . . . , λTε−1} by

λ0 = λmax, λt+1 = λt × (1− ρ0(ε)) ,

and ∀t ∈ [T ], (β(λt), θ(λt)) s.t. Gt ≤ εc < ε. Then the set
{β(λt) : λt ∈ Λ(0)(ε)} is an ε-path for Problem (1) with
at most Tε grid points where

Tε =

⌊
log(λmin/λmax)

log(1− ρ0(ε))

⌋
. (12)
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Figure 3. Computation of the approximation path to reach the same error than the default grid (ε = 10−4 ‖y‖2 for the least-squares case
and ε = 10−4 min(n1, n2)/n where ni is the number of observations in the class i ∈ {0, 1}, for the logistic case). We have used the
same (vanilla) coordinate descent optimization solver with warm start between parameters for all grids. Note that a smaller grid do not
imply faster computation, as the interplay with the warm-start can be intricate in our sequential approach.

3.3. Limitations of previous framework

Previous algorithms for computing ε-paths have been ini-
tially developed with a complexity of O(1/ε) (Clarkson,
2010; Giesen et al., 2010) in a large class of problems. Yet,
losses arising in machine learning have often nicer regular-
ities that can be exploited. This is all the more striking in
the Lasso case where a better complexity in O(1/

√
ε) was

obtained by Mairal & Yu (2012); Giesen et al. (2012).

The relation between path complexity and regularity of the
objective function remains unclear and previous methods
do not apply to all popular learning problems. For instance
the dual loss f∗ of the logistic regression is not uniformly
smooth. So to apply the previous theory, one needs to
optimize on a (potentially badly pre-selected) compact set.

Let us consider the one dimensional toy example where
p = 1, β ∈ R, X = Idp, y = −1 and the loss func-
tion f(Xβ) = log(1 + exp(β)). We have, ∇2f(β) =
exp(β)/(1 + exp(β))2. Then for Problem (1), since
Pλ(β̂(λ)) ≤ Pλ(0), we have |β̂(λ)| ∈ [0, log(2)/λ] and
a smoothness constant νf∗ ≈ exp(λ) for the dual can be
estimated at each step. This leads to an unreasonable algo-
rithm with tiny step sizes in Corollary 1. Also, the algorithm
proposed by Giesen et al. (2012) can not be applied for the
logistic loss since the dual function is not polynomial.

Our proposed algorithm does not suffer from such limi-
tations and we introduce a finer analysis that takes into
account the regularity of the loss functions.

3.4. Complexity and regularity

Lower bound on path complexity. For our method, the
lower bound on the duality gap quantifies how close the from

Proposition 1 is from the best possible one can achieve for
smooth loss functions. Indeed, at optimal solution, we have
Gt = ∆t = 0. Thus the largest possible step — starting
at λt and moving in decreasing order — is given by the
smallest λ ∈ [λmin, λt] such that Uf∗(−ζ̂t × ρ) > ε where
ζ̂t = −λtθ̂(λt). Hence, any algorithm for computing an
ε-path for Uf∗ -uniformly convex dual loss, have necessarily
a complexity of order at least O(1/U−1

f∗ (ε)).

Upper bounds. We remind that we write Tε for the com-
plexity of our proposed approximation path i.e., the cardi-
nality of the grid returned by Algorithm 1. In the following
proposition, we propose a bound on the complexity w.r.t. the
regularity of the loss function. Discussions on the constants
and assumptions are provided in the Appendix.
Proposition 6 (Approximation path: complexity).
Assuming that max(Gt,∆t) ≤ εc < ε at each step t, there

exists an explicit constant Cf (εc) > 0 such that

Tε ≤ log
(λmax

λmin

)
× Cf (εc)

Wf∗(ε− εc)
, (13)

where for all t > 0, the functionWf∗ is defined by

Wf∗(·) =


V−1
f∗ (·), if f is uniformly convex and smooth√·, if f is Generalized Self-Concordant

and uniformly-smooth.

Moreover, Cf (εc) is an uniform upper bound of ‖ζt‖∗ along
the path, that tends to a constant Cf when εc goes to 0.

Proposition 6 applied to the special case when f is ν-smooth

and µ-strongly convex reads log
(
λmax

λmin

)√
ν
µ
f(Xβ(λ0))
ε−εc for

the complexity for any data X, y. This is not explicitly
dependent on the dimension n and p and are more scalable.
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Algorithm 2 εv-path for Validation Set
Input: f,Ω, εv, [λmin, λmax]
Compute εv,µ as in Proposition 7
Λ(εv,µ) = training path (f,Ω, εv,µ, [λmin, λmax])
Return: Λ(εv,µ)

4. Validation path
To achieve good generalization performance, estimators de-
fined as solutions of Problem 1 require a careful adjustment
of λ to balance data-fitting and regularization. A standard
approach to calibrate such a parameter is to select it by com-
paring the validation errors on a finite grid (say with K-fold
cross-validation). Unfortunately, it is often difficult to de-
termine a priori the grid limits, the number of λ’s (number
of points in the grid) or how they should be distributed to
achieve low validation error.

