
Tensor Variable Elimination for Plated Factor Graphs

A. Proofs
A.1. Proof of Theorem 1

Note that while the (() direction would follow from Theo-
rem 4 below, we provide an independent proof that does not
rely on the Exponential Time Hypothesis.

Proof of Theorem 1. ()) Suppose by way of contradiction
that Algorithm 1 has failed. Since L = L0 =

S
{v 2 Vf |

v 2 P (v)} but 8v 2 Vf , P (v) (L, there must be at least
two distinct u,w 2 Vf and two distinct plates a 6= b 2 L
such that a 2 P (u) \ P (w) and b 2 P (w) \ P (u). Letting
v = f with a, b 2 P (v) provides the required graph minor
({u, v, w}, {(u, v), (v, w)} , P).

(() Suppose by way of contradiction that G has such a
graph minor ({u, v, w}, {(u, v), (v, w)} , P). Algorithm 1
must eventually either fail or reach a factor fu in leaf plate
set Lu 3 a where the plate a is PRODUCT-reduced. Simi-
larly at another time, the algorithm must reach a factor fw
in plate set Lw 3 b where the plate b is PRODUCT-reduced.

Consider the provenance of factors fu and fw. Since v
contains a common factor fv in both plates a, b, factors fu
and fw must share fv as a common ancestor. Note that
in Algorithm 1’s search for a next plate set L0 (L, the
plate set is strictly decreasing. Thus if fu and fv share a
common ancestor, then either Lu ✓ Lw or Lu ◆ Lw. But
this contradicts a 2 Lu \ Lw and b 2 Lw \ Lu.

A.2. Proof of Theorem 2

We first define plated junction trees, then prove a crucial
lemma, and finally prove a stronger form of Theorem 2.
Definition 4. A junction tree (or tree decomposition) of
a factor graph (V, F,E) is a tree (VJ , EJ) whose vertices
are subsets of variables V such that: (i) each variable is in
at least one junction node (i.e.

S
VJ = V); (ii) for each

factor f 2 F , there is a junction vertex vJ ◆ {v 2 V |

(v, f) 2 E} containing all of that factor’s variables; and (iii)
each variable v 2 V appears in nodes {vJ 2 VJ | v 2 vJ}
forming a contiguous subtree of EJ .
Definition 5. A plated junction tree of a plated factor
graph (V, F,E, P : V [F ! P(B)) is a plated graph
(VJ , EJ , PJ : VJ ! P(B)) where (VJ , EJ) is a junction
tree, PJ(vJ) =

S
v2vJ

P (v), and (iv) each variable v 2 V
appears in some junction vertex vJ 3 v with exactly the
same plates P (vJ) = P (v).

We extend unrolling from plated factor graphs to plated
junction trees in the obvious way. Note that a plated junction
tree may unroll to a junction graph that is not a tree, since
unrolling may introduce cycles.
Definition 6. The width of a junction tree T = (VJ , EJ)
is width(T) = maxvJ2VJ |vJ | � 1. The treewidth of a

factor graph G is the width of its narrowest junction tree,
treewidth(G) = minT of G width(T).
Lemma A.1. Let G = (V, F, E, P : V [F ! P(B))
be a plated factor graph and W 2 N. If for every plate
size assignment M : B ! N there is a junction tree TM

of unroll(G,M,B) with width(TM) W , then there is a
single plated junction tree T of G such that for every size
assignment M : B ! N, width(unroll(T,M,B)) W .

Proof. By induction on |B| it suffices to show that, splitting
off a single plate B = {b}[B0, if there is a family of plated
junction trees {Tm | m 2 N} satisfying

8m 2 N, 9Tm of unroll(G,M, b), 8M 0 :B0
! N,

width(unroll(Tm,M 0, B0)) W
(1)

then for a single plated junction tree T ,

9T of G, 8M :{b} [B0
! N,

width(unroll(T,M, {b} [B0)) W
(2)

Thus let us assume the hypothesis (1) and prove (2).

Our strategy is to progressively strengthen the hypothesis (1)
by forcing symmetry properties of each Tm using Ramsey-
theory arguments. Eventually we will show that for any m,
there is a plated junction tree Tm satisfying hypothesis (1)
that is the unrolled plated junction tree unroll(T,M, b) for
some plated junction tree T . Choosing m � C, it follows
that T satisfies (2).

