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Abstract

The Conditional Gradient Method is generalized
to a class of non-smooth non-convex optimiza-
tion problems with many applications in machine
learning. The proposed algorithm iterates by min-
imizing so-called model functions over the con-
straint set. Complemented with an Armijo line
search procedure, we prove that subsequences
converge to a stationary point. The abstract frame-
work of model functions provides great flexibility
for the design of concrete algorithms. As special
cases, for example, we develop an algorithm for
additive composite problems and an algorithm for
non-linear composite problems which leads to a
Gauss—Newton-type algorithm. Both instances
are novel in non-smooth non-convex optimization
and come with numerous applications in machine
learning. Moreover, we obtain a hybrid version
of Conditional Gradient and Proximal Minimiza-
tion schemes for free, which combines advantages
of both. Our algorithm is shown to perform fa-
vorably on a sparse non-linear robust regression
problem and we discuss the flexibility of the pro-
posed framework in several matrix factorization
formulations.

1. Introduction

A prominent algorithm for applications in machine learning
and statistics, such as matrix learning, recommender sys-
tems, clustering, etc., is the Conditional Gradient Method
(aka Frank—Wolfe Method). Its success is based on a low
per-iteration complexity in several applications. For exam-
ple, in low rank approximation (e.g. matrix completion),
the main computational cost per iteration is the minimiza-
tion of a linear function over a nuclear norm (trace norm or
Schatten 1-norm) constraint, which can be solved efficiently
by approximating the singular vector associated with the
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largest singular value of the gradient that defines the linear
function. In contrast, related proximal minimization algo-
rithms require a full singular value decomposition, which is
significantly more expensive.

In this paper, we generalize the Conditional Gradient
Method to non-smooth non-convex optimization problems
and unify the convergence analysis for several algorithms.
The classical convergence analysis relies on the Descent
Lemma, in the case the objective f has Lipschitz continuous
gradient. The Descent Lemma states that, for some L > 0,

(@)~ F(@) —(V£(2), e—7)| < g”:c—jH% forall 2, 7

This inequality can also be interpreted as a measure for the
linearization error of f around Z, i.e., the approximation
quality of f by a linear function. We emphasize the fact
that such a measure for the approximation quality of f,
rather than smoothness, is key for the convergence of the
algorithm. We generalize the linear approximation to any
model function fz that obeys a certain approximation quality

[f(2) = fa(2)]| < w(lle—z]),

measured by a growth function w: Ry — R that controls
the approximation error. Note that this inequality does not
imply smoothness, even in the special case w(t) = %tQ. It
f = g+ h with a smooth function / and a non-smooth func-
tion g, we can define fz(z) = g(z)+h(z)+(Vh(z),z—I)
and observe that the approximation error is only due to the
linearization of the smooth part h of the objective, while fz
is non-smooth. There are many other situations of interest.
We choose the properties of the growth function w such
that fz mimics a first order oracle of f. The freedom to
choose the model function depending on the problem struc-
ture at hand makes our approach a flexible and efficient way
to solve structured non-smooth non-convex minimization
problems.

In this model function framework, our generalized Condi-
tional Gradient update step at xj, reads

Y € argmin f,, (z)
zeC

Try1 = Weyk + (1 — )Tk,

where v, € [0, 1] and C'is a compact and convex constraint
set. For f,, being the linearization of f around x, this is
exactly the Conditional Gradient Method.
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As for all methods, the efficiency depends on the cost to
evaluate the oracle, which in our case is the minimization of
fx, over C and, for proximal minimization problems, the
cost to solve subproblems of type

. 1 )
i fo (2) + 5o — 2l

for some step size 7 > 0. The generalization achieved in
this paper increases the modelling flexibility for practical
applications by making them accessible with another (possi-
bly much cheaper) oracle, or by combining the oracles to a
hybrid Proximal-Conditional Gradient method. In particu-
lar, we show the favorable performance of our algorithm for
a sparse non-linear robust regression problem and demon-
strate the flexibility of the algorithm on several applications
in matrix factorization.