Considering the validation data (X ′, y′) with n′ observa-
tions and loss6 L, we define the validation error for β ∈ Rp:

Ev(β) = L(y′, X ′β) . (14)

For selecting a hyperparameter, we leverage our approxima-
tion path to solve the bi-level problem

arg min
λ∈[λmin,λmax]

Ev(β̂
(λ)) = L(y′, X ′β̂(λ))

s.t. β̂(λ) ∈ arg min
β∈Rp

f(Xβ) + λΩ(β) .

Recent works have addressed this problem by using gradient-
based algorithms, see for instance Pedregosa (2016);
Franceschi et al. (2018) who have shown promising results
in computational time and scalability w.r.t. multiple hyper-
parameters. Yet, they require assumptions such as smooth-
ness of the validation function Ev and non-singular Hessian
of the inner optimization problem at optimal values which
are difficult to check in practice since they depend on the
optimal solutions β̂(λ). Moreover, they can only guarantee
convergence to stationary point.

In this section, we generalize the approach of (Shibagaki
et al., 2015) and show that with a safe and simple explo-
ration of the parameter space, our algorithm has a global
convergence property. For that, we assume the following
conditions on the validation loss and on the inner optimiza-
tion objective throughout the section:

|L(a, b)− L(a, c)| ≤ L(b, c) for any a, b, c ∈ Rn.A1
The function β 7→ Pλ(β) is µ-strongly convex.A2

6the data-fitting terms might differ from training to testing; for
instance for logistic regression the `0/1-loss is used for validation
but the logistic function is optimized at training.

The assumption on the loss function is verified for norms
(regression) and indicator functions (classification). Indeed,
if L(a, b) = ‖a−b‖, A1 corresponds to the triangle inequal-
ity. For the `0/1-loss L(a, b) = 1

n

∑n
i=1 1aibi<0, since for

any real s, u and v, |1us<0 − 1uv<0| ≤ 1sv<0, one has∣∣∣ 1
n

n∑
i=1

1aibi<0 −
1

n

n∑
i=1

1aici<0

∣∣∣ ≤ 1

n

n∑
i=1

1bici<0 .

Definition 3. Given a primal solution β̂(λ) for parameter λ
and a primal point β(λt) returned by an algorithm, we define
the gap on the validation error between λ and λt as

∆Ev(λt, λ) :=
∣∣Ev(β̂(λ))− Ev(β(λt))

∣∣ . (15)

Suppose we have fixed a tolerance εv on the gap on valida-
tion error i.e., ∆Ev(λt, λ) ≤ εv . Based on Assumption A1,
if there is a region Rλ that contains the optimal solution
β̂(λ) at parameter λ, then we have

∆Ev(λt, λ) ≤ L(X ′β̂(λ), X ′β(λt))

≤ max
β∈Rλ

L(X ′β,X ′β(λt)) .

A simple strategy consists in choosingRλ as a ball.
Lemma 4 (Gap safe region Ndiaye et al. (2017)). Under
A2, any primal solution β̂(λ) belongs to the Euclidean ball
with center β(λt) and radius

rt,µ(λ) =

√
2

µ
Gλ(β(λt), θ(λt)) . (16)

Such a safe ball leveraging duality gap has been proved
useful to speed-up sparse optimization solvers. The improve
performance relies on the ability to identify the sparsity
structure of the optimal solutions; approaches of this type
are referred to as safe screening rules as they provide safe
certificates for such structures (El Ghaoui et al., 2012; Fer-
coq et al., 2015; Shibagaki et al., 2016; Ndiaye et al., 2017).

Since the radius in Equation (16) depends explicitly on the
duality gap, we can sequentially track a range of parameters
for which the gap on the validation error remains below a
prescribed tolerance by controlling the optimization error.
Proposition 7 (Grid for prescribed validation error). Under
Assumptions A1 and A2, let us define for i ∈ [n′] an index

in the test set, ξi =
(
x′>i β(λt)

‖x′i‖

)2

and

εv,µ =

µ
2 ×

(
εv
‖X′‖

)2

, (regression)
µ
2 × ξ(bnεvc+1), (classification)

(17)

where ξ(bnεvc+1) is the (bnεvc + 1)-th smallest value of
ξi’s. Given (β(λt), θ(λt)) such that Gt ≤ εv,µ, we have
∆Ev(λt, λ) ≤ εv for all parameter λ in the interval
λt×

[
1− ρ`t(εv,µ), 1 + ρrt (εv,µ)

]
, where ρ`t(εv,µ), ρrt (εv,µ)

are defined in Proposition 1.
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Figure 4. Safe selection of the optimal hyperparameter for Enet on the validation set (30% of the observations). The targeted accuracy εv is
refined from δv×10 to δv/10 with δv = maxλt∈Λ Ev(β(λt))−minλt∈Λ Ev(β(λt)) and Λ is the default grid between λmax = ‖X>y‖∞
and λmin = λmax/100 of size T = 200. The stars represent the worst case solution amount the one generated by Algorithm 2 (with
bilateral path). For loose precision suboptimal parameters are identified, but better ones are found as the accuracy εv decreases.

