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S1. Proof of Lemma 1
Proof. Let q(X, t) be the probability density of X(t). By Proposition 1 in (Schertzer et al., 2001) (see also Section 7 of the
same study), the fractional Fokker-Planck equation associated with (9) is given as follows:

∂tq(X, t) = −
d∑
i=1

∂[(b(X,α))iq(X, t)]

∂Xi
− β−1

d∑
i=1

DαXiq(X, t).

Using definition (10) of b, we have

∂tq(X, t) =−
d∑
i=1

∂

∂Xi
[
β−1Dα−2

Xi
(−βφ(X)∂f(X)

∂Xi
)

φ(X)
q(X, t)]− β−1

d∑
i=1

DαXiq(X, t)

=−
d∑
i=1

∂

∂Xi
[
β−1Dα−2

Xi
(−βπ(X)∂f(X)

∂Xi
)

π(X)
q(X, t)]− β−1

d∑
i=1

DαXiq(X, t)

=−
d∑
i=1

∂

∂Xi
[
β−1Dα−2

Xi
(∂π(X)
∂Xi

)

π(X)
q(X, t)]− β−1

d∑
i=1

DαXiq(X, t).

Here, we used π(X) = φ(X)/
∫
φ(X)dX in the second equality and −β ∂

∂Xi
f(X) = ∂

∂Xi
log π(X) = ∂π(X)/∂Xi

π(X) in the
third equality. Next, by replacing q by π on the right hand side of the above equality, we have:

−
d∑
i=1

∂

∂Xi
[
β−1Dα−2

Xi
(∂π(X)
∂Xi

)

π(X)
π(X, t)]− β−1

d∑
i=1
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i=1

∂

∂Xi
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Xi
(
∂π(X)

∂Xi
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d∑
i=1

DαXiπ(X, t)

=−
d∑
i=1

∂2

∂X2
i

[β−1Dα−2
Xi

(π(X))]− β−1
d∑
i=1

DαXiπ(X, t)

=

d∑
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Xi [β
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=

d∑
i=1

DαXi [β
−1π(X)]− β−1

d∑
i=1

DαXiπ(X, t) = 0.

Here, we used Proposition 1 in (Şimşekli, 2017), D2u(x) = − ∂
∂x2u(x), and the semi-group property of the Riesz derivation

DaDbu(x) = Da+bu(x). This proves that π is an invariant measure of the Markov process (X(t))t≥0.

S2. Proof of Proposition 1
Proof. By Corollary 1.3 in (Liang & Wang, 2018), the assumptions imply that there exist constants C̄ > 0 and C̄1 > 0 such
thatW1(µ3t, π) ≤ C̄βe−C̄1t.

Let P3t be the coupling of µ3t and π that such that W1(µ3t, π) =
∫
‖X3(t) − Ŵ‖dP3t. For 0 < λ < 1, by Hölder

inequality,

Wλ
λ (µ3t, π) ≤

∫
‖X3(t)− Ŵ‖λdP3t

≤
(∫
‖X3(t)− Ŵ‖dP3t

)λ
=Wλ

1 (µ3t, π)

For α > λ > 1,

Wλ
λ (µ3t, π) ≤

∫
‖X3(t)− Ŵ‖λdP3t

≤
∫
‖X3(t)− Ŵ‖δ‖X3(t)− Ŵ‖λ−δdP3t

≤
(∫
‖X3(t)− Ŵ‖dP3t

)δ(∫
‖X3(t)− Ŵ‖(λ−δ)/(1−δ)dP3t

)1−δ

=Wδ
1 (µ3t, π)

(∫
‖X3(t)− Ŵ‖(λ−δ)/(1−δ)dP3t

)1−δ
,

where we used Holder’s inequality for δ < 1 such that (λ − δ)/(1 − δ) < α, and
∫
‖X3(t) − Ŵ‖(λ−δ)/(1−δ)dP3t is

bounded by a constant, by Assumption H5.

Finally, we have

Wλ(µ3t, π) ≤Cβe−C1t,

for some constants C,C1 > 0 and for 0 < λ < α. This completes the proof.

Remark 1. Let us consider the case where the dimension d is equal to 1 (the extension for d > 1 is similar). The first part
of Assumption H5 can be satisfied under the following (rather non-trivial) assumptions. Assume that there exist constants
P,C1, C2, C3, C4, C5, C6 > 0 such that:

f ′(z) > 0 if z > P, (S1)∫
|z|≤P

|φ(z)f ′(z)|dz = C1 > 0 (S2)∫
z<−P

φ(z)|f ′(z)||z|1−αdz = C2 > 0 (S3)∫
z>P

φ(z)f ′(z)|z|1−αdz = C3 > 0, (S4)

if |z| ≤ P :
∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣ ≤ C4|x− y| ∀x, y ∈ R, (S5)
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if z < −P :
∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣ ≤ C5|x− y||z|1−α ∀x, y ∈ R, (S6)

if z > P :
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
≤ C6|z|1−α(y − x) ∀x, y ∈ R s.t x > y, (S7)

C1C4 + C2C5 < C3C6. (S8)

By definition of Riesz potential, we have:

b(x)− b(y) =

∫
R

φ(z)f ′(z)

φ(x)|x− z|α−1
dz −

∫
R

φ(z)f ′(z)

φ(y)|y − z|α−1
dz

=

∫
R
φ(z)f ′(z)

( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz

=

∫
|z|≤P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz

+

∫
z<−P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz

+

∫
z>P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz.

By these assumptions, we estimate the first term on the right hand side in the above expression of b(x)− b(y), for x > y, as
follows:∣∣∣ ∫
|z|≤P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz
∣∣∣ ≤∫

|z|≤P
|φ(z)f ′(z)|

∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣dz
≤
∫
|z|≤P

|φ(z)f ′(z)|C4|x− y|dz

=C1C4|x− y|
=C1C4(x− y).

For the remaining terms, we have:∣∣∣ ∫
z<−P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz
∣∣∣ ≤∫

z<−P
|φ(z)f ′(z)|

∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣dz
≤
∫
z<−P

φ(z)|f ′(z)|C5|z|1−α|x− y|dz

=C2C5|x− y|
=C2C5(x− y),

and ∫
z>P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz ≤

∫
z>P

φ(z)f ′(z)C6|z|1−α(y − x)dz

=C3C6(y − x)

=− C3C6(x− y).

By combining these estimates, we get, for x > y:

b(x)− b(y) ≤ (C1C4 + C2C5 − C3C6)(x− y).

Thus, (b(x) − b(y))(x − y) ≤ (C1C4 + C2C5 − C3C6)(x − y)2. Since C1C4 + C2C5 − C3C6 < 0, this inequality for
drift b makes the first part of Assumption H5 hold.
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S3. Proof of Lemma 2
In this section, we precise the statement of Lemma 2 and provide the proof.

Lemma S1. Let V and W be two random variables on Rd which have µ and ν as the probability measures and let g be a
function in C1(Rd,R). Assume that for some c1 > 0, c2 ≥ 0 and 0 ≤ γ < 1,

‖∇g(w)‖ ≤ c1‖w‖γ + c2, ∀w ∈ Rd

then the following bound holds:∣∣∣ ∫ gdµ−
∫
gdν

∣∣∣ ≤ (c1(EP‖W‖γp
) 1
p

+ c1

(
EP‖V ‖γp

) 1
p

+ c2

)
Wq(µ, ν).