2. Contributions and Related Work

The idea of model functions to unify and generalize algo-
rithms has been used before in bundle methods (Noll, 2013;
Noll et al., 2008), where only a lower bound on the approx-
imation error with the model function is used, which is a
different setup. In (Drusvyatskiy et al., 2016; Ochs et al.,
2018), the same class of model functions is considered as
in our paper. In (Ochs et al., 2018), a Bregman proximal
minimization framework is developed and convergence to a
stationary point with an Armijo-like line search strategy is
proved under weak assumptions on the Bregman distances.
Their work can be seen as the proximal analogue to our
framework. Recently, the model function framework has
been extended to stochastic optimization (Davis & Drusvy-
atski, 2018; Davis et al., 2018).

Both, (Ochs et al., 2018) and our work, present an imple-
mentable algorithm of the model function framework, which
is motivated by the abstract consideration of (pure) sequen-
tial model minimization in (Drusvyatskiy et al., 2016). The
goal of (Drusvyatskiy et al., 2016) is to devise a measure for
proximity to a stationary point, which can be used as a stop-
ping criterion in non-smooth optimization. However, their
convergence result depends on assumptions that are not auto-
matically satisfied in practice. In (Ochs et al., 2018), model
functions are complemented with additional structure (the
Bregman proximity term) and Armijo line search. Once the
model functions are selected, convergence of subsequences
to a stationary point is guaranteed. We substitute the Breg-
man proximity by minimization of model functions over a
compact set, and also obtain convergence of subsequences
to a stationary point without additional assumptions.

A special case of our framework yields the Conditional Gra-
dient Method (aka Frank—Wolfe method (Frank & Wolfe,
1956)) with Armijo line search. Convergence has been
analyzed in (Bertsekas, 1999) for smooth constrained opti-

mization and in (Reddi et al., 2016) for smooth stochastic
problems. While, in convex optimization, convergence of
the method is fairly well understood (Bach, 2015; Jaggi,
2013; Lacoste-Julien et al., 2013; Lacoste-Julien & Jaggi,
2015; Silveti-Falls et al., 2019; Yurtsever et al., 2018; Nes-
terov, 2018), little is known in the non-smooth non-convex
setting. To the best of our knowledge, our work is the
first to generalize the Conditional Gradient minimization
strategy to constrained non-smooth non-convex optimization
with provable convergence (of subsequences) to a stationary
point. In this way, we contribute to the increase in modelling
flexibility for problems in machine learning, computer vi-
sion, and statistics. In particular, we explore this flexibility
in an example from non-linear robust regression and several
formulations from matrix factorization.

As specific instances of our algorithmic framework, we ob-
tain new algorithms. For example, we consider non-linear
composite problems of type min,cc g(F'(x)) where F' is
sufficiently smooth and ¢ is convex. Our iterative model
function minimization over a convex constraint set yields
an algorithm of Gauss-Newton type (Nocedal & Wright,
2006). Alternative strategies that use a proximal minimiza-
tion strategy, which leads to Levenberg—Marquardt algo-
rithm (Levenberg, 1944; Marquardt, 1963) in a certain spe-
cial case, is explored, for example, in (Lewis & Wright,
2016; Drusvyatskiy et al., 2016; Ochs et al., 2018). The
problems that can be modelled in this form is immense
(Lewis & Wright, 2016). Using specific approximations
of the objective by model functions, we also propose a hy-
brid Proximal-Conditional Gradient minimization scheme
that combines the advantages of both worlds. In the con-
vex setting, such a hybrid method was used in (Argyriou
et al., 2014). However, their analysis was tailored to exactly
this hybrid algorithm, whereas we obtain it from the model
function framework for free and in the non-convex setting.

3. The Model Based Minimization Algorithm

We consider optimization problems of the form

min f(z) 3)

zeC

with the following properties:

Assumption 1.
inRY;

(i) C is a non-empty compact convex set

(ii) f: RV — (—oco,+o0] is a proper lower semi-
continuous (Isc) function that is bounded from below
with dom f C C.

As motivated in the introduction, the proposed algorithm
is based on iteratively minimizing model functions of the
objective in (3) over the constraint set C. These model
functions obey a certain approximation quality with respect
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e Optimization Problem: Problem (3).
e Initialization: zo € RY and set p € (0,1).

e Update (k > 0):

and compute

(Armijo line search)

Algorithm 1 (Model Based Conditional Gradient Method with Line Search).

— Find y;, € C such that the model improvement is positive, i.e.

