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— Supplementary Material —

A. Proofs
A.1. Proof of Proposition 3.3

For a fixed k € N, we abbreviate v = ~y;. Using Assump-
tion 2, we have

F@ri1)=f(@r) < for (@h1) = far (@) tw(||Tr1—2k]]) -

From ||zx4+1 — k|| = 7¥||lyx — x| and the definition of a
growth function it follows that w(||xx+1 — zk||) = o(7).
The convexity of the model function f,, gives us

frk, (‘rkJrl) - fl’k (xk) < ’Y(fl’k (yk) - fIk (xk)) .

Now, we argue by contradiction. Suppose that for any ¥ > 0
there exists v € (0,7) such that (ALS) does not hold, which
yields the following calculation

—7PA (ks yr) < fTry1) — f(or)
<A(far (Yr) = far (Tr)) + 0(7)
= —vA(zk, yr) +o(7) -

Dividing the inequality by 7, we obtain

which is a contradiction for sufficiently small 4. O

A.2. Proof of Proposition 3.4

The result is shown by Fermat’s rule in the following lemma.
Lemma A.1. Let & € C. Then,

0f() = 0f:(2),
and

0€0f:(2) & A(F,2)<0vVxel.

Proof. Letv € Of (Z), then
f@) = (@) + (v,z = 2) +o(lz — Z[]) Veel
and, this implies, by the model assumption for all z € C"

fa(@) + w(llz = 2[)) = fz(2) + (v,2 = T) + o[l — Z) -

Since w(t) = o(t), we conclude that

fa(x) > fz(&2) + (v, = Z) +o(||lz — &), VxeCl.

Now, we fix a point Z € C and consider x = & + 7(Z — T)
for 7 € (0,1]. Then, by convexity of C' and the model
function f3z, we obtain

fa(@)+7(f2(2)—[2(%)) = fa(2)+7 (v, 2=T)+o(7|[T—Z]).

Subtracting fz(Z), dividing by 7, and considering 7 \ 0,
and, using the fact that this consideration was independent
of the choice of Z, we conclude that v € Jfz(Z). The
converse direction follows easily.

The second part of the statement is Fermat’s rule (Theorem
16.2 in (Bauschke & Combettes, 2011)) for convex functions.
O

A.3. Proof of Theorem 3.6

We prove the result in three steps.

Convergence of objective values. The monotonicity and
convergence of (f(xy))ren follows directly from (ALS)
and the boundedness of f from below.

Vanishing model improvement. From (ALS) and con-
vergence of (f(zx))ren, we infer that v A(zg, yi) — 0,
since

0 < pvA(zr, yx) < flak) — f(@r41) = 0.
We deduce boundedness of (A(z, yx))ken by

0 < A(@k, yx)
= ka (Ik) - fﬁfk (yk) < f(zk) - ka (gk)
< f(@o) = f(k) + w(l|gk — zxll)
< f(zo) — ;ggf(x) + w(diam(C)) < +o0.

Let A* be an arbitrary limit point of (A(x, yx))ken, that
is Az, yx) — A* as k 5 oo for some K C N, where
k55 oo abbreviates k — oo with k € K.

Suppose A* > 0. Then v, — 0 as k % 0. For sufficiently
large k, the line search procedure in Algorithm 2 reduces
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Vi /9 to Vg, i.e., (ALS) is violated before multiplying with
0:

I A (e yk) < flak + Wy — ) — for)
Analogously to the proof of Proposition 3.3, we conclude

5 Pk ) < (o () = Fo (a0)) + (/)

1)
= - %A(@’kayk) + o(k/9) .

Dividing both sides by % results in (1 — p)A(z, yx) <

o(Yk)/7r and considering v, — 0 for k K« yields a
contradiction, since p € (0,1). Therefore A(xg,yr) — 0
for k — oc.

Convergence to a stationary point. The following rela-
tion holds for all z € C"

Axg, yx) = Al@r, Jr) + for (U) = for (Yr)
szk(xk)_ka(z)_fk (1
> flzk) — f(@) —w(l|ze —z[]) — e,

where the first inequality follows from Assumption 3 and

. . . . K
the second from Assumption 2. Taking the limit & — oo
on both sides, using A(zk,yr) — 0 for k& — oo, lower
semi-continuity of f and continuity of w, we arrive at

f@) =2 f(@) —w(llZ —=l]), VeeC,

where £ € C due to compactness of C. As £ € C and
w(t) = o(t), we deduce that

g 12 = F@) — (0.2 = 8

P EEEl
THT

>0.

which by definition means that 0 € 9 f(Z).

. . . . .. K
Moreover, using z = Z in (1), taking the limit ¥ — oo and
using lower semi-continuity of f, we deduce

f(&) > limsup f(xg) > lirr;inff(xk) > f(@),

5 oo k=00

hence f(zr) — f(&) as k K . By convergence of
(f(zk))ken, we also have f(xzy) — f(Z) fork — co. O
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