Proof. We have

g(v)− g(w) =

∫ 1

0

〈w − v,∇g((1− t)v + tw)〉dt

≤
∫ 1

0

‖w − v‖‖∇g((1− t)v + tw)‖dt (by Cauchy-Schwarz)

≤
∫ 1

0

‖w − v‖(c1((1− t)‖v‖+ t‖w‖)γ + c2)dt (by the assumption on∇g)

≤ ‖w − v‖
(
c1(‖v‖+ ‖w‖)γ + c2

)
≤ ‖w − v‖(c1‖v‖γ + c1‖w‖γ + c2). (by lemma S11)

Now let P be a joint probability distribution of µ and ν that achievesWλ(µ, ν), that is, P = L((W,V )) with µ = L(W )
and ν = L(V ). We have∫

gdµ−
∫
gdν = EP[g(W )− g(V )]

≤ [EP(c1‖W‖γ + c1‖V ‖γ + c2)p]
1
p [EP‖W − V ‖q]

1
q

≤
(
c1

(
EP‖W‖γp

) 1
p

+ c1

(
EP‖V ‖γp

) 1
p

+ c2

)
Wq(µ, ν),

where we have used Holder’s inequality and Minkowski’s inequality.

S4. Proof of Lemma 3
Proof. We define a real function Fλ as follows:

Fλ(y) , ‖y‖λ. (S9)

It is clear that Fλ is a C1 function. Let Y (t) , X1(t)−X2(t). By the chain rule,

dFλ(Y (t)) = 〈∇Fλ(Y (t)), b1(X1(t−), α)− b2(X2(t−), α)〉dt
= λ ‖X1(t)−X2(t))‖λ−2〈X1(t)−X2(t), b1(X1(t−), α)− b2(X2(t−), α)〉dt. (S10)

By integrating both sides of (S10) with respect to t, we arrive at

Fλ(Y (t)) = Fλ(Y (0)) +

∫ t

0

λ ‖X1(t)−X2(t))‖λ−2〈X1(t)−X2(t), b1(X1(t−), α)− b2(X2(t−), α)〉ds
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=

∫ t

0

λ ‖X1(t)−X2(t))‖λ−2〈X1(t)−X2(t), b1(X1(t−), α)− b2(X2(t−), α)〉ds.

By definition of Wasserstein distance, we have

Wλ(µ1t, µ2t) = inf{(E[Fλ(Y (t))])1/λ},

which is the desired result.

S5. Proof of Theorem 3
In this section, we first precise the statement of Theorem 3 and then provide the corresponding proof.

Theorem S1. Let E‖Lα(1)‖λ , lα,λ,d <∞. We also define the following quantities:

P1(η) ,
(
cη
( d

β1/α

)) 1
p1

+ (cη)
1
p1 + (2η(b+m))

(q−1)
2 + 2

(q−1)
2 (ηB)(q−1) +

( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d

+ηq−1Mq−1
(

(2η(b+m))
(q−1)γ

2 + 2
(q−1)γ

2 (ηB)(q−1)γ +
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

)
,

P2(η) ,M
((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
,

Q1(η) , c
1
p1 + (E‖X2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖X2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d
,

Q2 ,M(E‖X2(0)‖γq1)
1
q1 +Mc

1
q1 .

Under additional assumption on the step-size: 0 < η ≤ m
M2 , we have

Wq
q (µ1t, µ2t) ≤ qη

(
k2P1(η)P2(η) + k1+1/p1P1(η)Q2 + k1+1/q1P2(η)Q1(η) + kQ1(η)Q2

)
.

Proof. From Lemma 3, we have

Wq
q (µ1t, µ2t) =E

[ ∫ t

0

q ‖X1(s)−X2(s))‖q−2〈X1(s)−X2(s), b1(X1(s−), α)− b2(X2(s−), α)〉ds
]

=

k−1∑
j=0

E
[ ∫ (j+1)η

jη

q ‖X1(s)−X2(s))‖q−2〈X1(s)−X2(s), b1(X1(s−), α)− b2(X2(s−), α)〉ds
]

≤
k−1∑
j=0

E
[ ∫ (j+1)η

jη

q ‖X1(s)−X2(s)‖q−1cα‖∇f(X1(s))−∇f(X2(jη))‖ds
]

=q

k−1∑
j=0

∫ (j+1)η

jη

E
[
‖X1(s)−X2(s)‖q−1cα‖∇f(X1(s))−∇f(X2(jη))‖

]
ds

≤q
k−1∑
j=0

∫ (j+1)η

jη

[
E‖X1(s)−X2(s)‖(q−1)p1

] 1
p1
[
E‖cα(∇f(X1(s))−∇f(X2(jη)))‖q1

] 1
q1

ds,

where we have used Cauchy-Schwarz inequality in the third line and Holder’s inequality in the last line.

Since (q − 1)p1 < 1 by Assumption H4, using Lemma S11 twice, we have:(
E‖X1(s)−X2(s)‖(q−1)p1

) 1
p1 ≤

(
E‖X1(s)‖(q−1)p1 + E‖X2(s)‖(q−1)p1

) 1
p1

≤
[
E
(
‖X1(s)‖(q−1)p1

)] 1
p1

+
[
E
(
‖X2(s)‖(q−1)p1

)] 1
p1
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Then, by applying Lemma S4 and Lemma S7 for s ∈ [jη, (j + 1)η), we obtain:(
E‖X1(s)−X2(s)‖(q−1)p1

) 1
p1

≤
(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+
[
E‖X2(0)‖(q−1)p1 + j

(
(2η(b+m))

(q−1)p1
2 + 2

(q−1)p1
2 (ηB)(q−1)p1

+
( η
β

) (q−1)p1
α

lα,(q−1)p1,d

)
+ (s− jη)(q−1)p1

(
M (q−1)p1

(
E‖X2(0)‖(q−1)p1γ + j

(
(2η(b+m))

(q−1)p1γ
2

+ 2
(q−1)p1γ

2 (ηB)(q−1)p1γ +
( η
β

) (q−1)p1γ
α

lα,(q−1)p1γ,d

))
+B(q−1)p1

)
+
(s− jη

β

) (q−1)p1
α

lα,(q−1)p1,d

] 1
p1
.

Next, using Lemma S11, the inequalities j < j + 1 and s− jη ≤ η for s ∈ [jη, (j + 1)η), we get(
E‖X1(s)−X2(s)‖(q−1)p1

) 1
p1 ≤

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+ (E‖X2(0)‖(q−1)p1)
1
p1 + (j + 1)

1
p1

(
(2η(b+m))

(q−1)
2

+ 2
(q−1)

2 (ηB)(q−1) +
( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d

)
+ ηq−1

(
Mq−1

(
(E‖X2(0)‖(q−1)p1γ)

1
p1

+ (j + 1)
1
p1

(
(2η(b+m))

(q−1)γ
2 + 2

(q−1)γ
2 (ηB)(q−1)γ +

( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
+B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d
.

We note that s < (j + 1)η and q − 1 < 1
p1

(from the assumptions). Hence,(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

≤
(
c
(

(j + 1)η
( d

β1/α
+ 1
)

+ 1
)) 1

p1

≤(j + 1)
1
p1

(
cη
( d

β1/α
+ 1
)) 1

p1
+ c

1
p1 ,

where the last inequality is an application of Lemma S11. By replacing this inequality into the previous one and rearranging
the terms, we have(

E‖X1(s)−X2(s)‖(q−1)p1
) 1
p1

≤c
1
p1 + (E‖X2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖X2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d

+ (j + 1)
1
p1

((
cη
( d

β1/α
+ 1
)) 1

p1
+ (2η(b+m))

(q−1)
2 + 2

(q−1)
2 (ηB)(q−1) +

( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d

+ ηq−1Mq−1
(

(2η(b+m))
(q−1)γ

2 + 2
(q−1)γ

2 (ηB)(q−1)γ +
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
≤c

1
p1 + (E‖X2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖X2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d

+ (j + 1)
1
p1

((
cη
( d

β1/α

)) 1
p1

+ (cη)
1
p1 + (2η(b+m))

(q−1)
2 + 2

(q−1)
2 (ηB)(q−1) +

( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d

+ ηq−1Mq−1
(

(2η(b+m))
(q−1)γ

2 + 2
(q−1)γ

2 (ηB)(q−1)γ +
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
=Q1(η) + (j + 1)

1
p1 P1(η),

Here, we have used Lemma S11 in the last inequality. Now, consider the following quantity[
E‖cα(∇f(X1(s))−∇f(X2(jη)))‖q1

] 1
q1 ≤

[
E
(
M‖X1(s)−X2(jη)‖γ

)q1] 1
q1
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≤
[
E
(
M‖X1(s)‖γ +M‖X2(jη)‖γ

)q1] 1
q1

≤
[
E
(
Mq1‖X1(s)‖γq1

)] 1
q1

+
[
E
(
Mq1‖X2(jη)‖γq1

)] 1
q1
,

where we have used Assumption H2, Lemma S11 and Minkowski’s inequality. By Lemma S4 and Lemma S7, we have[
E‖cα∇f(X1(s))− cα∇f(X2(jη))‖q1

] 1
q1 ≤M

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ

+
[
Mq1(E‖X2(0)‖γq1)

+Mq1j
(

(2η(b+m))
γq1
2 + 2

γq1
2 (ηB)γq1 +

( η
β

) γq1
α

lα,γq1,d

)] 1
q1
.