First we force Tm to have nodes that are sym-
metric along plate b. Split variables V1 into
plated Vp = {v 2 V1 | b 2 P (v)} and unplated
Vu = {v 2 V1 | b /2 P (v)} sets. For each Su ✓ Vu

and Sp ✓ Vp color all plate indices i 2 {1, . . . ,m} by a
coloring function

C(i) =

(
1 9vJ 2 VJ , vJ \ (Vu [Vp[i]) = Su [Sp[i]

0 otherwise

where we use the shorthand X[i] = {x[i] | x 2 X}. By
choosing m0

� 2m � 1, we can find Tm0 with a subset of
m plate indices all of a single color. Rename these plate
indices to construct a new Tm whose vertices are symmetric
in this sense.

Next for each u, v 2 Vp, color all pairs of plate indices
i < j 2 {1, . . . ,m} by a coloring function

C(i, j) =

(
1 9vJ 2 VJ , {u[i], v[j]} ✓ vJ
0 otherwise

By Ramsey’s theorem (Ramsey, 1930) we can choose a
sufficiently large m0

� R(m,m) such that Tm0 has a subset
of m plates such that all pairs have a single color. Indeed

Tensor Variable Elimination for Plated Factor Graphs

by choosing m �W , we can force the color to be 0, since
the contiguity property (iii) of Definition 4 would require
a single junction tree node to contain at least W vertices,
violating our hypothesis.

At this point we have forced VJ to be symmetric in plate
indices up to duplicates, but duplicates may have been in-
troduced in selecting out m plate indices from a larger set
m0 (e.g. upon removing plate index 4, {x}�{x, y[4]} be-
comes {x}�{x}). We now show that these duplicates can
be removed by merging them into other nodes.

Let u,w be two duplicate nodes in the plated junction tree
Tm, so that PJ(u) = PJ(w). Let u�v�···�w be the path
connecting u,w (with possibly v = w). By the contiguity
property (iii) of Definition 4, v must have at least the vari-
ables of u,w, hence must have at least as deep plate nesting,
i.e. PJ(v) ◆ PJ(u). Replace the edge u�v with a new
edge u�w. No cycles can have been created, since v is more
deeply plated than w. No instances of the forbidden graph
minor can have been created, since the new edge (u, v) lies
in a single plate. Indeed hypothesis 1 is still preserved, and
symmetry of VJ is preserved. Merge u into w. Again the hy-
pothesis and symmetry are preserved. Iterating this merging
process we can force Tm to have no duplicate nodes.

Now since VJ is symmetric in plate b and PJ is defined in
terms of VJ , also PJ must be symmetric in plate b. We next
force EJ to be symmetric along plate b.

For each Su, S0
u ✓ Vu and Sp, S0

p ✓ Vp, color all plate
indices i 2 {1 . . . ,m} by a coloring function

C(i) =

(
1 (Su [Sp[i], S0

u [S0
p[i]) 2 E

0 otherwise

By choosing m0
� 2m� 1, we can find a Tm0 with a subset

of m plate indices with symmetric within-plate-index edges.

For each Su, S0
u ✓ Vu and Sp, S0

p ✓ Vp, color all pairs of
plate indices i < j 2 {1, . . . ,m} by a coloring function

C(i, j) =

(
1 (Su [Sp[i], S0

u [S0
p[j]) 2 E

0 otherwise

By Ramsey’s theorem we can choose a sufficiently large
m0
� R(m,m) such that Tm0 has a subset of m plates such

that all pairs have a single color. Indeed we can force the
color to be 0, since for m � 3 any complete bipartite graph
would create cycles, violating the tree assumption. Hence
there are no between-plate-index edges.

At this point, we can construct a Tm = (VJ , EJ , PJ) that is
symmetric in plate indices and such that EJ never contains
edges between nodes with b-plated variables with different
b indices. Hence Tmax(W,3) can be rolled into a plated
junction tree T that always unrolls to a junction tree. Finally,

since VJ never contains b-plated variables with more than
one b index,

width(unroll(T,M,B)) = width(unroll(T, 1, B))  W

We now prove a strengthening of Theorem 2.