Remark 2 (Stopping criterion for training). For the current
parameter λt, ∆Ev(λt, λt) ≤ εv as soon as Gt ≤ εv,µ,
which gives us a stopping criterion for optimizing on the
training part (X, y) relative to the desired accuracy εv on
the validation data (X ′, y′). This has the appealing property
of relieving the practitioner from selecting the stopping
criterion εc when optimizing on the training set.

Algorithm 2 outputs a discrete set of parameters Λ(εv,µ)
such that {β(λt) for λt ∈ Λ(εv,µ)} is an εv-path for the
validation error. Thus, for any λ ∈ [λmin, λmax], there
exists λt ∈ Λ(εv,µ) such that

Ev(β
(λt))− εv ≤ Ev(β̂(λ)) . (18)

The following proposition is obtained by taking the mini-
mum on both sides of the inequality.
Proposition 8. Under Assumptions A1 and A2, the set
{β(λt) for λt ∈ Λ(εv,µ)} is an εv-path for the error and

min
λt∈Λ(εv,µ)

Ev(β
(λt))− min

λ∈[λmin,λmax]
Ev(β̂

(λ)) ≤ εv .

5. Numerical experiments
We illustrate our method on `1-regularized least squares and
logistic regression by comparing the computational times
and number of grid points needed to compute an ε-path for
a given range [λmin, λmax] for several strategies.

The ”Default grid” is the one used by default in the packages
glmnet (Friedman et al., 2010) and sklearn (Pedregosa
et al., 2011). It is defined as λt = λmax × 10−δt/(T−1)

(here δ = 3). The proposed grids are the adaptive unilat-
eral/bilateral and uniform unilateral/bilateral grids that are
defined in Propositions 3, 4 and 5.

Thanks to Proposition 2, we measure the approximation path
error ε of the default grid of size T and report the times and

numbers of grid points Tε needed to achieve such a precision.
Our experiments were conducted on the leukemia dataset,
available in sklearn and the climate dataset NCEP/NCAR
Reanalysis (Kalnay et al., 1996). The optimization al-
gorithms are the same for all the grid, hence we compare
only the grid construction impact. Results are reported in
Figure 3 for classification and regression problem. Our
approach leads to better guarantees for approximating the
regularization path w.r.t. the default grid and often signifi-
cant gain in computing time.

Figure 4 illustrates convergence for Elastic Net (Enet) (Zou
& Hastie, 2005), on synthetic data generated by sklearn
as random regression problems make regression and
make sparse uncorrelated (Celeux et al., 2012).
For a decreasing levels of validation error, we represent
the λ selected by our algorithm and its corresponding safe
interval. Even when the validation curve is non smooth and
non convex, the output of the safe grid search converges to
the global minimum as stated in Proposition 8.

6. Conclusion
We have shown how to efficiently construct one dimensional
grids of regularization parameters for convex risk minimiza-
tion, and to get an automatic calibration, optimal in term of
hold-out test error. Future research could examine how to
adapt our framework to address multi-dimensional parame-
ter grids. This case is all the more interesting that it naturally
arises when addressing non-convex problems, e.g., MCP or
SCAD, with re-weighted `1-minimization. Approximation
of a full path then requires to optimize up to precision εc at
each step, even for non promising hyperparameter, which
is time consuming. Combining our approach with safe
elimination procedures could provide faster hyperparameter
selection algorithms.
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7. Appendix
7.1. Generalized self-concordant functions

Proposition 9 (Sun & Tran-Dinh (2017), Proposition 10). If (Mf , ν)-generalized self concordant, then

wν(−dν(x, y)) ‖y − x‖2x ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ wν(dν(x, y)) ‖y − x‖2x , (19)

where the right-hand side inequality holds if dν(x, y) < 1 for the case ν > 2 and where

dν(x, y) :=

{
Mf ‖y − x‖2 if ν = 2,(
ν
2 − 1

)
Mf ‖y − x‖3−ν2 ‖y − x‖ν−2

x if ν > 2,
(20)

and

wν(τ) :=


eτ−τ−1
τ2 if ν = 2,

−τ−log(1−τ)
τ2 if ν = 3,

(1−τ) log(1−τ)+τ
τ2 if ν = 4,(

ν−2
4−ν

)
1
τ

[
ν−2

2(3−ν)τ

(
(1− τ)

2(3−ν)
2−ν − 1

)
− 1
]

otherwise.

(21)

The dual of the logistic loss is Generalized Self-Concordant with Mf∗ = 1, ν = 4. Power loss function fi(z) = (yi − z)q
for q ∈ (1, 2), popular in robust regression, is covered with Mf = 2−q

(2−q)
√
q(q−1)

, ν = 2(3−q)
2−q . We refer to (Sun & Tran-Dinh,

2017) for more details and examples.