By using Lemma S11 and the inequality j < j + 1, we have[
E‖cα∇f(X1(s))− cα∇f(X2(jη))‖q1

] 1
q1 ≤M

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ

+M(E‖X2(0)‖γq1)
1
q1

+M(j + 1)
1
q1

(
(2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
.

We note that s < (j + 1)η and γ < 1
q1

(from the assumptions). Hence,

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ
≤
(
c
(

(j + 1)η
( d

β1/α
+ 1
)

+ 1
)) 1

q1

≤(j + 1)
1
q1

(
cη
( d

β1/α
+ 1
)) 1

q1
+ c

1
q1 ,

where the last inequality is an application of Lemma S11. By replacing this inequality into the previous one and rearranging
the terms, we have

[
E‖cα∇f(X1(s))− cα∇f(X2(jη))‖q1

] 1
q1 ≤M(E‖X2(0)‖γq1)

1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α
+ 1
)) 1

q1

+ (2η(b+m))
γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
≤M(E‖X2(0)‖γq1)

1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
=Q2 + (j + 1)

1
q1 P2(η).

Here, we have used Lemma S11 in the last inequality. By combining the above inequalities, we get

E
[ ∫ t

0

q ‖X1(s)−X2(s))‖q−2〈X1(s)−X2(s), b1(X1(s−), α)− b2(X2(s−), α)〉ds
]

≤
k−1∑
j=0

qη
(

(j + 1)P1(η)P2(η) + (j + 1)
1
p1 P1(η)Q2 + (j + 1)

1
q1 P2(η)Q1(η) +Q1(η)Q2

)
≤ qη

(
k2P1(η)P2(η) + k1+1/p1P1(η)Q2 + k1+1/q1P2(η)Q1(η) + kQ1(η)Q2

)
.

The final conclusion follows from this inequality.
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S5.1. Proof of Corollary 1

Proof. In order to get the results from the bound obtained by Theorem S1, we take the max power of k and the min power
of η among the terms containing k and η but not containing β. For the terms containing β, we take the max power of k, min
power of η, min power of 1/β and max power of d. We get

Wq
q (µ1t, µ2t) ≤C(k2η + k2η1+min{γ,q−1}/αβ−(q−1)γ/αd).

Since γ < 1/p = (q − 1)/q < q − 1, we finally obtain

Wq
q (µ1t, µ2t) ≤C(k2η + k2η1+γ/αβ−(q−1)γ/αd).

S5.2. Proof of Corollary 2

Proof. The proof starts from the bound established in Corollary S2 then, follows the same lines of the proof of Corollary 1.

S6. Proof of Theorem 2
Proof. We have the decomposition:

E[f(W k)]− f∗ =E[f(X2(kη))]− f∗

=(E[f(X2(kη))]− E[f(X1(kη))]) + (E[f(X1(kη))]− E[f(X3(kη))]) + (E[f(X3(kη))]− E[f(Ŵ ))])

+ (E[f(Ŵ ))]− f∗).

By Corollary 2, Corollary 4, Lemma 4 and Lemma 5, there exists a constant C ′ independent of k, η and β such that

E[f(W k)]− f∗ ≤C ′
(
k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d+ kγ+ γ+q

q ηγ+ 1
q β−

γ
α d+ kγ+ γ+q

q η
1
q

+ β
b+ d/β

m
exp(−λ∗β−1t)

)
+
β−γ−1Mc−1

α

1 + γ
+ β−1 log

( (2e(b+ d/β))d/2Γ(d/2 + 1)βd

(dm)d/2

)
.

Here, we note that kη = t. then by taking the largest power of k, smallest powers of η and β−1 among the terms containing
all of three parameters k, η and β, there exist a constant C satisfying the following inequality:

E[f(W k)]− f∗ ≤C
(
k1+max{ 1

q ,γ+ γ
q }η

1
q + k1+max{ 1

q ,γ+ γ
q }η

1
q+ γ

αq β−
(q−1)γ
αq d+ β

b+ d/β

m
exp(−λ∗β−1kη)

)
+
β−γ−1Mc−1

α

1 + γ
+ β−1 log

( (2e(b+ d/β))d/2Γ(d/2 + 1)βd

(dm)d/2

)
.

S6.1. Discussion on smoothness assumptions

Let us recall the four constraints given in H4:

(1/p+ 1/q) = (1/p1 + 1/q1) = 1

γp < 1, γq1 < 1, (q − 1)p1 < 1.

We will refer to these conditions as the first, second, third, and fourth conditions, respectively. Our aim is to find a condition
on γ (more precisely, the maximum value of γ) such that there exist p, q, p1, q1 > 0 satisfying these four conditions.

First, suppose that p > q1. Then, the maximum value of γ is decided by the second constraint. Since we want γ to be as
large as possible, it is natural to choose a smaller p. We can observe that, as we decrease p, due to the first and the fourth
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constraints, the value of q1 needs to be increased. If we continue decreasing p, then q1 continues to be increased and soon
becomes strictly greater than p. At this moment, the maximum value of γ is decided by the third constraint, not by the
second constraint anymore, and from this point on, it is more plausible to decrease q1.

By this intuition, it is reasonable to choose p to be equal to q1, which implies that p1 = q. Accordingly, the fourth constraint
becomes: (q−1)q < 1. By noting that q > 1, solving this constraint gives 1 < q < (1+

√
5)/2. Then by the first constraint,

we have p > (3 +
√

5)/2, and the second constraint gives γ < 1/p < (3−
√

5)/2.

This upper bound for γ is a number between 0.38 and 0.39 and tells us that there exist p, q, p1, q1 satisfying the four
constraints if and only if 0 ≤ γ < (3−

√
5)/2.

Let us take a closer look at Theorem 2. Since γ(q+ 1) < (3−
√

5)(3 +
√

5)/4 = 1, we have γ+ γ/q = γ(q+ 1)/q < 1/q
Hence,

1 + max{1/q, γ + γ/q} = 1 + 1/q.

Let ε1 and ε2 be positive numbers such that

1/q − ε1 = 2/(1 +
√

5) = (
√

5− 1)/2,

γ + ε2 = (3−
√

5)/2.

then, if q = p1 is approximately equal to (1 +
√

5)/2 and γ is approximately equal to (3−
√

5)/2, we imply that ε1 and ε2

become very small and

1/q ≈ (
√

5− 1)/2,

1/q + γ/(αq) ≈ (
√

5− 1)/2 + (
√

5− 2)/α,

(q − 1)γ/(qα) ≈ (7− 3
√

5)/(2α).

For example, the values α = 1.65, γ = 0.38, p = q1 = 2.63, q = p1 = q/(q − 1) ≈ 1.613 satisfy Assumption H4. Hence,
the bound in Theorem 2 can be expressed as follows:

Corollary S1. Under conditions H1-H7, for α = 1.65, γ = 0.38, p = q1 = 2.63, q = p1 = q/(q − 1) ≈ 1.613 and for
0 < η < m

M2 , there exists a positive constant C independent of k and η such that the following bound holds:

E[f(W k)]− f∗ ≤C

{
k1.62η0.61 +

k1.62η0.75d

β0.0875
+
βb+ d

m
exp(−λ∗kη

β
)

}
+

Mc−1
α

1.38β1.38

+
1

β
log

(2e(b+ d
β ))

d
2 Γ(d2 + 1)βd

(dm)
d
2

.