A(xkvyk) = frk (zk) - f"ck (yk) > 0, (D

Thr1 = Tk + Ve(Yr — Tk) )
with 7y, € [0, 1] determined by Algorithm 2 such that the following holds:

satisfies

— If (1) cannot be satisfied (i.e., maxycc A(xy,y) < 0), then terminate the algorithm.

f(wpg) < flon) — pved(or, yr) (ALS)

Algorithm 2 (Armijo Line Search for Algorithm 1).
e Parameters: Fix p,d € (0,1) and 5 € (0, 1].

o Input: xy, yi € C that satisfy (1).

o Line Search: Find the smallest integer 7 > 0 such that y;, = 367 satisfies (ALS).

to the objective function, which we measure in general using
an (error) growth function:

Definition 3.1 (growth function). A continuous function
w: Ry — Ry is called growth function if it satisfies w(0) =
0 and W', (0) := limp o w(t)/t = 0.

The standard example of a growth function is w(t) = L - t"
with L > 0 and » > 1. However, we may easily generate
more examples using the concept of 1y-uniform continuity
as in (Ochs et al., 2018), which generalizes Lipschitz and
Holder continuity. Note that from the definition of growth
function, ones has w(t) = o(t).

In this paper, we consider model functions that satisfy the
following assumption.

Assumption 2 (model assumption). There exists a growth
function w: Ry — R, such that for each & € RY, there
exists a proper lsc convex function fz: RY — (—o0, +00]
such that dom f = dom f3, called model function, with the
following property:

If(2) — fz(@)] Sw(|lz—Z|), VzeC.

For examples of model functions, we refer to Section 4.

The Model Assumption 2 preserves up to the first order
information of the objective function in the following sense

(see Lemma A.1 in the supplementary material)
fo(@)=f(z) and Of(x)=0fs(z), @

where 0. f denotes the Fréchet subdifferential (Definition 8.3
in (Rockafellar & Wets, 1998)) of f and Jf the (convex)
subdifferential, which coincides with the Fréchet subdiffer-
ential for convex functions (Proposition 8.12 in (Rockafellar
& Wets, 1998)). The Fréchet subdifferential is defined at
a point Z, at which f is finite, as v € Jf(Z) if and only if
fl@) > f(@)+ (v,x — ) + o(||]x — Z||), and Of (Z) = @
for z ¢ dom f.

Minimizing model functions from Assumption 2 provides
a generic way to define algorithms with a first order or-
acle (possibly non-smooth). We seek to find a (Fréchet)
stationary point T of (3), characterized by

0€df(z).

In Algorithm 1, the proposed algorithm is defined. The prac-
tical realization of the Armijo condition in (ALS), requires
an algorithmic procedure. We propose the backtracking line
search in Algorithm 2 as subroutine for (ALS).

Key for measuring the progress of the algorithm is the model
improvement, which we define as

A(z,y) = fulz) = foly), forallz,y eRY. (5)



Model Based Conditional Gradient Method

We show that this is a natural measure of stationarity.

In order to obtain a “stable” algorithm, in the sense that
objective values are non-increasing, the choice of y;, satisfy-
ing (1) is arbitrary. However, the proof that all limit points
of the sequence generated by Algorithm 1 are stationary
points requires an additional assumption. We must assert
that the error in solving the model subproblem vanishes for
k tending towards infinity.

Assumption 3 (optimality of y;). There exists (¢} )pen With
€k \( 0 such that

Jan (i) < gleig fu (@) + €.

For each k € N, we denote by 3 any element in
argming e fz, ().

Remark 3.2. One option to choose yi in (1) is to set
Yr = Uk € argming, o fo, (z). Observe that this is equiv-
alent to yj, € argmax,cc A(xy,y). On the other hand,
our framework is general enough to allow one solving
mingec fu, (y) with errors as in Assumption 3.

3.1. Analysis of the Algorithm
3.1.1. FINITE TERMINATION OF LINE SEARCH

We show that Algorithm 1 is well-defined, i.e., Algorithm 2
terminates after a finite number of iterations. We verify that
Yy — T is a descent direction, i.e., all sufficiently small
choices of ~; satisfy (ALS). Therefore, reducing -y ac-
cording to the rule in Algorithm 2, it eventually enters a
neighborhood of 0 after finitely many steps.