Theorem 4. Let G = (V, F, E, P : V [F ! P(B))
be a plated factor graph with nontrivial variable domain
8v 2 V, |dom(v)| � 2, and M :B ! N be plate sizes. The
following are equivalent:

1. Algorithm 1 succeeds on G.

2. PLATEDSUMPRODUCT(G,M) can be computed with
complexity polynomial in M .

3. The treewidth of G’s unrolled factor graph is (asymp-
totically) independent of plate sizes M .

4. There is a plated junction tree of G that unrolls to a
junction tree for all plate sizes M .

5. There is a plated junction tree of G that has no plated
graph minor ({u, v, w}, {(u, v), (v, w)} , P) where
P (u) = {a}, P (v) = {a, b}, P (w) = {b}, and a 6= b.

6. G has no plated graph minor
({u, v, w}, {(u, v), (v, w)} , P) where P (u) = {a},
P (v) = {a, b}, P (w) = {b}, a 6= b, and u,w both
include variables.

Proof. (1) 2) Algorithm 1 has complexity polynomial in
M , since both SUMPRODUCT and PRODUCT are polyno-
mial in M and the while loop is bounded independently of
M .

(2) 3) Apply (Kwisthout et al., 2010) to the unrolled
factor graph.

(3) 4) Apply Lemma A.1.

(4) 5) Any plated junction tree with plated graph minor in
(5) would unroll to a non-tree, since the minor would induce
cycles when M(a) � 2 and M(b) � 2 (as in Example 3.2).
Hence the plated junction tree of (4) must satisfy (5).

(5) 6) If G has such a plated graph minor, then any
plated junction tree must have the corresponding plated
graph minor.

(6) 1) Apply Theorem 1.

Proof of Theorem 2. Apply Theorem 4 (1() 2).

Tensor Variable Elimination for Plated Factor Graphs

B. Experimental details
B.1. Hidden Markov Models with Autoregressive

Likelihoods

The joint probability (for a single sequence) for the HMM
model is given by

p(x1:T ,y1:T) =
TY

t=1

p(yt|xt)p(xt|xt�1) (3)

where x1:T are the discrete latent variables and y1:T is
the sequence of observations. For all twelve models the
likelihood is given by a Bernoulli distribution factorized
over the 88 distinct notes. The two Factorial HMMs have
two discrete latent variables at each timestep: xt and wt.
They differ in the dependence structure of xt and wt. In
particular for the FHMM the joint probability is given by

p(x1:T ,y1:T) =
TY

t=1

p(yt|xt,wt)p(xt|xt�1)p(wt|wt�1)

(4)
i.e. the dependency structure of the discrete latent variables
factorizes at each timestep, while for the PFHMM (i.e. Par-
tially Factorial HMM) the joint probability is given by

p(x1:T ,y1:T) =
TY

t=1

p(yt|xt,wt)p(xt|xt�1,wt)p(wt|wt�1)

(5)
All models correspond to tractable plated factor graphs (in
the sense used in the main text) and admit efficient maxi-
mum likelihood gradient-based training.

The autoregressive models have the same dependency struc-
ture as in Eqn. 3-5, with the difference that the likelihood
term at each timestep has an additional dependence on yt�1.
For the four arXXX models, this dependence is explicitly
parameterized with a conditional probability table, with the
likelihood for each note p(yt,i|·) depending explicitly on
yt�1,i (but not on yt�1,j for j 6= i). For the four nnXXX
models this dependence is parameterized by a neural net-
work so that p(yt,i|·) depends on the entire vector of notes
yt�1. In detail the computational path of the neural network
is as follows. First, a 1-dimensional convolution with a ker-
nel size of three and Nchannels channels is applied to yt�1 to
produce ct. We then apply separate affine transformations
to the latent variables (either xt or xt and wt) and ct, add
together the resulting hidden representations, and apply a
ReLU non-linearity. A final affine transformation then maps
the hidden units to the 88-dimensional logits space of the
Bernoulli likelihood. We vary Nchannels 2 {2, 4} and fix
the number of hidden units to 50.

We evaluate our models on three of the polyphonic music
datasets considered in Boulanger-Lewandowski et al. (2012),
using the same train/test splits. Each dataset contains at

least 7 hours of polyphonic music; after pre-processing each
dataset consists of O(100 � 1000) sequences, with each
sequence containing O(100 � 1000) timesteps. For each
model we do a grid search over hyperparameters and train
the model to approximate convergence and report test log
likelihoods on the held-out test set (normalized per timestep).
For all models except for the second-order HMMs we vary
the hidden dimension Dh 2 {9, 16, 25, 36}. For the Facto-
rial HMMs Dh is interpreted as the size of the entire latent
space at each timestep so that the dimension of each of the
two discrete latent variables xt and wt at each timestep is
given by

p
Dh. For the second-order HMMs we vary the

hidden dimension Dh 2 {9, 12, 16, 20} so as to limit total
memory usage (which scales as O(D`

h) for an `th-order
HMM).