Remark 3. Note that the relation between Uf? , Vf? and Uf , Vf is not always explicit. Uniform convexity and smoothness
do not always hold simultaneously for primal f and dual functions f∗ and one needs to carefully consider the regularity
of the functions used. In general, we have Vf = U∗f∗ for uniformly smooth (Azé & Penot, 1995, Coroll. 2.7) and for self
concordant, ν + ν∗ = 6 for ν∗ ∈ (0, 6) (Sun & Tran-Dinh, 2017, Prop 6).
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Figure 5. Illustration of the functions in self concordant bounds Equation (21)
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7.2. Useful convexity inequalities

Lemma 5 (Fenchel-Young inequalities). Let f be a continuously differentiable function. For all x, x∗, we have

f(x) + f∗(x∗) ≥ 〈x∗, x〉 , (22)

with equality if and only if x∗ = ∇f(x) (or equivalently x ∈ ∂f∗(x∗)). Moreover, if f is Uf,x-convex (resp. Vf,x-smooth)
and f∗ is differentiable at x∗, Inequality (23) (resp. Inequality (24)) holds true:

f(x) + f∗(x∗) ≥ 〈x∗, x〉+ Uf,x(x−∇f∗(x∗)) , (23)
f(x) + f∗(x∗) ≤ 〈x∗, x〉+ Vf,x(x−∇f∗(x∗)) . (24)

Proof. We have from the Uf,x-convexity and the equality f(z) + f∗(∇f(z)) = 〈∇f(z), z〉

−f∗(∇f(z)) + 〈∇f(z), x〉+ Uf,x(x− z) = f(z) + 〈∇f(z), x− z〉+ Uf,x(x− z) ≤ f(x) .

We conclude by applying the inequality at z = ∇f∗(x∗) and remark that∇f(z) = x∗. The same proof holds for the upper
bound (24).

Applying Fenchel-Young Inequalities (23) and (24) give the following bounds.

Lemma 6. We assume that −λθ ∈ Dom(f∗) and X>θ ∈ Dom(Ω∗). Then, the Inequality (25) (resp. (26)) hold provided
that f is Uf -convex (resp. Vf -smooth).

λΩ̃(β, θ) + Uf (Xβ −∇f∗(−λθ)) ≤ Gλ(β, θ) (25)

λΩ̃(β, θ) + Vf (Xβ −∇f∗(−λθ)) , ≥ Gλ(β, θ) , (26)

where Ω̃(β, θ) = Ω(β) + Ω∗(X>θ) + 〈β,−X>θ〉.

Proof. We apply the Fenchel-Young Inequality (23) to obtain

Gλ(β, θ) = f(Xβ) + f∗(−λθ) + λ(Ω(β) + Ω∗(X>θ))

≥ 〈Xβ,−λθ〉+ Uf (Xβ −∇f∗(−λθ)) + λ(Ω(β) + Ω∗(X>θ))

= Uf (Xβ −∇f∗(−λθ)) + λ
(
Ω(β) + Ω∗(X>θ) + 〈β,−X>θ〉

)
.

The same technique applies for the upper bound with the Fenchel-Young Inequality (24).

Remark 4. From the Fenchel-Young Inequality (22), we have Ω(β)+Ω∗(X>θ) ≥ 〈β,X>θ〉, so the lower bound is always
non negative.

7.3. Proof of the bounds for the approximation path error

Lemma 1. We assume that −λθ(λt) ∈ dom f∗ and X>θ(λt) ∈ dom Ω∗. If f∗ is Vf∗ -smooth (resp. Uf∗ -convex), then, for
ρ = 1− λ/λt, the right (resp. left) hand side of Inequality (27) holds true

Qt,Uf∗ (ρ) ≤ Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) . (27)

Proof. We recall that Gt := Gλt(β(λt), θ(λt)) and we denote for simplicity

Gλtλ := Gλ(β(λt), θ(λt)) and Γt := Ω(β(λt)) + Ω∗(X>θ(λt)) .

By definition for any (β, θ) ∈ dom Pλ × domDλ we have Gλ(β, θ) = f(Xβ) + f∗(−λθ) + λ(Ω(β) + Ω∗(X>θ)), so the
following holds

1

λt
[Gt−f(Xβ(λt))− f∗(−λtθ(λt))] = Γt . (28)
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Hence using Equality (28) in the definition of Gλtλ , we have:

Gλtλ = f(Xβ(λt)) + f∗(−λθ(λt)) + λΓt

(28)
=
λ

λt
Gt +

(
1− λ

λt

)
[f(Xβ(λt)) + f∗(−λtθ(λt))] + f∗(−λθ(λt))− f∗(−λtθ(λt)) .

Let us write the proof for the upper bound (the proof for the lower bound is similar). We apply the smoothness property and
the Fenchel-Young Inequality (24) to the function f∗(·) with z = −λθ(λt) and x = ζt := −λtθ(λt) to obtain

Gλtλ ≤
λ

λt
Gt +

(
1− λ

λt

)
∆t + Vf∗,ζt

(
(λt − λ)θ(λt)

)
,

where we have used the equality case in the Fenchel-Young Inequality (22) to get:

∆t = f(Xβ(λt)) + f∗(ζt) + 〈∇f∗(ζt),−ζt〉 = f(Xβ(λt))− f(∇f∗(ζt)) .