Proposition 3.3. Fix k € N. There exists ¥ € (0,1] such
that (ALS) is satisfied for all v, € (0,7).

The proof is in Section' A.1.

3.1.2. FINITE TERMINATION OF THE ALGORITHM

In case, the algorithm terminates after a finite number of
iterations, i.e., (1) cannot be satisfied for any yj, we have
already found a stationary point.

Proposition 3.4. Let k € N be such that the model im-
provement is zero, i.e., maxyec A(zk,y) = 0. Then, xy, is
a stationary point of (3).

The proof is in Section A.2.

Proposition 3.4 identifies the model improvement A (zy, yx)
as a suitable measure for stationarity. For smooth functions,
this is an obvious fact, as the following example shows.

Example 3.5. If f is sufficiently smooth, a suitable model
function is f,, (x) = f(xr) + (Vf(zk), z — xx), and the
model improvement becomes

Az, yr) = (Vf(xr), o6 —yr) >0,

!Section A is provided in the supplementary material.

which is the characterization of a descent direction v =
Yr — T in classical smooth optimization. If there is no
yr € C along which the value of f, can be reduced, then
(Vf(zk),y —xk) > 0forally € C, which is the standard
characterization of a stationary point xy, for constrained
smooth optimization.

3.1.3. ASYMPTOTIC ANALYSIS

In this section, we present the following main theorem.

Theorem 3.6 (convergence to a stationary point). Ler As-
sumptions 1, 2 and 3 be satisfied and let (zy)ren be a
sequence that is generated by Algorithm 1. Then, every limit
point of (xk ) ken is a stationary point of (3) and (f (x1))keN
converges to the value of f at the limit point. Moreover, there
exists at least one converging subsequence of (T )ken.

The proof is in Section A.3.

Remark 3.7. Theorem 3.6 guarantees to find a stationary
point of the minimization problem in (3). Note, that we do
not intend to guarantee that a global minimizer of (3) is
found or approximated. This would ask for too much consid-
ering the broadness of the class of non-smooth non-convex
optimization problems that (3) deals with. In this general
framework, convergence of subsequences to a stationary
point is quite satisfying and is the objective of most first
order optimization schemes in non-convex optimization.

Remark 3.8. We can easily derive the following conver-
gence rate from the Armijo line search condition (ALS):

f(wg) —inf f
PY ok

However, considering practice experiments, we observed
that the convergence rate is too conservative and does not
reflect the actual performance of our algorithm.

. < .
oglélkA(m“yl)— , VkeN

4. Examples of Model Functions

As the assumption of model functions is the same as in
(Ochs et al., 2018), the same examples may be incorpo-
rated here. However, we consider minimization of model
functions over the constraint set C' instead of (Bregman)
proximal minimization. In order to make this work self
contained, we mention their models (and some new ones)
and discuss the algorithmic difference. For presentation, we
focus on the case of maximal model improvement in (1).
Let I'y denote the class of proper Isc convex functions and
€% (C) be the class of smooth functions with 1/-uniformly
continuous gradient relative to C, i.e., f € €% if and only
if

V(@) = VIl < ollz—yl),

for some continuous function ¢p: Ry — R, with ¢(0) = 0.
The Generalized Descent Lemma (Lemma 4 in (Ochs et al.,

Vr,y e C,
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2018)) shows that such a function obeys, for all z,z € C,
[f(z) = f(2) = (Vf(@),z - D) Sw([lz—z[]) (6)

with growth function w(t) fol @ ds where
©(s) = s1(s). The most important example is 1 (s) = cs®
for some ¢ > 0, which is Holder continuity for o € (0, 1]
and Lipschitz continuity for « = 1. It results in w(t) =
H%atl*a. By the compact constraint set in (3), Lipschitz
or Holder continuity can be assumed to be global (possibly

with a different constant).

Note that in general the following examples account for
non-smooth non-convex optimization problems.

Example 4.1 (additive composite problems). Many prob-
lems in image processing, signal analysis, or statistics (in-
cluding image deblurring, denoising, robust PCA, support
vector machines, LASSO, etc.) can be cast in the form

min f(z), f:=g+h withg€Toandh e cH¥(C).

A suitable model function for such problems is the following
fz(x) = g(x) + h(Z) + (VA(Z),z — %), VYzeCl.
Using (6), Assumption 2 is clearly satisfied.