We use the Adam optimizer with an initial learning rate of
0.03 and default momentum hyperparameters (Kingma &
Ba, 2014); over the course of training we decay the learning
rate geometrically to a final learning rate of 3⇥ 10�5. For
the JSB and Piano datasets we train for up to 300 epochs,
while for the Nottingham dataset we train for up to 200
epochs. We follow (noisy) gradient estimates of the log
likelihood by subsampling the data into mini-batches of
sequences; we use mini-batch sizes of 20, 15, and 30 for
the JSB, Piano, and Nottingham datasets, respectively. We
clamp all probabilities to satisfy p � pmin = 10�12 to avoid
numerical instabilities. In order to better avoid bad local
minima, for each hyperparameter setting we train with 4 (2)
different random number seeds for models without (with)
neural networks in the likelihood, respectively. For each
dataset we then report results for the model with the best
training log likelihood.

yt,i yt+1,i

xt

wt

xt+1

wt+1

··· ···

··· ···

N 88 88

Figure 6. Plate diagram for the PFHMM in Sec. 6.1. The outermost
plate encodes the independence among the N time series, while
the plates at each time step encode the fact that the likelihood
term p(yt|·) decomposes into a product of 88 Bernoulli likelihood
factors, one for each note yt,i.

Tensor Variable Elimination for Plated Factor Graphs

B.2. Hierarchical Mixed Effect Hidden Markov Models

B.2.1. HARBOUR SEAL TRACKING DATASET DETAILS

We downloaded the data from momentuHMM ((McClintock
& Michelot, 2018)), an R package for analyzing animal
movement data with generalized hidden Markov models.
The raw datapoints are in the form of irregularly sampled
time series (datapoints separated by 5-15 minutes on aver-
age) of GPS coordinates and diving activity for each individ-
ual in the colony (10 males and 7 females) over the course
of a single day recorded by lightweight tracking devices
physically attached to each animal by researchers. We used
the momentuHMM harbour seal example20 preprocessing
code (whose functionality is described in detail in section
3.7 of (McClintock & Michelot, 2018)) to independently
convert the raw data for each individual into smoothed, tem-
porally regular time series of step sizes, turn angles, and
diving activity, saving the results and using them for our
population-level analysis.

B.2.2. MODEL DETAILS

yt yt+1

xt xt+1··· ···

✏I✓I

⇡I

✏G

✓G ⇡G

|I||G|

Figure 7. A single state transition in the hierarchical mixed-effect
hidden Markov model used in our experiments in Section 6.2 and
described below. ✓s and ⇡s are learnable parameters. We omit fixed
effects from the diagram as there were none in our experiments.

Our models are special cases of a time-inhomogeneous dis-
crete state space model whose state transition distribution is
specified by a hierarchical generalized linear mixed model
(GLMM). At each timestep t, for each individual trajec-
tory b 2 I in each group a 2 G (male and female in our
experiments), we have

logit(p(x(t)
ab = state i | x(t�1)

ab = state j)) =
�
✏G,a + ✏I,ab + Z|

I,ab�1 + Z|
G,a�2 + Z|

T,abt�3

�
ij

where a, b correspond to plate indices, ✏s are independent
random variables, Zs are covariates, and �s are parameter
vectors. See Fig. 7 for the corresponding plate diagram. The

20
https://git.io/fjc8i

models in our experiments did not include fixed effects as
there were no covariates Z in the harbour seal data, but they
are frequently used in the literature with similar models (see
e.g. (Towner et al., 2016)) so we include them in our general
definition.

The values of the independent random variable ✏I and ✏G
are each sampled from a set of three possible values shared
across the individual and group plates, respectively. That is,
for each individual trajectory b 2 I in each group a 2 G, we
sample single random effect values for an entire trajectory:

◆G,a ⇠ Categorical(⇡G)

✏G,a = ✓G[◆G,a]

◆I,ab ⇠ Categorical(⇡I,a)

✏I,ab = ✓I,a[◆I,ab]

Note that each ✏ is a Dh ⇥Dh matrix, where Dh = 3 is the
number of hidden states per timestep in the HMM.

