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A. Omitted Proofs
Lemma 1 (Counterfactual Decomposition of Expected Re-
ward). Let trajectories τ be drawn from pπobs . Let τπ̂ be a
counterfactual trajectory, drawn from our posterior distri-
bution over the exogenous U variables under the new policy
π̂. Note that under the SCM, τπ̂ is a deterministic function
of the exogenous U variables, so we can write τπ̂(u) to be
explicit:

Eπ̂[R(τ)|O1 = o1]

=

∫
τ

pπobs(τ |O1 = o1)Eu∼pπobs (u|τ)[R(τπ̂(u))]dτ

Proof. This proof is similar to the proof of Lemma 1 from
(Buesing et al., 2019), but is spelled out here for the sake of
clarity. Recall that the distribution of noise variables U is
the same for every intervention / policy. Thus, pπobs(u) =
pπ̂(u) = p(u). We will write p′ and p̂ for pπobs and pπ̂

respectively to simplify notation.

Furthermore, recall that all variables are a deterministic
function of their parents in the causal DAG implied by the
SCM. Most importantly, this means that the trajectory τ is
a deterministic function of the policy π and the exogenous
variables U . With that in mind, let τπ̂(u) indicate the tra-
jectory τ as a deterministic function of π̂ and u. We will
occasionally use indicator functions to indicate whether or
not a deterministic value is compatible with the variables
that determine it, e.g., 1 [τ |u, π] is equivalent to the indi-
cator for 1 [τ = τπ(u)]. Note that the first observation is
independent of the policy, and is just a function of the exoge-
nous U , so we will write 1 [o1|u] in that case. For simplicity,

we will remove the conditioning on O1 to start with:

Ep̂[R(τ)]

=

∫
R(τπ̂(u)) · p̂(u)du (1)

=

∫
R(τπ̂(u)) · p′(u)du (2)

=

∫
R(τπ̂(u)) ·

(∫
p′(τ, u)dτ

)
du (3)

=

∫ ∫
R(τπ̂(u)) · p′(u|τ) · p′(τ)dudτ (4)

= Eτ∼p′
[∫

R(τπ̂(u)) · p′(u|τ)du
]

(5)

= Eτ∼p′Eu∼p′(u|τ) [R(τπ̂(u))] (6)

=

∫
τ

pπobs(τ)Eu∼p′(u|τ) [R(τπ̂(u))] dτ (7)

In step (1) we are just using the definition of the expectation
under p̂, along with the notation τπ̂(u) to indicate that the
trajectory is a deterministic function of the exogenous u
and the policy π̂. In step (2) we replace p̂(u) with p′(u)
because they are equivalent, as noted earlier. In step (3) we
expand p′(u) over possible trajectories τ arising from the
observed policy. In step (4) we rearrange terms and swap
the order of the integral, and in step (5) we rewrite the outer
integral as an expectation. In step (6) we further condense
notation, and then expand in step (7) to match the notation
in the Lemma. If we introduce the conditioning on O1, we
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see that it is substantively the same.

Ep̂[R(τ)|o1]

=

∫
R(τπ̂(u)) · 1 [o1|u] · p̂(u)du (8)

=

∫
R(τπ̂(u)) · 1 [o1|u] · p′(u)du (9)

=

∫
R(τπ̂(u)) · p′(u|o1)du (10)

=

∫
R(τπ̂(u)) ·

(∫
p′(τ, u|o1)dτ

)
du (11)

=

∫ ∫
R(τπ̂(u)) · p′(u|τ) · p′(τ |o1)dudτ (12)

=

∫
p′(τ |o1)

[∫
R(τπ̂(u)) · p′(u|τ)du

]
dτ (13)

=

∫
τ

p′(τ |o1)Eu∼p′(u|τ)[R(τπ̂(u))]dτ (14)

The main difference in this case is that is just that we carry
the indicator into the prior on U at step (10), which we
can do because O1 does not depend on the policy that is
applied. Note that Equation (14) matches the statement of
the Lemma.

Corollary 1 (Counterfactual Decomposition of δo).