In the proximal minimization framework (Ochs et al., 2018),
this choice requires to solve subproblems of the form

gréilclg(x) +(Vh(Z),z — %) + D(z, %),

which are known as (Bregman) Proximal Gradient Descent
update steps (aka. Forward—Backward Splitting or Mir-
ror Descent), where D(x, %) is a Bregman distance®. For
D(z,%) = §|lz—z||? with T > 0, the mapping that assigns
to T the solution of this problem is known as the proximal
gradient mapping prox_, . s (T — TVh(Z)) with respect to
g + 0¢, where §¢ is the indicator function of the set C.

Instead, for our generalized Conditional Gradient type al-
gorithm (Algorithm 1) with maximal model improvement,
the update step requires solving subproblems of type

arcneiélg(x) + (Vh(z),z).

Key in selecting the “better” algorithm depends on the
computational cost for solving the subproblems.

Example 4.2 (hybrid Proximal-Conditional Gradient mini-
mization). Motivated by the comparison of proximal mini-
mization and our Conditional Gradient type minimization
in Example 4.1, the model function could be defined as

(@) = (&) + h(@) + (Vh(z), o — ) + o [lo = 7]

’The considered Bregman distances have the form D(z, Z) =
o(x)—p(Z)—(Vp(Z),z—T),if T € int dom ¢, with a so-called
Legendre function ¢ (see Section 26 in (Rockafellar, 1970)), and
D(x,z) = +o00if Z ¢ int dom ¢.

leading to a proximal subproblem over a constraint set C
in our Algorithm 1. In this sense, our model function frame-
work allows us to interpolate between proximal minimiza-
tion algorithms and Conditional Gradient type algorithms.

We may also combine linearization and proximal lineariza-
tion to devise a model function that yields a hybrid ver-
sion of Conditional Gradient and proximal minimization.
Consider the optimization problem in Example 4.1 with
r = (z1,72) € RY and C = Cy x Cs, where g is ad-
ditively separable, i.e., g(r1,72) = g1(z1) + g2(x2) for
functions g1, g2 € I'g. Then, the model function

fz(2) = g1(21) + g2(22) + h(Z) + (VA(Z),z — T)
1 — 2
+§Hx1—x1\| ) l‘:<xl»l‘2)a

where Vh(Z) = (Vy, h(Z), V4, h(Z)), leads to a proximal
gradient step with respect to x1 and a Conditional Gradient
step with respect to xo:

U1 =ProX.g, 45, (:El . Tvzlh(f))

§2 € argmin ga(x2) + (V4 h(Z), 22)
z2€C>

where §j = (1, §=2) yields the maximal model improvement.
Example 4.3 (Newton-based Conditional Gradient). Sup-
pose that h in Example 4.1 is at least twice continuously
differentiable. In that case, a second order expansion in the
model function is feasible

fz(x) = g(x) + h(Z) + (VI(T), x — T)

+ 5= 2, [Vh@] (- 2)),
where [V2h(Z)]; is the projection of the Hessian of h at T
onto the cone of positive semi-definite matrices. The convex-
ity assumption of our model functions requires us to replace
the Hessian matrix by a positive semi-definite approxima-
tion. However, in general, unlike proximal minimization
methods, thanks to the compact constraint set, we do not
need to enforce strong convexity of the subproblem, i.e.,
[V2h(Z)]4 need not be positive definite. In (Ochs et al.,
2018) with D(z, %) = 5= ||z — Z||* and g = 0, this choice
leads to damped (projected) Newton steps of the form

§ = proje (7 = (I + T[V2h(2)]) " Vh(2))

with identity matrix 1. Our Algorithm I leads to a projected
Newton step in subproblem (1) without damping

= projo (2~ [V*h(@)];' V(@) )

Note the abuse of notation, since [V?h(z)]+ might not be
invertible. In that case, a constrained quadratic program
needs to be solved to obtain a point ) that yields the maximal
model improvement.
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Example 4.4 (Gauss—Newton). Consider

gggg(F(z)) with
(7
g € To(RM) Lipschitz and F € €Y (C,RM) .