Proof. The result is a direct consequence of Theorem 2.

S7. Proof of Theorem 4
In this section, we precise the statement of Theorem 4 and provide the full proof.

Theorem S2. We have the following estimate:

Wq
q (µ1t, µ3t) ≤qt

(
M(cq−1 + cq−1

b )(cγ + cγb )
(
t
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+ L(cq−1 + cq−1
b )

(
t
( d

β1/α
+ 1
)

+ 1
)q−1)

,

where c and cb are constants defined in Lemma S4 and Lemma S5.

Proof. From Lemma 3, we have

Wq
q (µ1t, µ3t) =E

[ ∫ t

0

q ‖X1(s)−X3(s))‖q−2〈X1(s)−X3(s), b1(X1(s−), α)− b(X3(s−), α)〉ds
]
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=

∫ t

0

q ‖X1(s)−X3(s))‖q−2〈X1(s)−X3(s), b1(X1(s−), α)− b(X3(s−), α)〉ds

≤E
[ ∫ t

0

q ‖X1(s)−X3(s)‖q−1‖cα∇f(X1(s)) + b(X3(s), α)‖ds
]

=q

∫ t

0

E
[
‖X1(s)−X3(s)‖q−1‖cα∇f(X1(s)) + b(X3(s), α)‖

]
ds

≤q
∫ t

0

[
E‖X1(s)−X3(s)‖(q−1)p1

] 1
p1
[
E‖cα∇f(X1(s)) + b(X3(s), α)‖q1

] 1
q1

ds,

where we have used Cauchy-Schwarz inequality in the third line and Holder’s inequality in the last line.

Since (q − 1)p1 < 1 by Assumption H4, using Lemma S11 twice, we have:(
E‖X1(s)−X3(s)‖(q−1)p1

) 1
p1 ≤

(
E‖X1(s)|(q−1)p1 + E‖X3(s)‖(q−1)p1

) 1
p1

≤
[
E
(
‖X1(s)‖(q−1)p1

)] 1
p1

+
[
E
(
‖X3(s)‖(q−1)p1

)] 1
p1

Then, by applying Lemma S4 and Lemma S5 we obtain:(
E‖X1(s)−X3(s)‖(q−1)p1

) 1
p1 ≤

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))q−1

.

Now, consider the following quantity[
E‖cα∇f(X1(s)) + b(X3(s), α)‖q1

] 1
q1 ≤

[
E
(
‖cα∇f(X1(s))− cα∇f(X3(s))‖+ ‖cα∇f(X3(s)) + b(X3(s), α)‖

)q1] 1
q1

≤
[
E
(
M‖X1(s)−X3(s)‖γ + L

)q1] 1
q1

≤
[
E
(
M‖X1(s)‖γ +M‖X3(s)‖γ + L

)q1] 1
q1

≤
[
E
(
Mq1‖X1(s)‖γq1

)] 1
q1

+
[
E
(
Mq1‖X3(s)‖γq1

)] 1
q1

+ L,

where we have used Assumption H2, Assumption H6, Lemma S11 and Minkowski’s inequality. By Lemma S4 and
Lemma S5, we have[

E‖cα∇f(X1(s)) + b(X3(s), α)‖q1
] 1
q1 ≤M

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ

+M
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))γ

+ L.

By combining the above inequalities, we get

E
[ ∫ t

0

q ‖X1(s)−X3(s))‖q−2〈X1(s)−X3(s), b1(X1(s−), α)− b(X3(s−), α)〉ds
]

≤q
∫ t

0

((
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))q−1)(

M
(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ

+M
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))γ

+ L
)

ds

=q

∫ t

0

(
M(cq−1 + cq−1

b )(cγ + cγb )
(
s
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+ L(cq−1 + cq−1
b )

(
s
( d

β1/α
+ 1
)

+ 1
)q−1)

ds

≤qt
(
M(cq−1 + cq−1

b )(cγ + cγb )
(
t
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+ L(cq−1 + cq−1
b )

(
t
( d

β1/α
+ 1
)

+ 1
)q−1)

.

The final conclusion follows from this inequality.
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S7.1. Proof of Corollary 3

Proof. First, we replace t by kη. Then, by following the same lines of the proof of Corollary 1, we get

Wq
q (µ1t, µ3t) ≤C(kq+γη + kq+γηqβ−

q−1
α dq−1+γ).

By assumption H4, q − 1 < 1/p1 and γ < 1/q1. It implies that dq−1+γ < d1/p1+1/q1 = d. Hence, we have

Wq
q (µ1t, µ3t) ≤C(kq+γη + kq+γηqβ−

q−1
α d).

S7.2. Proof of Corollary 4

Proof. By Lemma 2, Lemma S4 and Lemma S5, we have

cα|E[f(X1(t))]− E[f(X3(t))]| ≤
(
M
(
E‖X1(t)‖γp

) 1
p +M

(
E‖X3(t)‖γp

) 1
p +B

)
Wq(µ1t, µ3t)

≤
(
M
(
c
(
t
( d

β1/α
+ 1
)

+ 1
))γ

+M
(
cb

(
t
( d

β1/α
+ 1
)

+ 1
))γ

+B
)
Wq(µ1t, µ3t).

Then by Theorem 4, we have

cα|E[f(X1(t))]− E[f(X3(t))]|

≤
(
M
(
c
(
t
( d

β1/α
+ 1
)

+ 1
))γ

+M
(
cb

(
t
( d

β1/α
+ 1
)

+ 1
))γ

+B
)(

qt
(
M(cq−1 + cq−1

b )(cγ + cγb )

(
t
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+ L(cq−1 + cq−1
b )

(
t
( d

β1/α
+ 1
)

+ 1
)q−1)) 1

q

.

Applying Lemma S11 twice, we get

cα|E[f(X1(t))]−E[f(X3(t))]|

≤
(
M(cγ + cγb )

( tγdγ
βγ/α

+ tγ + 1
)

+B
)(

(qt)1/q
(
M1/q(cq−1 + cq−1

b )1/q(cγ + cγb )1/q

( td

β1/α
+ t+ 1

)(q−1+γ)/q

+ L1/q(cq−1 + cq−1
b )1/q

( td

β1/α
+ t+ 1

)(q−1)/q))

≤
(
M(cγ + cγb )

( tγdγ
βγ/α

+ tγ + 1
)

+B
)(

(qt)1/q
(
M1/q(cq−1 + cq−1

b )1/q(cγ + cγb )1/q
( (td)(q−1+γ)/q

β(q−1+γ)/(qα)

+ t(q−1+γ)/q + 1
)

+ L1/q(cq−1 + cq−1
b )1/q

( (td)(q−1)/q

β(q−1)/(qα)
+ t(q−1)/q + 1

)))
.

Now, by replacing t = kη we find that, among the terms containing β, the largest power of d, the largest power of k and the
smallest power of η are γ + q−1+γ

q , γ + γ+q
q and γ + 1

q , respectively. For the smallest power of β−1, we need to compare
the following quantities: γ/α, (q − 1 + γ)/(qα) and (q − 1)/(qα).

It is obvious that (q − 1 + γ)/(qα) > (q − 1)/(qα). Next, from the relation γ < 1/p = (q − 1)/q, we have γ/α <
(q − 1)/(qα). Thus, the smallest power of β−1 is γ/α. Hence, we have the following bound:

cα|E[f(X1(t))]− E[f(X3(t))]| ≤C
(
kγ+ γ+q

q ηγ+ 1
q β−

γ
α dγ+ q−1+γ

q + kγ+ γ+q
q η

1
q

)
,
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for some constant C > 0. For the power of d, using that γ < 1/p, q − 1 < 1/p1 and γ < 1/q1 we have

γ +
q − 1 + γ

q
≤1/p+

1/p1 + 1/q1

q

=1/p+ 1/q

=1.