Observations y(t) are represented as sequences of real-
valued step lengths and turn angles, modelled by zero-
inflated Gamma and von Mises likelihoods respectively.
The seal models also include a third observed variable in-
dicating the amount of diving activity between successive
locations, which we model with a zero-inflated Beta dis-
tribution following (McClintock & Michelot, 2018). We
grouped animals by sex and implemented versions of this
model with (i) no random effects (as a baseline), and with
random effects present at the (ii) group, (iii) individual, or
(iv) group+individual levels.

We chose the Gamma and von Mises likelihoods because
they were the ones most frequently used in other papers
describing the application of similar models to animal move-
ment data, e.g. (Towner et al., 2016); another combination,
used in (McClintock & Michelot, 2018), modelled step
length with a Weibull distribution and turn angle with a
wrapped Cauchy distribution.

Unlike our models, the models in (McClintock et al., 2013;
McClintock & Michelot, 2018) incorporate substantial ad-
ditional prior knowledge in the form of hard constraints
on various parameters and random variables (e.g. a maxi-
mum step length corresponding to the maximum distance a
harbour seal can swim in the interval of a single timestep).

B.2.3. TRAINING DETAILS

We used the Adam optimizer with initial learning rate 0.05
and default momentum hyperparameters (Kingma & Ba,
2014), annealing the learning rate geometrically by a fac-
tor of 0.1 when the training loss stopped decreasing. We
trained the models for 300 epochs with 5 restarts from ran-
dom initializations, using batch gradient descent because
the number of individuals (17) was relatively small. The
number of random effect parameter values was taken from

Tensor Variable Elimination for Plated Factor Graphs

(McClintock & Michelot, 2018) and all other hyperparame-
ters were set by choosing the best values on the model with
no random effects.

B.3. Sentiment Analysis

B.3.1. DATASET DETAILS

Sentences in Sentihood were collected from Yahoo! An-
swers by filtering for answers about neighbourhoods of
London. Specific neighbourhood mentions were replaced
with generic location1 or location2 tokens. We fol-
low the previous work (Saeidi et al., 2016; Ma et al., 2018;
Liu et al., 2018) and restrict training and evaluation to the
4 most common aspects: price, safety, transit-location, and
general.

To give a clearer picture of the task, consider the sentence
“Location1 is more expensive but has a better quality of
life than Location2”, the labels encode that with respect
to Location1 the sentence is negative in aspect price, but
positive in general. Similarly Location2 would have the
opposite sentiments in those two aspects. The remaining
aspects for both locations would have the none sentiment.

We preprocess the text with SpaCy (Honnibal & Montani,
2017) and lowercase all words. We append the reserved
symbols ‘hbosi’ and ‘heosi’ to the start and end of all sen-
tences.

B.3.2. MODEL DETAILS

Our reimplemented LSTM-Final baseline uses a BLSTM
on top of word embeddings. The hidden state of the BLSTM
is initialized with an embedding of the location and aspect.
A projection of the final hidden state is then used to classify
the sentence-level sentiment by applying the softmax trans-
formation. For the CRF-LSTM-Diagmodel, the potentials
of the graphical model are given by:

Gt(zt, l, a,x) = W [zt]
T LSTM(Emb(x),Emb(l, a))[t])

Ft(y, zt, l, a,x) = diag(✓none, ✓pos, ✓neg)[y, zt]
(6)

where W 2 R3⇥D contains a D dimensional vector for
each sentiment, D is the dimensionality of the LSTM, and
the output of the LSTM is of dimension T ⇥D. The LSTM
function takes as input a sequence of word embeddings
as well as an initial hidden state given by embedding the
location and aspect. The Emb function projects the words or
location and aspect into a low-dimensional representation.
The potentials of the CRF-LSTM-LSTM model are given

by:

Gt(zt, a, l,x) = Wa,l[zt]
T LSTM(Emb(x),Emb(l, a))[t])

Ft(y, zt, a, l,x) =

0

@
✓none 0 0
0
0

M t

1

A [y, zt]

(7)
where M t = WT

MLSTM(Emb(x),Emb(a, l))[t] is a matrix
that dictates the interaction between positive/negative word
sentiment and positive/negative sentence sentiment. The
projection WM 2 RD⇥22 where D is the dimensionality
of the LSTM’s output. M t is then reshaped into an 2 ⇥ 2
matrix. The potentials of the CRF-Emb-LSTM model, are
similar:

Gt(zt, a, l,x) = Wa,l[zt]
T Emb(x)[t])

Ft(y, zt, a, l,x) =

0

@
✓none 0 0
0
0

M t

1

A [y, zt]
(8)

where M t is defined above.