This class of problems includes non-linear inverse problems.
We present a simple application of non-linear regression in
Section 5.1. A suitable model function is the following:

fa(x) = g(F (%) + DF(z)(x — 7)),

which is motivated by the Gauss—Newton method (Nocedal
& Wright, 2006). In the proximal minimization frame-
work, it leads to the ProxLinear (or ProxDescent) algorithm
(Lewis & Wright, 2016), which can solve a broad class
of problems. Often, the arising subproblems do not have
closed form solution. However, convexity allows for their
efficient minimization. Due to the broad class of problems
that is covered by (7), in general, no simpler algorithms are
currently known. There are essentially two ways of incorpo-
rating line search: (i) line search in direction of the solution
of the subproblem (Ochs et al., 2018) or (ii) line search of
the scaling of the proximity term to successively push the
new iterate closer to the old iterate (Lewis & Wright, 2016,
Drusvyatskiy et al., 2016). Where (i) requires to solve the
subproblem once, (ii) requires to solve the subproblem in
each trial of a step size.

The line search strategy (i) is the same as in (ALS). As our
subproblems do not involve the additional distance term, in
contrast to proximal minimization subproblems, the search
directions that we find are closer linked to the original
problem, and hence we expect faster progress of our method.
The experiment in Section 5.1 supports this intuition.

Example 4.5. The flexibility of our algorithm allows model
functions to be tailored to specific problems. Suppose g in
(7) is additively separable, i.e., g(y) = Zi\il 9i(y;) and g;
is convex and non-decreasing, e.g., the hinge loss g;(y;) =
max(y;, 0) that is used in support vector machines. Then,
model functions with coordinate-wise higher order convex
approximations of F(x) = (Fi(z),...,Fp(x)) can be
used to devise higher order convex model functions.

5. Applications

5.1. Sparse Robust Non-linear Regression

We consider a simple non-smooth non-convex sparse robust
regression problem (Hampel et al., 1986) of the form

min

M
Jmin S Fia,b) = will + plally
’ i=1

P
Fi(a,b) := Zaj exp(—bjz;),
j=1

similar to (Ochs et al., 2018), where the data (x;,y;) € R2,
i=1,...,M,is asequence of covariate-observation pairs
and C = [0,a]” x[0,b]” for some @, b > 0 and P € N. We
assume that y; = F;(a, b)+n; where n; are iid errors drawn
from a Laplacian distribution, which motivates the usage
of the /1-norm data fidelity term. Moreover, we assume
that a large percentage of coefficients a; are zero, which is
the reason for penalizing also the ¢1-norm of the parameter
vector a € R”. By “symmetry” of Fj, the number of zero
coordinates matters rather than the actual support.

We compare several algorithms with provable convergence
of subsequences to a stationary point for solving the prob-
lem. The objective function falls into the class of problems
of Example 4.4, for example, since F' has bounded Hes-
sian on C', hence, its gradient is Lipschitz continuous on C.
All algorithms are based on that choice of model functions.
We write the linearization of the inner functions around
ug = (ag, by) as follows: Foralli =1,..., M,

Fi(a,b) —y; = Kju —y;, forallu= (a,b) € C,

where K; = DF;(uy) and y§ := y; — F;(ug) + DF;(ug)ug.
Our Algorithm 1, denoted FW-CompLinLS3, leads to sub-
problems of the form

M
u:f%ec;” u =yl + pllally

the algorithm in (Ochs et al., 2018), denoted
ProxLinearLS, and (Lewis & Wright, 2016), de-
noted ProxLinearBT, require to solve subproblems of
the form

M
: o 1 2
o Wt =32l + el + s
We solve the inner problem using the Primal-Dual Hy-
brid Gradient Algorithm with preconditioning (Pock &
Chambolle, 2011), which allows for step sizes that are au-
tomatically computed based on ;. We use warm start-
ing for all methods. Our algorithm FW-CompLinLS and
ProxLinearLsS solve the subproblem up to a certain ac-
curacy and perform an Armijo-like line search in the di-
rection of the approximate solution. The backtracking of
ProxLinearBT is with respect to the parameter 7 and
involves solving the subproblem for each trial “step size’
7 until a sufficient improvement of the objective value is
observed. All methods perform line search for improv-
ing the objective value relative to the model improvement

A(zg, yr).