Finally, we have

cα|E[f(X1(t))]− E[f(X3(t))]| ≤C
(
kγ+ γ+q

q ηγ+ 1
q β−

γ
α d+ kγ+ γ+q

q η
1
q

)
.

S8. Proof of Lemma 4
Proof. By Lemma 2, we have

cα|E[f(X3(t))]− E[f(Ŵ )]| ≤
(
M
(
E‖X3(t)‖γp

) 1
p +M

(
E‖Ŵ‖γp

) 1
p +B

)
Wq(µ3t, π).

Assumption H7 says that E‖Ŵ‖γp is bounded by a constant depending on b,m and β. In addition, by Proposition 1,
limt→∞Wγp(µ3t, π) = 0, and by Theorem 7.12 in (Villani, 2003), it follows that

lim
t→∞

E‖X3(t)‖γp = E‖Ŵ‖γp.

Thus, E‖X3(t)‖γp is bounded by a constant independent of t. Finally, since q < α, by Proposition 1 again,Wq(µ3t, π) ≤
Cβe−λ∗t/β . Hence, using the bound in Assumption H7, there exists constant C such that

|E[f(X3(t))]− E[f(Ŵ )]| ≤ Cβ b+ d/β

m
exp(−λ∗β−1t).

S9. Proof of Lemma 5
Proof. The proof is adapted from (Raginsky et al., 2017), Section 3.5. First, we have the decomposition:

E[f(Ŵ )] =

∫
Rd
f(w)

exp(−βf(w))∫
Rd exp(−βf(v))dv

dw

=
1

β

(
−
∫
Rd

exp(−βf(w))∫
Rd exp(−βf(v))dv

log
exp(−βf(w))∫

Rd exp(−βf(v))dv
dw − log

∫
Rd

exp(−βf(v))dv
)
.

The first term in the parentheses is the differential entropy of the probability density of Ŵ , which has a finite second moment
(due to Assumption H7). Hence, it is upper-bounded by the differential entropy of a Gaussian density with the same second
moment:

−
∫
Rd

exp(−βf(w))∫
Rd exp(−βf(v))dv

log
exp(−βf(w))∫

Rd exp(−βf(v))dv
dw ≤ d

2
log
(2πe(b+ d/β)

dm

)
.

By Lemma S3, we have

− log

∫
Rd

exp(−βf(w))dw ≤ βf(w∗) +
β−γMc−1

α

1 + γ
− log

( πd/2β−d

Γ(d/2 + 1)

)
.
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Then, it implies that

E[f(Ŵ )] ≤dβ
−1

2
log
(2πe(b+ d/β)

dm

)
+ f(w∗) +

β−γ−1Mc−1
α

1 + γ
− β−1 log

( πd/2β−d

Γ(d/2 + 1)

)
=f(w∗) +

β−γ−1Mc−1
α

1 + γ
+ β−1 log

( (2e(b+ d/β))d/2Γ(d/2 + 1)βd

(dm)d/2

)
,

which leads to desired result.

S10. Proof of Corollary 5
Proof. By triangular inequality, we have

Wq(µ2t, π) ≤ Wq(µ2t, µ1t) +Wq(µ1t, µ3t) +Wq(µ3t, π).

Then, using Corollary 1, Corollary 3 and Proposition 1, we get

Wq(µ2t, π) ≤C
(

(k2η + k2η1+γ/αβ−γ(q−1)/αd)1/q + (kq+γη + kq+γηqβ−(q−1)/αd)1/q + βe−λ∗kη/β
)

≤C
(
k2/qη1/q + k2/qη1/q+γ/(qα)β−γ(q−1)/(qα)d1/q + k1+γ/qη1/q + k1+γ/qηβ−(q−1)/(qα)d1/q

+ βe−λ∗kη/β
)
,

where, we have used Lemma S11 for the second inequality. Then, similar to the proof of Corollary 1, we obtain

Wq(µ2t, π) ≤C
(
kmax{2,q+γ}/qη1/q + kmax{2,q+γ}/qη1/q+γ/(qα)β−γ(q−1)/(qα)d1/q + βe−λ∗kη/β

)
.

S11. Proof of Theorem 5
Proof. Since each function x 7→ f (i)(x) satisfies assumptions H1-H7, it is easy to check that fk also satisfies these
assumptions (with the same constants and the same parameters) for all k. Then by repeating exactly the same lines as in the
proof of Lemma S7, we obtain the same estimates for the moments of X2. Now by following the same steps as in the proof
of Theorem S1, we first have

Wq
q (µ1t, µ2t) ≤q

k−1∑
j=0

∫ (j+1)η

jη

[
E‖X1(s)−X2(s)‖(q−1)p1

] 1
p1
[
E‖cα(∇f(X1(s))−∇fk(X2(jη)))‖q1

] 1
q1

ds,

then(
E‖X1(s)−X2(s)‖(q−1)p1

) 1
p1

≤c
1
p1 + (E‖X2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖X2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d

+ (j + 1)
1
p1

((
cη
( d

β1/α

)) 1
p1

+ (cη)
1
p1 + (2η(b+m))

(q−1)
2 + 2

(q−1)
2 (ηB)(q−1) +

( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d

+ ηq−1Mq−1
(

(2η(b+m))
(q−1)γ

2 + 2
(q−1)γ

2 (ηB)(q−1)γ +
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
=Q1(η) + (j + 1)

1
p1 P1(η),

where P1(η) and Q1(η) are defined in Theorem S1. Now, by Minkowski’s inequality, we have[
E‖cα(∇f(X1(s))−∇fk(X2(jη)))‖q1

] 1
q1

=
[
E‖cα(∇f(X1(s))−∇f(X2(jη)) +∇f(X2(jη))
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−∇fk(X2(jη)))‖q1
] 1
q1

≤
[
E‖cα(∇f(X1(s))−∇f(X2(jη)))‖q1

] 1
q1

+
[
E‖cα(∇f(X2(jη))

−∇fk(X2(jη)))‖q1
] 1
q1
.

As in the proof of Theorem S1, the following inequality holds:[
E‖cα∇f(X1(s))− cα∇f(X2(jη))‖q1

] 1
q1 ≤M(E‖X2(0)‖γq1)

1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
=Q2 + (j + 1)

1
q1 P2(η),

where P2(η) and Q2 are defined in Theorem S1. Using the additional assumption, Lemma S7, and Lemma S11, we get[
E‖cα(∇f(X2(jη))−∇fk(X2(jη)))‖q1

] 1
q1 ≤δ

[
E
(
Mq1‖X2(jη)‖γq1

)] 1
q1

≤δ
[
Mq1(E‖X2(0)‖γq1) +Mq1j

(
(2η(b+m))

γq1
2 + 2

γq1
2 (ηB)γq1

+
( η
β

) γq1
α

lα,γq1,d

)] 1
q1

≤δM(E‖X2(0)‖γq1)
1
q1 + δM(j + 1)

1
q1

(
(2η(b+m))

γ
2 + 2

γ
2 (ηB)γ

+
( η
β

) γ
α

l
1
q1

α,γq1,d

)
.

By combining the two above inequalities, we obtain[
E‖cα∇f(X1(s))− cα∇f(X2(jη))‖q1

] 1
q1 ≤(1 + δ)M(E‖X2(0)‖γq1)

1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (1 + δ)(2η(b+m))

γ
2 + (1 + δ)2

γ
2 (ηB)γ

+ (1 + δ)
( η
β

) γ
α

l
1
q1

α,γq1,d

)
=Q′2 + (j + 1)

1
q1 P ′2(η).

Finally, we have

Wq
q (µ1t, µ2t) ≤ qη

(
k2P1(η)P ′2(η) + k1+1/p1P1(η)Q′2 + k1+1/q1P ′2(η)Q1(η) + kQ1(η)Q′2

)
.