B.3.3. TRAINING DETAILS

Since we treat each tuple (x, a, l, y) as a separate example,
we create a class imbalance problem as most sentiments
are none. Thus during training we subsample to ensure
that every batch has an equal number of none, positive,
and negative sentiments. In each epoch we iterate over all
examples from the smallest class, in this case the negative
class, and subsample the rest. In all experiments we use
a batch size of 33 during training. We utilize the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of
0.01 and default momentum parameters. We do not decay
the learning rate during training and select the final model
based on the validation sentiment accuracy at each epoch.
We terminate training after 1000 epochs.

B.3.4. MODEL PARAMETERS

For all models we utilize the GloVe 840B 300D embeddings
(Pennington et al., 2014) to initialize the word embeddings
and do not update the word embeddings during training.
Since the dataset is extremely small, we found that the
word embeddings had a very large impact on performance.
We also use a 2-layer BLSTM with 50 hidden dimensions.
Dropout is used with probability 0.2 after the embeddings
and in the BLSTM.

B.3.5. EVALUATION

The primary evaluation metrics we use for Sentihood are
the sentiment accuracy and the aspect macro-F1 score. We
calculate accuracy over examples with non-‘none’ gold sen-
timent labels. Similarly, we follow Ma et. al. (Ma et al.,
2018) in their calculation of the macro F1 score by pre-

Tensor Variable Elimination for Plated Factor Graphs

dicting the sentiment of all location and aspect pairs for a
given sentence and using the number of correctly predicted
sentiments among the non-none gold sentiments for the pre-
cision and recall. We ignore sentences with no non-none
gold sentiments.

C. Walking through Algorithm 1
C.1. Walking through the intractable Example 3.2

Consider the intractable model Example 3.2, which is the
minimal plated factor graph for which Algorithm 1 fails:

V = {x, y}

F = {fxy}

E = {(x, fxy), (y, fxy)}

P = {(x, {a}), (y, {b}), (fxy, {a, b})}

On the first pass through the while loop, there is a single
choice of leaf and a single connected component

L {a, b}

VL {} = Vc

FL {f} = Fc

EL {} = Ec

At this point no variable can be eliminated since Vc = ;:

f SUMPRODUCT({fxy}, ;) = fxy

Vf {x, y}

Since Vf is not empty, we search for a next plate set but find

L0
 P (x) [P (y) = {a} [{b} = L

Now since L0 = L the algorithm cannot progress and results
in error.

C.2. Walking through the experimental model 6.4

Consider the experimental model of 6.4 with

V = {v, w, x, y, z}

F = {fvw, fwx, fx, fxy, fyz}

E = {(v, fvw), (w, fvw), (w, fwx), (x, fwx), (x, fx),

(x, fxy), (y, fxy), (y, fyz), (z, fyz)}

P = {(v, {a, b}), (w, {a}), (x, {}), (y, {b}), (z, {a, b}),

(fvw, {a, b}), (fwx, {a}), (fx, {}),

(fxy, {b}), (fyz, {a, b})}

On the first pass through the while loop, there is a single
choice of leaf:

L = {a, b}

VL = {v, z}

FL = {fvw, fyz}

EL = {(v, fvw), (z, fyz)}

There will be two connected components, one with v and
one with z. We process them in an arbitrary order.

1. Connected component Vc = {v}, Fc = {fvw}:
We first eliminate the variable v via a sum-reduction
and record that variable w remains to be eliminated:

f SUMPRODUCT({fvw}, {v})

Vf {w}

In searching for the next plate set, we find L0
 {a}

and product-reduce plate b:

f 0
 PRODUCT(f, {b},M)