The data for the experiment is generated randomly with
P =100, M = 1000, u = 80, @ = 20, b = 5, and 80% of

s

3 Abbreviation for Frank—Wolfe Composite Linear splitting
with line search.
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coefficients a; are randomly set to 0. Figure 1 shows the
data and the convergence of the objective value or the model
improvement with respect to actual computation time.

5.2. Structured Matrix Factorization

Many applications in data analysis such as blind image
deblurring (Kopriva & Nuzillard, 2006; Chaudhuri et al.,
2014), clustering and principal component analysis (Duda
et al., 2001; Murphy, 2013), source separation (Lee & Se-
ung, 1999; Févotte et al., 2009; Cichocki et al., 2009), signal
processing (Aharon et al., 2006; Starck et al., 2015), or dic-
tionary learning (Mairal et al., 2010; Xu et al., 2017) can
be formulated as structured matrix factorization problems.
In this section, we demonstrate the flexible applicability of
our algorithm to various formulations of matrix factoriza-
tion problems. Most algorithms for solving such problems
depend on alternating minimization techniques (Cichocki
et al., 2009; Chaudhuri et al., 2014; Starck et al., 2015),
sometimes with linearization (Bolte et al., 2014; Pock &
Sabach, 2016). Algorithms are usually based on a proximal
minimization oracle. In (Ochs et al., 2018), several formula-
tions of matrix factorization are presented using Bregman
proximal minimization steps. This approach has a great
advantage for several constraint sets.

However, for example, proximal minimization of low rank
constraints (e.g., constraints on the nuclear norm or 1-
Schatten norm) require a full singular value decomposition
(SVD), which can be expensive for large (or huge) scale
data analysis problems (Cai et al., 2010). In these settings,
a Conditional Gradient minimization oracle is favorable. It
requires to estimate the singular vector corresponding to the
largest singular value only, which is computationally signif-
icantly cheaper than a full SVD. While this technique has
been used frequently in (convex) low rank approximation
schemes (Jaggi, 2013), it has not been explored in detail for
structured matrix factorization due to the non-convexity of
the problem. We discuss several formulations of matrix fac-
torization problems with focus on such low-rank constraints.
Due to the favorable properties of the generalized Condi-
tional Gradient minimization oracle as described above, we
believe that benchmarking is not required.

We highlight the flexible applicability of our framework to
non-convex problems of the form

1 2
I§171§1§||A—XY”F+Q(X), st X eX, Ye),

where the goal is to represent a matrix A as a product XY
with matrices X € X and Y € ), where X and ) are
(convex and compact) constraint sets that encode some prob-
lem specific characteristics and g is a convex regularization
function. We propose to use the additive composite split-
ting model from Example 4.1, i.e., we set C = X x ),

h(X,Y) = 1||A— XY||% and solve the following subprob-
lems:

min g(X) + (X, (XpYs — A)Y)

(Y, X (Xp Ve —A)p, st X€X, Y Y. (8)

Of course, the Frobenius norm in h could be replaced by any
smooth function, for example, the log-student-t distribution
>ilog(1 + (A — XY)7 ) for robust estimations. The
linearization of h makes the minimization separable, which
allows us to discuss minimization steps with respect to X
and Y independently.

Examples for X'. In dictionary learning, X describes the
set of feasible atoms that may be used for reconstructing A.
It is common to normalize the atoms, e.g.,

Xlz{X LV ZXﬁjg1,w>2: :in,jzo},

which is a classical choice for dictionary learning (Xu et al.,
2017). For column j = 1, the update step in (8) is the
projection of the 1st column (of the gradient) onto the /-
unit ball, and for 7 > 1, by projecting the mean-subtracted
jth column onto the /5-unit ball. The choice

Xy = {X 1 Vg ZXi,j =1, Vi,j: Xy ZO}
i

enforces normalization and non-negativity, which is com-
monly used in non-negative matrix factorization (NMF)
(Lee & Seung, 1999). The update step in (8) sets column-
wise a smallest coordinates to 1 and all others to 0.

In (Ochs et al., 2018), a closed form update step with respect
to X, is derived by a suitable choice of Bregman distance.
Proximal minimization with respect to the Euclidean dis-
tance requires an algorithmic approach, though, which is
also simple, as it is just a projection onto a unit simplex.