By considering the additional term δ, we arrive at the following bound:

Wq
q (µ1t, µ2t) ≤ C(1 + δ)(k2η + k2η1+γ/αβ−γ(q−1)/αd).

S12. Proof of Corollary 6
Proof. By Lemma 2,

cα
∣∣E[f(X1(kη))]− E[f(X2(kη))]

∣∣ ≤ (M(EP‖X1(kη)‖γp
) 1
p

+M
(
EP‖X2(kη)‖γp

) 1
p

+B
)
Wq(µ1t, µ2t).

Then, by following the same proof as in Corollary S2, Corollary 1 and using Theorem 5, we get

cα
∣∣E[f(X1(kη))]− E[f(X2(kη))]

∣∣ ≤C(1 + δ)
(
k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d

)
.
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S13. Technical Results
Corollary S2. Along with P1(η), P2(η), Q1(η), Q2 in Lemma S1, we define, in addition, the following quantities:

P3(η) ,M
((
cη
( d

β1/α

)) 1
p

+ (cη)
1
p + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)
Q3 ,M(E‖X2(0)‖γp)

1
p +Mc

1
p +B.

For 0 < η < m
M2 , we have the following bound:

cα
∣∣E[f(X1(kη))]−E[f(X2(kη))]

∣∣
≤(qη)

1
q

(
k1+ 1

q (P1(η)P2(η))
1
qP3(η) + k1+ 1

qp1 (P1(η)Q2)
1
qP3(η) + k1+ 1

qq1 (P2(η)Q1(η))
1
qP3(η)

+ k(Q1(η)Q2)
1
qP3(η) + k

2
q (P1(η)P2(η))

1
qQ3 + k

1
q+ 1

qp1 (P1(η)Q2)
1
qQ3

+ k
1
q+ 1

qq1 (P2(η)Q1(η))
1
qQ3 + k

1
q (Q1(η)Q2)

1
qQ3

)
.

Proof. By Lemma 2,

cα
∣∣E[f(X1(kη))]− E[f(X2(kη))]

∣∣ ≤ (M(EP‖X1(kη)‖γp
) 1
p

+M
(
EP‖X2(kη)‖γp

) 1
p

+B
)
Wq(µ1t, µ2t).

Using Lemma S4 and Lemma S8, we have(
M
(
EP‖X1(kη)‖γp

) 1
p

+M
(
EP‖X2(kη)‖γp

) 1
p

+B
)
≤M

(
c
(
kη
( d

β1/α
+ 1
)

+ 1
))γ

+M
[
(E‖X2(0)‖γp)

+ k
(

(2η(b+m))
γp
2 + 2

γp
2 (ηB)γp +

( η
β

) γp
α

lα,γp,d

)] 1
p

+B.

By using Lemma S11, we obtain(
M
(
EP‖X1(kη)‖γp

) 1
p

+M
(
EP‖X2(kη)‖γp

) 1
p

+B
)
≤M

(
c
(
kη
( d

β1/α
+ 1
)

+ 1
))γ

+M(E‖X2(0)‖γp)
1
p

+Mk
1
p

(
(2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)
+B.

We note that γ < 1
p . Hence,

(
c
(
kη
( d

β1/α
+ 1
)

+ 1
))γ
≤
(
c
(
kη
( d

β1/α
+ 1
)

+ 1
)) 1

p

≤k
1
p

(
cη
( d

β1/α
+ 1
)) 1

p

+ c
1
p ,

where the last inequality is an application of Lemma S11. By replacing this inequality into the previous one and rearranging
the terms, we have

(
M
(
EP‖X1(kη)‖γp

) 1
p

+M
(
EP‖X2(kη)‖γp

) 1
p

+B
)
≤M(E‖X2(0)‖γp)

1
p +Mc

1
p +B +Mk

1
p

((
cη
( d

β1/α
+ 1
)) 1

p

+ (2η(b+m))
γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)



Non-Asymptotic Analysis of FLMC for Non-Convex Optimization

≤M(E‖X2(0)‖γp)
1
p +Mc

1
p +B +Mk

1
p

((
cη
( d

β1/α

)) 1
p

+ (cη)
1
p + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)
=Q3 + k

1
pP3(η).

Here, we have used Lemma S11 in the last inequality. Next, by Lemma S1 and Lemma S11,

Wq(µ1t, µ2t) ≤(qη)
1
q

(
k2P1(η)P2(η) + k1+1/p1P1(η)Q2 + k1+1/q1P2(η)Q1(η) + kQ1(η)Q2

) 1
q

≤(qη)
1
q

(
k

2
q (P1(η)P2(η))

1
q + k

1
q+ 1

qp1 (P1(η)Q2)
1
q + k

1
q+ 1

qq1 (P2(η)Q1(η))
1
q + k

1
q (Q1(η)Q2)

1
q

)
.

By combining the above two inequalities, we get

cα
∣∣E[f(X1(kη))]− E[f(X2(kη))]

∣∣
≤(qη)

1
q

(
Q3 + k

1
pP3(η)

)(
k

2
q (P1(η)P2(η))

1
q + k

1
q+ 1

qp1 (P1(η)Q2)
1
q + k

1
q+ 1

qq1 (P2(η)Q1(η))
1
q + k

1
q (Q1(η)Q2)

1
q

)
=(qη)

1
q

(
k1+ 1

q (P1(η)P2(η))
1
qP3(η) + k1+ 1

qp1 (P1(η)Q2)
1
qP3(η) + k1+ 1

qq1 (P2(η)Q1(η))
1
qP3(η)

+ k(Q1(η)Q2)
1
qP3(η) + k

2
q (P1(η)P2(η))

1
qQ3 + k

1
q+ 1

qp1 (P1(η)Q2)
1
qQ3 + k

1
q+ 1

qq1 (P2(η)Q1(η))
1
qQ3

+ k
1
q (Q1(η)Q2)

1
qQ3

)
.

The following lemma is an extension of Lemma 1.2.3 in (Nesterov, 2013) to functions with Hölder continuous gradients.

Lemma S2. Under Assumption H2, the following inequality holds for any x, y ∈ Rd:

cα|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ M

1 + γ
‖x− y‖1+γ .

Proof. Let g(t) , cαf(y + t(x − y)). Then, g′(t) = cα〈∇f(y + t(x − y)), x − y〉 and
∫ 1

0
g′(t)dt = g(1) − g(0) =

cα(f(x)− f(y)). We have

cα|f(x)− f(y)− 〈∇f(y), x− y〉| =
∣∣∣ ∫ 1

0

g′(t)dt− cα〈∇f(y), x− y〉
∣∣∣

=
∣∣∣ ∫ 1

0

cα〈∇f(y + t(x− y)), x− y〉dt− cα〈∇f(y), x− y〉
∣∣∣

=
∣∣∣ ∫ 1

0

cα〈∇f(y + t(x− y))−∇f(y), x− y〉dt
∣∣∣.

By Cauchy-Schwarz inequality and Assumption H2, we have

cα|f(x)− f(y)− 〈∇f(y), x− y〉| ≤
∫ 1

0

cα‖∇f(y + t(x− y))−∇f(y)‖‖x− y‖dt

≤
∫ 1

0

Mtγ‖x− y‖γ‖x− y‖dt

=
M

1 + γ
‖x− y‖1+γ .
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Lemma S3. The normalized factor of π is bounded below, i. e.,

log

∫
Rd

exp(−βf(w))dw ≥ −βf(w∗)− β−γMc−1
α

1 + γ
+ log

( πd/2β−d

Γ(d/2 + 1)

)
.

Proof. We start by writing:

log

∫
Rd

exp(−βf(w))dw =− βf(w∗) + log

∫
Rd

exp
(
− β(f(w)− f(w∗))

)
dw

≥− βf(w∗) + log

∫
Rd

exp
(
− βMc−1

α

1 + γ
‖w − w∗‖1+γ

)
dw.