We conclude by noticing that λ
λt
Gt +

(
1− λ

λt

)
∆t = Gt +

(
1− λ

λt

)
(∆t − Gt), that ζt = −λtθ(λt) and thanks to the

definition of Qt,φ, from Equation (8), applied to φ = Vf∗ .
Proposition 1 (Grid for a prescribed precision). Given (β(λt), θ(λt)) such that Gt ≤ εc < ε, for all λ ∈ λt ×[
1− ρ`t(ε), 1 + ρrt (ε)

]
, we have Gλ(β(λt), θ(λt)) ≤ ε where ρ`t(ε) (resp. ρrt (ε)) is the largest non-negative ρ s.t.

Qt,Vf∗ (ρ) ≤ ε (resp. Qt,Vf∗ (−ρ) ≤ ε).

Proof. From Lemma 1, we have Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) = Qt,Vf∗ (1− λ/λt). Then, Gλ(β(λt), θ(λt)) ≤ ε for

λ ∈
[
inf{λ′ : Qt,Vf∗ (1− λ′/λt) ≤ ε, λ′ ≤ λt}, sup{λ′ : Qt,Vf∗ (1− λ′/λt) ≤ ε, λ′ ≥ λt}

]
.

Proposition 2 (Precision for a Given Grid). Given a grid of parameter ΛT , the set {β(λ) : λ ∈ ΛT } is an εΛT -path and
εΛT ≤ maxt∈[T ]Qt,Vf∗ (1−λ?t /λt) where for all t ∈ [T −1], λ?t is the largest λ ∈ [λt+1, λt] such thatQt,Vf∗ (1−λ/λt) ≥
Qt+1,Vf∗ (1− λ/λt+1).

Proof. From the upper bound Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (1 − λ/λt) for all λ and λt, and since one can partition the
parameter set as [λmin, λmax] = ∪t∈[0:T−1][λt+1, λt], we have thanks to the Definition of εΛt in Equation (10):

εΛt ≤ max
t∈[0:T−1]

sup
λ∈[λt+1,λt]

min
λt∈ΛT

Qt,Vf∗ (1− λ/λt)

≤ max
t∈[0:T−1]

sup
λ∈[λt+1,λt]

min
t′∈{t+1,t}

Qt′,Vf∗ (1− λ/λt′) .

where the last inequality holds since {λt+1, λt} is a subset of ΛT . Let us define

∀λ ∈ [λt+1, λt], ψt(λ) := min{Qt+1,Vf∗ (1− λ/λt+1), Qt,Vf∗ (1− λ/λt)} .

The quantity Qt+1,Vf∗ (1− λ/λt+1) (resp. Qt,Vf∗ (1− λ/λt)) is monotonically increasing w.r.t. λ (resp. decreasing), so
supλ∈[λt+1,λt] ψt(λ) is reached for λ?t , the largest λ satisfying

Qt,Vf∗ (1− λ/λt) ≥ Qt+1,Vf∗ (1− λ/λt+1) .

Corollary 1. If the function f∗ is ν
2‖·‖2-smooth, the left (ρ`t) and right (ρrt ) step sizes defined in Proposition 1 have

closed-form expressions:

ρ`t =

√
2νδt ‖ζt‖2 + δ̃2

t − δ̃t
ν ‖ζt‖2

and ρrt =

√
2νδt ‖ζt‖2 + δ̃2

t + δ̃t

ν ‖ζt‖2
,

where δt := ε− Gt and δ̃t := ∆t − Gt.
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Proof. If f∗ is ν
2 ‖·‖

2-smooth (which is equivalent to f is 1
2ν ‖·‖

2-strongly convex), we have from Lemma 1

Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) = Gt +ρ(∆t − Gt) +
νρ2

2
‖ζt‖2 .

Hence we conclude by solving in ρ the inequality Qt,Vf∗ (ρ) ≤ ε.

Lemma 2. For any β(λt) ∈ Rp, the vector

θ(λt) =
−∇f(Xβ(λt))

max(λt, σ◦dom Ω∗(X
>∇f(Xβ(λt)))

,

is feasible: −λθ(λt) ∈ dom f∗, X>θ(λt) ∈ dom Ω∗.

Proof. The proof of this result and the convergence of the sequence of dual points is given in Proposition 11 and lemma 5 of
(Ndiaye, 2018, Chapter 2).

Variation of the loss function along the path
Lemma 7. Let β(λt) (resp. β(λt′ )) be an ε-solution at parameter λt (resp. λt′ ), then we have(

1− λt′

λt

)(
f(Xβ(λt′ ))− f(Xβ(λt))

)
≤ Gt′ +

λt′

λt
Gt .

where Gs := Gλs(β(λs), θ(λs)) for s ∈ {t, t′}. Moreover, the mapping λ 7→ f(Xβ̂(λ)) is non-increasing.