Examples for ) and g. Sparsity is a favorable property
for several matrix factorization problems. Conditional Gra-
dient steps with respect to several norm constraints lead to
simple updates (Jaggi, 2013; Bach, 2013). For example, for
some r > 0,set Yy = {Y : ||Y]|s < r} to promote spar-
sity of the matrix Y. It can be used in dictionary learning
(Xu et al., 2017) to express A with only a few atoms of
X, i.e., many entries of Y shall be 0. Analogously, convex
relaxations of rank-r constraints are commonly used, which
can be modelled by Vo = {Y : |Y||. < r}. The nuclear
norm ||Y]|, of Y enforces the columns of A to be spanned
by at most r different linear subspaces, which is related to
clustering problems. The Conditional Gradient subproblems
with respect to both constraint sets )y and )» are simple



Model Based Conditional Gradient Method

data points —w—

ground truth —¢— FW-CompLinLS

ProxLinearLS —&— ProxLinearBT

T T T 105 !u T ‘JQHHH T T T T T \\HL 106 T T T T T T T T T TTTH
1 2
100 ot 0
-3 10_2 [
ol 110
| | | 10_7 mal Lol Lol L1 10_6 Ll Lol Lol Lol
0 0.5 1 L5 2 1072 1071 10° 1072 107! 10°

regression problem

time [sec.] vs. objective error

time [sec.] vs. A(zg, yx)

Figure 1. Regression function and convergence plots for solving the robust regression problem in Section 5.1. All methods find the
same regression function, as the left plot shows. The plot in the middle shows f(zx) — f where f is the smallest objective value found
by any of the methods. The right plot shows the convergence of the model improvement, which is a measure for stationarity. The
convergence is given with respect to actual computation time in seconds. Our method FW-CompLinLS outperforms the proximal line
search ProxLinearLsS and backtracking ProxLinearBT based methods.

(Jaggi, 2013), where the second one requires the estimation
of the extreme singular vector as mentioned above.

However, on top of the constraint sets, we can use g # 0,
which may be used as penalty instead of a constraint, for
example, penalizing the nuclear norm (Harchaoui et al.,
2012) or structured sparsity (Bach et al., 2012). The convex
subproblem that arise in this context have been studied in
convex optimization (Dudik et al., 2012; Harchaoui et al.,
2015; Nesterov, 2018). Also note that the solution of sub-
problems in (8) with respect to Y can be related to finding a
subgradient in the subdifferential of the convex conjugate
evaluated at the current gradient (Bach, 2015).

Hybrid Proximal-Conditional Gradient minimization.
Finally, we discuss an alternative model function to (8),
motivated by Example 4.2. We define the model function
by linearization of the objective with respect to Y and a
convex quadratic approximation with respect to X. This
choice leads to subproblems of the following form for our
Algorithm 1:

min g(X) + (X, (XxYi — A)Y,")

5

1
+ Y, X (XaYe = A)) e+ oIV = YillE
st XeX, Ye)y,

for some 7 > 0, leading to Conditional Gradient type prob-
lems with respect to X and proximal minimization problems
with respect to Y. The matrix factorization problem and the
algorithm can be formulated to explore the advantages of
both worlds. For example, a nuclear norm constraint with
respect to Y should be handled by a Conditional Gradient

step and an additional group-sparsity penalty on X can be
efficiently handled by proximal minimization steps (Bach
etal., 2012).

6. Conclusion

We have presented an algorithmic framework that gener-
alizes the Conditional Gradient method from constrained
convex or smooth minimization to a class of constrained
non-smooth non-convex minimization problems. The algo-
rithm is formulated with respect to sequential minimization
of model functions over the constraint set, complemented
with an Armijo line search procedure. Model functions
are simple surrogates of the objective function that obey a
certain approximation quality and capture first order infor-
mation of the problem. We presented several examples of
model functions, including examples for additive or non-
linear composite problems, which demonstrates the gain in
flexibility for solving problems in machine learning, com-
puter vision, and statistics. The possibility to tailor model
functions to the specific structure of the optimization prob-
lem at hand, allows for efficient minimization. We also
devise a hybrid method that combines Conditional Gradient
type update steps with proximal minimization steps, which
is particularly interesting for matrix factorization problems.
In a numerical experiment for robust non-linear regression,
the algorithm performs favorably compared to proximal
minimization based algorithms.
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