Here, we used Lemma S2, with ∇f(w∗) = 0. For the second term on the right hand side, we have∫
Rd

exp
(
− βMc−1

α

1 + γ
‖w − w∗‖1+γ

)
dw =

∫
‖w‖≤β−1

exp
(
− βMc−1

α

1 + γ
‖w‖1+γ

)
dw

+

∫
‖w‖≥β−1

exp
(
− βMc−1

α

1 + γ
‖w‖1+γ

)
dw

≥
∫
‖w‖≤β−1

exp
(
− βMc−1

α

1 + γ
β−1−γ

)
dw + 0

= exp
(
− β−γMc−1

α

1 + γ

)∫
‖w‖≤β−1

1dw

= exp
(
− β−γMc−1

α

1 + γ

) πd/2β−d

Γ(d/2 + 1)
,

where, Γ denotes the Gamma function and π denotes Archimedes’ constant (here, it is not the invariant distribution). Hence,

log

∫
Rd

exp
(
− βMc−1

α

1 + γ
‖w − w∗‖1+γ

)
dw ≥− β−γMc−1

α

1 + γ
+ log

( πd/2β−d

Γ(d/2 + 1)

)
.

By combining the above inequalities, we have the desired result.

Lemma S4. For λ ∈ (0, 1), there exists a constant c depending on m, b, α, such that

E
(
‖X1(t)‖λ

) 1
λ ≤ c

(
t(dβ−1/α + 1) + 1

)
, ∀t > 0, β ≥ 1, 1 < α < 2.

Proof. We follow exactly the same proof as Lemma 7.1 in (Xie & Zhang, 2017), with some modifications. Let h(x) ,
(1 + ‖x‖2)1/2. By Itô’s formula, we have dh(X1(t)) =(
〈b1(X1(t)),∇h(X1(t))〉+

∫
Rd

(
h(X1(t) + β−1/αx)− h(X1(t))− I‖x‖<1〈β−1/αx,∇h(X1(t))〉

)
ν(dx)

)
dt+ dM(t),

(S11)

where M(t) is a local martingale. Noticing that ∂ih(x) = xi(1 + ‖x‖2)−1/2/2 and using Assumption H3, we have

〈b1(x),∇h(x)〉 =〈b1(x), x〉(1 + ‖x‖2)−1/2/2

≤(−m‖x‖1+γ + b)(1 + ‖x‖2)−1/2/2

=(−m(‖x‖1+γ + 1) +m+ b)(1 + ‖x‖2)−1/2/2.

Since (‖x‖2 + 1)(1+γ)/2 ≤ (‖x‖1+γ + 1) by Lemma S11, it follows that

〈b1(x),∇h(x)〉 ≤(−m(‖x‖2 + 1)(1+γ)/2 +m+ b)(1 + ‖x‖2)−1/2/2
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=(−m(‖x‖2 + 1)γ/2 + (m+ b)(1 + ‖x‖2)−1/2)/2

≤(−m(‖x‖2 + 1)γ/2 +m+ b)/2

=(−mh(x)γ +m+ b)/2.

On the other hand, observing that

|h(x+ y)− h(x)| ≤ ‖y‖
∫ 1

0

‖∇h(x+ sy)‖ds ≤ ‖y‖/2,

and

h(x+ y)− h(x)− 〈y,∇h(x)〉 ≤ ‖y‖2/2,

we have∫
Rd

(
h(X1(t) + x)− h(X1(t))− I‖x‖<1〈x,∇h(X1(t))〉

)
ν(dx) ≤ 1

2β2/α

∫
‖x‖<1

‖x‖2ν(dx) +
1

2β1/α

∫
‖x‖≥1

‖x‖ν(dx)

≤C d

β1/α
,

where the last inequality is due to Lemma S10. By integrating (S11) and combining the above inequalities, we have

h(X1(t))− h(X1(0)) ≤
∫ t

0

(
(−mh(X1(s))γ +m+ b)/2 + C

d

β1/α

)
ds+M(t)

≤
∫ t

0

(
(m+ b)/2 + C

d

β1/α

)
ds+M(t).

By Lemma 3.8 in (Xie & Zhang, 2017), for λ ∈ (0, 1),

E
(

sup
s∈[0,t]

h(X1(s))λ
)
≤ cλ

(
Eh(X1(0)) + ((m+ b)/2 + C

d

β1/α
)t
)λ
.

This leads to the conclusion since h(x) ≥ ‖x‖.

Lemma S5. For λ ∈ (0, 1), there exists a constant cb depending on L,m, b, α, such that

E
(
‖X3(t)‖λ

) 1
λ ≤ cb

(
t(dβ−1/α + 1) + 1

)
, ∀t > 0, β ≥ 1, 1 < α < 2.

Proof. The proof is similar to the proof of Lemma S4.

Lemma S6. Let X be a scalar symmetric α-stable distribution with α < 2, i. e. X ∼ SαS(1) (see Definition 2), then, for
−1 < λ < α,

E(|X|λ) =
2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)
.

Proof. The proof follows from Theorem 3 in (Shanbhag & Sreehari, 1977) (see also equation (13) in (Matsui et al.,
2016)).

Corollary S3. The quantity lα,λ,d , E‖Lα(1)‖λ is finite for 0 ≤ λ < α. For details, we have

(a) If 1 < λ < α, then

E‖Lα(1)‖λ ≤ dλ
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.

(b) If 0 ≤ λ ≤ 1, then

E‖Lα(1)‖λ ≤ d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.
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Proof. Since Lα(1), by definition, is a d-dimensional vector whose components are i.i.d symmetric α-stable distributions
Lαi (1) for i ∈ {1, . . . , d}, we have

‖Lα(1)‖ ≤
d∑
i=1

|Lαi (1)|

(a) 1 < λ < α. By using Minkowski’s inequality and Lemma S6,

(E‖Lα(1)‖λ)1/λ ≤
(
E
[( d∑

i=1

|Lαi (1)|
)λ])1/λ

≤
d∑
i=1

(E|Lαi (1)|λ)1/λ

=d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)1/λ

.

Thus, we have

E‖Lα(1)‖λ ≤ dλ
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.

(b) 0 ≤ λ ≤ 1. By using Lemma S11 and Lemma S6 ,

E‖Lα(1)‖λ ≤E
[( d∑

i=1

|Lαi (1)|
)λ]

≤
d∑
i=1

E|Lαi (1)|λ

=d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.

Lemma S7. Let us denote the value E‖Lα(1)‖λ by lα,λ,d < ∞. For 0 < η ≤ m
M2 and s ∈ [jη, (j + 1)η), we have the

following estimates:

(a) If 1 < λ < α and 1 < γλ < α then

E‖X2(jη)‖λ ≤ Bj,λ ,
((

E‖X2(0)‖λ
) 1
λ

+ j
(

(2η(b+m))
1
2 + 2

1
2 ηB +

( η
β

) 1
α

l
1
λ

α,λ,d

))λ
,

E‖X2(s)‖λ ≤
(
B

1
λ

j,λ + (s− jη)
(
MB

1
λ

j,γλ +B
)

+
(s− jη

β

) 1
α

l
1
λ

α,λ,d

)λ
.

(b) If 0 ≤ λ ≤ 1 then

E‖X2(jη)‖λ ≤ B̄j,λ , E‖X2(0)‖λ + j
(

(2η(b+m))
λ
2 + 2

λ
2 (ηB)λ +

( η
β

) λ
α

lα,λ,d

)
,

E‖X2(s)‖λ ≤ B̄j,λ + (s− jη)λ
(
MλB̄j,γλ +Bλ

)
+
(s− jη

β

) λ
α

lα,λ,d.