Proof. Denote ε = Gt and ε′ = Gt′ . Since β(λt′ ) is an ε′-solution and β̂(λt′ ) is optimal at parameter λt′ , we have:

f(Xβ(λt′ )) + λt′Ω(β(λt′ ))− ε′ ≤ f(Xβ̂(λt′ )) + λt′Ω(β̂(λt′ )) ≤ f(Xβ(λt)) + λt′Ω(β(λt)) .

Moreover,

f(Xβ(λt)) + λt′Ω(β(λt)) =
λt′

λt

(
f(Xβ(λt)) + λtΩ(β(λt))

)
+

(
1− λt′

λt

)
f(Xβ(λt))

≤ λt′

λt

(
f(Xβ̂(λt)) + λtΩ(β̂(λt)) + ε

)
+

(
1− λt′

λt

)
f(Xβ(λt))

≤ λt′

λt

(
f(Xβ(λ)) + λtΩ(β(λ)) + ε

)
+

(
1− λt′

λt

)
f(Xβ(λt)) .

The last inequality comes from the optimality of β̂(λt) at parameter λt. Hence,

f(Xβ(λt′ )) + λt′Ω(β(λt′ ))− ε′ ≤ λt′

λt

(
f(Xβ(λt′ )) + λtΩ(β(λt′ )) + ε

)
+

(
1− λt′

λt

)
f(Xβ(λt)) .

At optimality, ε = 0 and we can deduce that
(

1− λ
λt

)
f(Xβ̂(λ)) ≤

(
1− λ

λt

)
f(Xβ̂(λt)), hence the second result.

Bounding the gradient along the path

We can furthermore bound the norm of the gradient of the loss when the parameter λ varies.
Lemma 8. For x ∈ Dom(f), if f is Vf,x-smooth, then writing V∗f,x = (Vf,x)∗ for the Fenchel-Legendre transform, one has

V∗f,x(−∇f(x)) ≤ f(x)− inf
z
f(z) .

Proof. From the smoothness of f , we have

inf
z
f(z) ≤ inf

z
(f(x) + 〈∇f(x), z − x〉+ Vf,x(z − x)) = f(x)− (Vf,x)∗(−∇f(x)) .
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A direct application of Lemma 8 and Lemma 7 yields:

Lemma 9. Assume that f is uniformly smooth and let β(λt′ ) (resp. β(λt)) be an ε-solution at parameter λt′ (resp. λt). Then
for δε(λt′ , λt) := λt+λt′

λt−λt′
ε, we have

V∗f (−∇f(Xβ(λt′ ))) ≤ f(Xβ(λt)) + δε(λt′ , λt) .

At optimality ε = 0 and so δε(λt′ , λt) = 0 and we have

V∗f (−∇f(Xβ̂(λt′ ))) ≤ f(Xβ̂(λt)) .

Lemma 3. Assuming f uniformly smooth yields ‖∇f(Xβ(λt′ ))‖∗ ≤ R̃t, where R̃t := V∗f−1
(
f(Xβ(λt)) + 2εc

ρ`t(ε)

)
. If

additionally f is uniformly convex, this yields ∆t′ ≤ ∆̃t, where ∆̃t := R̃t × U−1
f (εc) as well as Gλ(β(λt′ ), θ(λt′ )) ≤

Qt′,Vf∗ (ρ) ≤ Q̃t,Vf∗ (ρ), where

Q̃t,Vf∗ (ρ) = εc + ρ · (∆̃t − εc) + Vf∗
(
|ρ| · R̃t

)
.

Proof. If f is uniformly smooth, from Lemma 9, we have:

V∗f (−∇f(Xβ(λt′ ))) ≤ f(Xβ(λt)) + δε(λt′ , λt)

‖∇f(Xβ(λt′ ))‖∗ ≤ V∗f−1

(
f(Xβ(λt)) +

2ε

ρ`t(ε)

)
,

where the first line follows from Lemma 9 and the second follows from the fact that for the function Vf = V ◦ ‖·‖, we have
V∗f := (Vf )∗ = V∗ ◦ ‖·‖∗. Finally, since λt′ ≤ λt, then

δε(λt′ , λt) ≤
2ελt

λt − λt′
=

2ε

ρ`t(ε)
.

Since f is convex, we have

∆t := f(Xβ(λt))− f(∇f∗(−λtθ(λt))) ≤ −〈∇f(Xβ(λt)),∇f∗(−λtθ(λt))−Xβ(λt)〉
≤ ‖∇f(Xβ(λt))‖∗ × ‖∇f∗(−λtθ(λt))−Xβ(λt)‖
≤ ‖∇f(Xβ(λt))‖∗ × U−1

f (Gλt(β(λt), θ(λt))) .

where the two last inequalities come respectively from Holder inequality and Lemma 6.

The bound on the duality gap directly comes from the bounds on ∆t′ and the norm of the gradient.