After adding the new factor f 0 =: f̂w and updating
data structures, we have

V = {w, x, y, z}

F = {f̂w, fwx, fx, fxy, fyz}

E = {(w, f̂w), (w, fvw), (w, fwx), (x, fwx), (x, fx),

(x, fxy), (y, fxy), (y, fyz), (z, fyz)}

P = {(w, {a}), (x, {}), (y, {b}), (z, {a, b}),

(f̂w, {a, b}), (fwx, {a}), (fx, {}),

(fxy, {b}), (fyz, {a, b})}

2. Connected component Vc = {z}, Fc = {fyz}:
Operating similarly with z we have

V = {w, x, y}

F = {f̂w, fwx, fx, fxy, f̂y}

E = {(w, f̂w), (w, fvw), (w, fwx), (x, fwx), (x, fx),

(x, fxy), (y, fxy), (y, f̂y)}

P = {(w, {a}), (x, {}), (y, {b})),

(f̂w, {a, b}), (fwx, {a}), (fx, {}),

(fxy, {b}), (f̂y, {b})}

On the second pass through the while loop, there are two
possible leaves, L = {a} or L = {b}. Arbitrarily choosing
leaf a, we set

L = {a}

VL = {w}

FL = {f̂w, fwx}

EL = {(w, f̂w), (w, fwx)}

There is a single connected component with Vc = VL,
Fc = FL. We eliminate variable w via a vector-matrix mul-
tiply and record that variable x remains to be eliminated:

f SUMPRODUCT({f̂w, fwx}, {w})

Vf {x}

Tensor Variable Elimination for Plated Factor Graphs

The next plate set is L0
 ;, so we product-reduce plate a:

f 0
 PRODUCT(f, {a},M)

After adding the new factor f 0 =: f̂x and updating data
structures, we have

V = {x, y}

F = {f̂x, fx, fxy, f̂y}

E = {(x, f̂x), (x, fx), (x, fxy), (y, fxy), (y, f̂y)}

P = {(x, {}), (y, {b}),

(f̂x, {}), (fx, {}), (fxy, {b}), (f̂y, {b})}

On the third pass through the while loop we choose
L {b} and similarly eliminate y, resulting in

V = {x}

F = {f̂x, fx, f̂
0
x}

E = {(x, f̂x), (x, fx), (x, f̂
0
x)}

P = {(x, {}), (f̂x, {}), (fx, {}), (f̂
0
x, {})}

On the final pass through the while loop, we choose L ;.
We eliminate x via a three-way dot product and record that
no more variables remain to eliminate:

f SUMPRODUCT({f̂w, fx, f̂
0
x}, {x})

Vf ;

Since Vf is empty we add the new factor
PRODUCT(f, ;,M) =: f̂ to scalars S. Note that in
this example the final PRODUCT is a no-op, however it
would have been nontrivial if some plate had contained all
variables, as e.g. happens when training on a minibatch of
data.

Finally we return SUMPRODUCT({f}, ;); again this final
operation is a no-op since there was only one connected
component in the input plated factor graph.

D. Plates in Pyro
The Pyro probabilistic programming language provides a
Python context manager pyro.plate to declare that a por-
tion of a probabilistic model is replicated over a tensor
dimension and is statistically independent over that dimen-
sion. An example of an independent dimension is the index
over data in a minibatch: each datum should be independent
of all others.

To declare a component of a model as plated, a user writes
sample statements in a context, e.g.
with pyro.plate("my_plate", 100, dim=-1):

x = pyro.sample("x", Bernoulli(0.5))

y = pyro.sample("y", Bernoulli(0.1 +

0.8 * x))

In the above example, the distribution at sample site "x" is
expanded from 1 to 100 conditinally independent samples,
and x will have shape (100,). The Bernoulli distribution
over x is already batched because its parameters depend on
x, hence it does not need to be expanded.

Plates can be nested to account for multiple dimensions

with pyro.plate("x_axis", 320, dim=-1):

within this context, batch dimension
-1 is independent

with pyro.plate("y_axis", 200, dim=-2):

within this context, batch
dimensions -2 and -1 are
independent

Note that dimensions use negative indices to follow the
NumPy convention of counting from the right of a ten-
sor shape; this allows indices to be compatible with tensor
broadcasting.

To create overlapping plates with non-strictly-nested rela-
tionship, users can create the context managers beforehand
and enter the appropriate contexts at each sample statement.
For example in a model where some noise depends on an x
position, some noise depends only on y position, and some
noise depends on both, users can write:

x_axis = pyro.plate("x_axis", 320, dim=-2)

y_axis = pyro.plate("y_axis", 200, dim=-3)

with x_axis:

within this context, batch dimension
-2 is independent

with y_axis:

within this context, batch dimension
-3 is independent

with x_axis, y_axis:

within this context, batch dimensions
-3 and -2 are independent