δo := Eπ̂[R(τ)|O1 = o1]− Eobs[R(τ)|O1 = o1]

=

∫
τ

pπobs(τ |O1 = o1)Eu∼pπobs (u|τ)[R(τπ̂(u))−R(τ)]dτ

Proof. By Lemma 1, we have it that

δo := Eπ̂[R(τ)|O1 = o]− Eobs[R(τ)|O1 = o]

=

∫
τ

p′(τ |o1)Eu∼p′(u|τ)[R(τπ̂(u))]dτ

−
∫
τ

p′(τ |o1)Eu∼p′(u|τ)[R(τπobs(u))]dτ

=

∫
τ

pπobs(τ |O1 = o1)Eu∼pπobs (u|τ)[R(τπ̂(u))−R(τ)]dτ

Note that in the last step, we recognize that
Pu∼p′(u|τ)[τπobs(u) = τ ] = 1, because the posterior
density over u is zero for all u such that τπobs(u) 6= τ .

Theorem 1. Let Y = fy(t, u) be the SCM for a binary
variable Y , where T is also a binary variable. If this SCM
satisfies the counterfactual stability property, then it also
satisfies the monotonicity property with respect to T .

Proof. We collect Definitions (4) and (5) here for ease of
reference

Monotonicity: An SCM of a binary variable Y is mono-
tonic relative to a binary variable T if and only if it has
the following property: E[Y |do(T = t)] ≥ E[Y |do(T =
t′)] =⇒ fy(t, u) ≥ fy(t

′, u), ∀u. We can write
equivalently that the following event never occurs, in
the case where E[Y |do(T = 1)] ≥ E[Y |do(T = 0)]:
Ydo(T=1) = 0∧Ydo(T=0) = 1. Conversely for E[Y |do(T =
1)] ≤ E[Y |do(T = 0)], the following event never occurs:
Ydo(T=1) = 1 ∧ Ydo(T=0) = 0

Counterfactual Stability: An SCM of a categorical vari-
able Y satisfies counterfactual stability if it has the follow-
ing property: If we observe YI = i, then for all j 6= i, the
condition p′i

pi
≥ p′j

pj
implies that PM|YI=i;I

′
(Y = j) = 0.

That is, if we observed Y = i under intervention I , then
the counterfactual outcome under I ′ cannot be equal to
Y = j unless the multiplicative change in pi is less than the
multiplicative change in pj

To simplify notation further, let pt=1 := P (Y = 1|do(T =
1)), pt=0 := P (Y = 1|do(T = 0)), and let Yt := Ydo(T=t).
Without loss of generality, assume that pt=1 ≥ pt=0.

To show that counterfactual stability implies monotonicity,
we want to show that the probability of the event (Y1 =
0 ∧ Y0 = 1) is equal to zero. We will do so by proving both
cases: First that PM|Y0=1;do(T=1)(Y = 0) = 0 and second
that PM|Y1=0;do(T=0)(Y = 1) = 0. We can start with the
assumption that pt=1 ≥ pt=0 and write:

pt=1 ≥ pt=0

=⇒ pt=1(1− pt=0) ≥ pt=0(1− pt=1)

=⇒ pt=1

pt=0
≥ (1− pt=1)

(1− pt=0)

Using the counterfactual stability condition, the last inequal-
ity implies that if we observe Y0 = 1, then the counterfactual
probability of Y1 = 0 is equal to PM|Y0=1;do(T=1)(Y =
0) = 0, as desired. For the second case, where we observe
Y1 = 0, we can simply manipulate the inequality to see that

(1− pt=0)

(1− pt=1)
≥ pt=0

pt=1

Which yields the conclusion that PM|Y1=0;do(T=0)(Y =
1) = 0, as desired, completing the proof.

Theorem 2. The Gumbel-Max SCM satisfies the counter-
factual stability condition.
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Proof. Recall that we write the shorthand pi := PM;I(Y =
i), and p′i := PM;I′(Y = i). Suppose that Y is generated
from a Gumbel-Max SCMM under intervention I , and we
observe that YI = i. The Gumbel-Max SCM implies that
almost surely:

log pi + g(i) > log pj + g(j) ∀j 6= i (15)

To demonstrate that the Gumbel-Max SCM satisfies the
counterfactual stability condition, we need to demonstrate
that p

′
i

pi
≥ p′j

pj
=⇒ PM|YI=i;I

′
(Y = j) = 0 for all j 6= i.

We will proceed by proving the contrapositive, that for all
j 6= i, PM|YI=i;I

′
(Y = j) 6= 0 =⇒ p′i

pi
<

p′j
pj

.