7.4. Proof of the complexity bound

Proposition 5. Assume that f is uniformly convex and smooth, and define the grid Λ(0)(ε) = {λ0, . . . , λTε−1} by

λ0 = λmax, λt+1 = λt × (1− ρ0(ε)) ,

and ∀t ∈ [T ], (β(λt), θ(λt)) s.t. Gt ≤ εc < ε. Then the set {β(λt) : λt ∈ Λ(0)(ε)} is an ε-path for Problem (1) with at most
Tε grid points where

Tε =

⌊
log(λmin/λmax)

log(1− ρ0(ε))

⌋
. (29)

Proof. By construction, given any two consecutive grid point λt and λt+1, we have Gt and Gt+1 are smaller than ε.
Moreover, since β(λt) is an ε-solution for any λ in the interval [λt+1, λt] whose union forms a covering of [λmin, λmax], we
conclude that the uniform grid is an ε-path.

By definition, λmin = λTε , λmax = λ0 and ρ0(ε) = 1 − λt+1/λt ∈ (0, 1). The conclusion follows from the fact that
λTε = λ0 × (1− ρ0(ε))Tε .
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Now we present the proof for the general case. We denote Tε the cardinality of the grid returned by Algorithm 1 and let
(ρt)t∈[0:Tε−1] be the set of step size needed to cover the interval [λmin, λmax]. Using ρt = 1− λt+1

λt
, we have

log

(
λmax

λmin

)
= log

(
Tε−1∏
t=0

λt
λt+1

)
=

Tε−1∑
t=0

log

(
1

1− ρt

)
.

Hence, denoting ρmin(ε) = mint∈[0:Tε−1] ρt, we have

Tε × ρmin(ε) ≤ log

(
λmax

λmin

)
. (30)

We assume that we explore the parameter range in decreasing order. Also, to simplify the complexity analysis we will
suppose that at each step λt, we have solved the optimization problem with two measures of accuracy Gt ≤ εc and ∆t ≤ εc
for εc < ε.

Remark 5. It is important to note that the usual stop criterion at each step t is Gt ≤ εc which is used in our algorithm. The
additional constraint ∆t ≤ εc can be satisfied by any converging optimization solver (e.g., coordinate descent) since both Gt
and ∆t converge to zero.

Then we recall from Lemma 1 that Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) which is smaller than ε as soon as Vf∗,ζt(−ζt ·ρ) ≤ ε− εc.
Since ρmin(ε) = mint∈[0:Tε−1] ρt = mint∈[0:Tε−1] sup{ρ : Qt,Vf∗ (ρ) ≤ ε}, then

ρmin(ε) ≥ min
t∈[0:Tε−1]

sup{ρ : Vf∗,ζt(−ζt · ρ) ≤ ε− εc} . (31)

Hence the complexity of the path is bounded as follows.

Proposition 6 (Complexity of the approximation path). Assuming that max(Gt,∆t) ≤ εc < ε at each step t, there exists
Cf (εc) > 0 such that

Tε ≤ log

(
λmax

λmin

)
× Cf (εc)

Wf∗(ε− εc)
,

where for all t > 0, the functionWf∗ is defined by

Wf∗ =

{
V−1
f∗ , if f is uniformly convex and smooth,√·, if f is Generalized Self-Concordant and uniformly-smooth.

Moreover,

Cf (εc) =

{
R̃0, if f is uniformly convex and smooth,√

R̄0

wν(−Bf ) , if f is Generalized Self-Concordant and uniformly-smooth.

where

R̃0 = V∗f−1

(
f(Xβ(λ0)) +

2εc
ρ`0(ε)

)
, and R̄0 = f(Xβ(λ0)) +

2εc
ρ`0(ε)

+ εc

and
Bf = sup{dν(z) : z ∈ Rn, ψ(z) ≤ R̄0, ‖z‖∗ ≤ R̃0} .

Proof. In the uniformly convex case, Vf∗,ζt(−ζt · ρ) = Vf∗(ρ ‖ζt‖∗), hence we can deduce from Equation (30) and (31)
that

Tε ≤
1

ρmin(ε)
× log

(
λmax

λmin

)
≤ log

(
λmax

λmin

)
× maxt∈[0:Nε−1] ‖ζt‖∗

V−1
f∗ (ε− εc)

,
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so we just need to uniformly bound ‖ζs‖∗. By construction of the dual point Lemma 2, we have:

‖ζt‖∗ =
λt

max(λt, σ◦dom Ω∗(X
>∇f(Xβ(λt)))

‖∇f(Xβ(λt))‖∗ ≤ ‖∇f(Xβ(λt))‖∗ ≤ R̃0 , (32)

where the last inequality comes from Lemma 3 applied at λt and λ0.