(c) If 1 < λ < α and 0 ≤ γλ ≤ 1 then

E‖X2(jη)‖λ ≤ Bj,λ,

E‖X2(s)‖λ ≤
(
B

1
λ

j,λ + (s− jη)
(
MB̄

1
λ

j,γλ +B
)

+
(s− jη

β

) 1
α

l
1
λ

α,λ,d

)λ
.
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Proof. Starting from

X2((j + 1)η) = X2(jη)− ηcα∇f(X2(jη)) +
( η
β

) 1
α

Lα(1),

we have either (by Minkowski, if λ > 1)(
E‖X2((j + 1)η)‖λ

) 1
λ ≤

(
E‖X2(jη)− ηcα∇f(X2(jη))‖λ

) 1
λ

+
( η
β

) 1
α
(
E‖Lα(1)‖λ

) 1
λ

, (S12)

or (by Lemma S11, if 0 ≤ λ ≤ 1)

E‖X2((j + 1)η)‖λ ≤ E‖X2(jη)− ηcα∇f(X2(jη))‖λ +
( η
β

) λ
αE‖Lα(1)‖λ. (S13)

We have

‖X2(jη)− ηcα∇f(X2(jη))‖λ = ‖X2(jη)− ηcα∇f(X2(jη))‖2×λ2

=
(
‖X2(jη)‖2 − 2ηcα〈X2(jη),∇f(X2(jη)〉+ η2‖cα∇f(X2(jη)‖2

)λ
2

≤
(
‖X2(jη)‖2 − 2η(m‖X2(jη)‖1+γ − b) + η2(2M2‖X2(jη)‖2γ + 2B2)

)λ
2

, (S14)

where we have used assumption H3 and Lemma S8. For 0 < η ≤ m
M2 ,

2ηm(‖X2(jη)‖1+γ + 1) ≥ 2η2M2‖X2(jη)‖2γ . (since 1 + γ > 2γ and ηm > η2M2)

Using this inequality we have

‖X2(jη)− ηcα∇f(X2(jη))‖λ ≤
(
‖X2(jη)‖2 + 2η(b+m) + 2η2B2

)λ
2

≤ ‖X2(jη)‖λ + (2η(b+m))
λ
2 + 2

λ
2 (ηB)λ. (by Lemma S11) (S15)

Consider the case where λ > 1. By (S12) and (S15),(
E‖X2((j + 1)η)‖λ

) 1
λ ≤

(
E‖X2(jη)‖λ + (2η(b+m))

λ
2 + 2

λ
2 (ηB)λ

) 1
λ

+
( η
β

) 1
α
(
E‖Lα(1)‖λ

) 1
λ

≤
(
E‖X2(jη)‖λ

) 1
λ

+ (2η(b+m))
1
2 + 2

1
2 ηB +

( η
β

) 1
α

l
1
λ

α,λ,d (by Lemma S11)

≤
(
E‖X2(0)‖λ

) 1
λ

+ (j + 1)
(

(2η(b+m))
1
2 + 2

1
2 ηB +

( η
β

) 1
α

l
1
λ

α,λ,d

)
.

For the case where 0 ≤ λ ≤ 1, by (S13) and (S15),

E‖X2((j + 1)η)‖λ ≤ E‖X2(jη)‖λ + (2η(b+m))
λ
2 + 2

λ
2 (ηB)λ +

( η
β

) λ
α

lα,λ,d

≤ E‖X2(0)‖λ + (j + 1)
(

(2η(b+m))
λ
2 + 2

λ
2 (ηB)λ +

( η
β

) λ
α

lα,λ,d

)
.

Now, from the identification, for s ∈ [jη, (j + 1)η),

X2(s) = X2(jη) + (s− jη)cα∇f(X2(jη)) +
(s− jη

β

) 1
α

Lα(1),
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we have

‖X2(s)‖ ≤ ‖X2(jη)‖+ (s− jη)cα‖∇f(X2(jη))‖+
(s− jη

β

) 1
α ‖Lα(1)‖

≤ ‖X2(jη)‖+ (s− jη)(M‖X2(jη)‖γ +B) +
(s− jη

β

) 1
α ‖Lα(1)‖.

For λ > 1,(
E‖X2(s)‖λ

) 1
λ ≤

(
E‖X2(jη)‖λ

) 1
λ

+ (s− jη)
(
M
(
E‖X2(jη)‖γλ

) 1
λ

+B
)

+
(s− jη

β

) 1
α

l
1
λ

α,λ,d.

For λ ≤ 1,

E‖X2(s)‖λ ≤ E‖X2(jη)‖λ + (s− jη)λ
(
MλE‖X2(jη)‖γλ +Bλ

)
+
(s− jη

β

) λ
α

lα,λ,d.

By replacing the estimate of E‖X2(jη)‖λ, we obtain the desired result.

Lemma S8. Under assumptions H1 and H2 we have

cα‖∇f(w)‖ ≤M‖w‖γ +B, ∀w ∈ Rd.

Proof. By assumption H2 we have

cα‖∇f(w)−∇f(0)‖ ≤M‖w − 0‖γ .

Since cα‖∇f(0)‖ ≤ B by assumption H1, the conclusion follows.

Lemma S9. For the function b defined in Lemma 1, we have, for w ∈ Rd,

‖b(w)‖ ≤M‖w‖γ + (B + L),

〈w, b(w)〉 ≤ (L−m)‖w‖1+γ + (b+ L).

Proof. From assumption H6, it implies that

‖b(w)‖ ≤ cα‖∇f(w)‖+ L.

Then, by Lemma S8,

‖b(w)‖ ≤M‖w‖γ + (B + L).

Next, by Cauchy-Schwarz inequality and assumption H6, we have

〈w, b(w) + cα∇f(w)〉 ≤‖w‖L.

Then, by assumption H3,

〈w, b(w)〉 ≤ − cα〈w,∇f(w)〉+ ‖w‖L
≤−m‖w‖1+γ + b+ ‖w‖L
≤−m‖w‖1+γ + b+ (‖w‖1+γ + 1)L

=(L−m)‖w‖1+γ + (b+ L).

Here, we have used the inequality ‖w‖ ≤ ‖w‖1+γ + 1.
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Lemma S10. Let ν be the Lévy measure of a d-dimensional Lévy process Lα whose components are independent scalar
symmetric α-stable Lévy processes Lα1 , . . . , L

α
d . Then there exists a constant C > 0 such that the following inequality holds

with β ≥ 1 and 2 > α > 1:

1

β2/α

∫
‖x‖<1

‖x‖2ν(dx) +
1

β1/α

∫
‖x‖≥1

‖x‖ν(dx) ≤ C d

β1/α
.

Proof. Using Lemma 4.1 in (Kallsen & Tankov, 2006), we have∫
‖x‖<1

‖x‖2ν(dx) =

d∑
i=1

∫
|xi|<1

|xi|2
1

|xi|1+α
dxi

=

d∑
i=1

2

2− α

=
2d

2− α
.

Similarly, we have ∫
‖x‖≥1

‖x‖ν(dx) =

d∑
i=1

∫
|xi|≥1

|xi|
1

|xi|1+α
dxi

=

d∑
i=1

2

α− 1

=
2d

α− 1
.

Combining these two equalities, we have the desired conclusion.

Lemma S11. For a, b ≥ 0 and 0 ≤ γ ≤ 1, we have the following inequality:

(a+ b)γ ≤ aγ + bγ .

Proof. If a = b = 0, the inequality is trivial. Hence, let us assume that a > b ≥ 0. We have(
1 +

b

a

)γ
≤ 1 + γ

b

a
(by Bernoulli’s inequality)

≤ 1 +
b

a
(since 0 ≤ γ ≤ 1 and

b

a
≥ 0)

≤ 1 +
( b
a

)γ
. (since 0 ≤ γ ≤ 1 and 0 ≤ b

a
≤ 1)

By multiplying both sides by aγ > 0, we have the conclusion.

S14. A Remark on the Global Hölder Condition
We note that the assumption H2 can be weakened to local Hölder continuity by using the localization techniques given in the
proof of Proposition 4.2.2 of (Kunze, 2012). This approach requires rewriting all the expressions which use H2 in our proofs
by using stopping-times in such a way that we can use the local Hölder continuity in the same way of (Kunze, 2012).
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