Fix some index j 6= i. The condition PM|YI=i;I
′
(Y =

j) 6= 0 implies that there exist values g(i), g(j) such that

log p′i + g(i) < log p′j + g(j) (16)

Because the Gumbel variables g(i), g(j) are fixed across
interventions, this implies there exist values for these vari-
ables which satisfy both inequalities (15) and (16). Thus, we
proceed by subtracting inequality (15) from inequality (16),
maintaining the direction of the inequality and cancelling
out the Gumbel terms. The rest is straightforward manipula-
tion using the monotonicity of the logarithm.

log p′i − log pi < log p′j − log pj

log(p′i/pi) < log(p′j/pj)

(p′i/pi) < (p′j/pj)

This demonstrates that PM|YI=i;I
′
(Y = j) 6= 0 =⇒

(p′i/pi) < (p′j/pj) as desired, and taking the contrapositive
completes the proof.

B. Non-Identifiability Example
Figure 1 gives a visual depiction of the unidentifiability
example given in Section 3.1.

C. Experimental Details
C.1. Sepsis Simulator

All the code required to reproduce our experiments (in-
cluding the figures in this appendix) is available on-
line at https://www.github.com/clinicalml/
gumbel-max-scm, and we refer to that for more in-depth
information about our simulator setup.

C.2. Impact of hidden state

In the experiments given in the paper, we hide the glucose
and diabetes state from the model of dynamics used for the
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S’ = 2 34
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Figure 1. Example of non-identifiability of categorical counter-
factual outcomes. The orderings ord and ord’ both define a
causal mechanism S′ = f(S,A,U) with U ∼ Unif(0, 1) that
replicates the interventional probability distribution P (S′|S,A).
On the left-hand side, the red shading represents the posterior
P (U |S′ = 2, A = a, S = s), and when this posterior is used on
the right-hand side to sample from the counterfactual distribution,
these ordering produce different counterfactual outcomes (S′ = 3
in the case of ord and S′ = 4 in the case of ord’)

RL policy. In this section we explore the impact of that
choice on the off-policy evaluations used in the paper, as
well as on the quality of the RL policy.

To demonstrate, in Figure 2, we replicate Figure 3 from
the main paper, but with some important differences. First,
instead of using 100 bootstrapped samples of the original
1000 trajectories, we instead repeat the entire process 100
times, with an independent set of trajectories drawn from the
simulator in each case. These uncertainty intervals are wider,
reflecting the variation which is not captured by bootstrap-
ping alone. Second, we compare the use of a WIS estimator
used on the training data (i.e., the original 1000 episodes
used to learn the model of dynamics), with a WIS estimator
used on a held-out set of 1000 independent episodes. While
the example given in the paper is meant to conceptually cap-
ture what might happen in a single analysis (where only a
single set of trajectories is available), Figure 2 demonstrates
the variability across analyses, including those with access
to a large held-out set of trajectories.

Towards understanding the impact of hiding variables from
the RL policy, we performed the same experiment again,
but giving the RL policy access to the entire state space.
The results are shown in Figure 3, and the results from both
figures are shown in Table 1

There are several reasons why weighted importance sam-
pling, and other off-policy evaluation methods, could fail
to capture the true performance of a target policy. These
include issues like confounding and small sample sizes, as
discussed in (Gottesman et al., 2019). In this particular syn-
thetic example, all of the following factors may play a role
in the above results, but it is difficult to say conclusively how

https://www.github.com/clinicalml/gumbel-max-scm
https://www.github.com/clinicalml/gumbel-max-scm
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Figure 2. Boxplots show the median and intervals which capture
95% of the 100 evaluations, each time with a newly simulated
set of 1000 episodes used for training and 1000 episodes used for
the held-out WIS estimator; WIS (train) is used on the training
episodes, as in the main paper, and WIS (held-out) is performed
on the held-out set of 1000 episodes
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Figure 3. Same setup as Figure 2, but allowing the model of dy-
namics used by the MDP to see the full state

strong each factor is, and how they interact to produce the re-
sults: (i) Confounding due to unobserved states, (ii) sample
complexity of learning the MDP, which is more pronounced
when all state information is observed (144 states vs 1440
states), and (iii) small sample sizes in both the training and
held-out datasets.

With that in mind, we believe that building a more com-
prehensive simulated environment, in which these various
factors can be disentangled more precisely, would be a valu-
able direction for future work. In addition, we believe such
an environment would be useful for evaluation of a variety
of off-policy techniques beyond the limited set discussed
in the paper e.g., more recently developed methods such
as (Thomas & Brunskill, 2016; Liu et al., 2018).
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