For the Generalized Self-Concordant case, we first recall that the functions wν(·) in Equation (21) are increasing and
wν(0) = 1/2. Then there exists a positive constant aν such that wν(τ) ≤ 1 for τ ∈ [0, aν ] (in fact aν = 1 for the logistic
regression). Thus, provided ρdν(ζt) ≤ aν , we can derive the bound Vf∗(−ζt × ρ) ≤ ρ2 ‖ζt‖2ζt .
Like in the uniformly convex case, in order to get the complexity of the ε-path, we also need a uniform bound on ‖ζt‖ζt . By
taking (6) on f∗ with x = ζt and z = 0, we obtain

wν(−dν(ζt)) ‖ζt‖2ζt = Uf∗,ζt(−ζt) ≤ f∗(0)− f∗(ζt)− 〈∇f∗(ζt),−ζt〉 = f(∇f∗(ζt)) = f(Xβ(λt))−∆t

≤ f(Xβ(λt)) + εc ≤ f(Xβ(λ0)) +
2εc
ρ`0(ε)

+ εc =: R̄0 ,

where we used the inequality case of Fenchel-Young Inequality and the fact that f∗(0) = − inf f = 0. This shows that
ψ(ζt) := Uf∗,ζt(−ζt) ≤ R̄0. Since the function ψ is continuous, then its level set is closed i.e., {z ∈ Rn : ψ(z) ≤ R̄0} is
closed. Recalling Equation (32), we have ‖ζt‖∗ ≤ R̃0. Then we have

dν(ζt) ≤ sup
z∈Hf

dν(z) =: Bf whereHf := {z ∈ Rn : ψ(z) ≤ R̄0} ∩ {z : ‖z‖∗ ≤ R̃0} is a compact set.

Since the function wν(·) is increasing, we have wν(−Bf ) ‖ζt‖2ζt ≤ wν(−dν(ζt)) ‖ζt‖2ζt ≤ R̄0.

This implies that ‖ζt‖2ζt ≤
R̄0

wν(−Bf ) . Thus, provided ρdν(ζt) ≤ āν , we can derive the bound Vf∗(ζt × ρ) ≤ ρ2 ‖ζt‖2ζt .

Whence ρmin(ε) ≥ mint
√
ε−εc
‖ζt‖ζt

. Hence the complexity is bounded as Tε ≤ log
(
λmax

λmin

) √
R̄0/wν(−Bf )√

ε−εc
.

7.5. Proof of the validation error bounds

Proposition 7 (Grid for a prescribed validation error). Suppose that we have solved problem (1) for a parameter λt up to
accuracy Gλt(β(λt), θ(λt)) ≤ ξ(εv, µ,X ′), then we have ∆Ev(λt, λ) ≤ εv for all

λ ∈ λt ×
[
1− ρ`t(ξ(εv, µ,X ′)), 1 + ρrt (ξ(εv, µ,X

′))
]
,

where ρ`t(ε) and ρrt (ε) for ε > 0 are defined in Proposition 1.

Proof. We distinguish the two cases of interest: classification and regression.

• Case where the loss function is a norm:

we have

max
β∈B(β(λt),r)

L(X ′β,X ′β(λt)) = max
β∈B(β(λt),r)

‖X ′(β − β(λt))‖ ≤ rλ,µ‖X ′‖ ,

where rλ,µ is the duality gap safe radius defined in Equation (16). Hence by using the bounds on the duality gap in

Lemma 1, we can ensure ∆Ev(λt, λ) ≤ εv for all ρ = 1− λ/λt such that Qt,Vf∗ (ρ) ≤ µε2v
2‖X′‖2 .

• Case where the loss function is the indicator function:

using the inequality −2ab ≤ (a − b)2 − b2 for a = x′
>
i β and b = x′

>
i β

(λt) and |x′>i (β − β(λt))| ≤ r‖x′i‖ for all
β ∈ B(β(λt), r) we have:

−2(x′
>
i β)(x′

>
i β

(λt)) ≤ (r‖x′i‖)2 − (x′
>
i β

(λt))2 .
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Hence we obtain the following upper bound

max
β∈B(β(λt),r)

L(X ′β,X ′β(λt)) = max
β∈B(β(λt),r)

1

n

n∑
i=1

1(x′>i β
(λt))(x′>i β)<0 ≤

1

n

n∑
i=1

1|x′>i β(λt)|≤r‖x′i‖ .

By using the bound on the duality gap, we can ensure ∆Ev(λ0, λ) ≤ εv for all λ such that:

#

i ∈ [n] : ξi :=
µ

2

(
x′
>
i β

(λt)

‖x′i‖

)2

≤ Qt,Vf∗ (1− λ/λt)

 ≤ bnεvc .
By denoting

(
ξ(i)
)
i∈[n]

the (increasing) ordered sequence, we need the inequality to be true for at most the bnεvc first
values i.e., we choose λ such that:

Qt,Vf∗

(
1− λ

λt

)
<
µ

2

(
x′
>
(bnεvc+1)β

(λt)∥∥x′(bnεvc+1)

∥∥
)2

.

7.6. Additional Experiments

We add an additional experiments in large scale data with n = 16087 observations and p = 1668737 features.
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Figure 6. `1 least-squares regression on the financial dataset E2006-log1p (available in libsvm) with n = 16087 observations and
p = 1668737 features. We have used the same (vanilla) coordinate descent optimization solver with warm start between parameters for
all grids. Note that a smaller grid do not imply faster computation, as the interplay with the warm-start can be intricate in our sequential
approach.


