TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

Augustus Odena' Catherine Olsson’ David G. Andersen' Ian Goodfellow 3

Abstract
Neural networks are difficult to interpret and debug. We introduce testing techniques for neural networks that
can discover errors occurring only for rare inputs. Specifically, we develop coverage-guided fuzzing (CGF)
methods for neural networks. In CGF, random mutations of inputs are guided by a coverage metric toward the
goal of satisfying user-specified constraints. We describe how approximate nearest neighbor (ANN) algorithms
can provide this coverage metric for neural networks. We then combine these methods with techniques for
property-based testing (PBT). In PBT, one asserts properties that a function should satisfy and the system
automatically generates tests exercising those properties. We then apply this system to practical goals including
(but not limited to) surfacing broken loss functions in popular GitHub repositories and making performance
improvements to TensorFlow. Finally, we release an open source library called TensorFuzz that implements the

described techniques.

1. Introduction

Machine learning is gradually becoming used in more con-
texts that affect human lives, including for medical diagno-
sis (Gulshan et al., 2016), in autonomous vehicles (Huval
et al., 2015; Angelova et al.; Bojarski et al., 2016), as input
into corporate and judicial decision making processes (Scar-
borough & Somers, 2006; Berk et al., 2017), in air traffic
control (Katz et al., 2017), and in power grid control (Siano
et al., 2012).

Machine learning models are notoriously difficult to debug
or interpret (Lipton, 2016) for a variety of reasons, ranging
from the conceptual difficulty of specifying what the user
wishes to know about the model in formal terms to statisti-
cal and computational difficulties in obtaining answers to
formally specified questions. This property has arguably
contributed to the recent “reproducibility crisis” in machine
learning (Ke et al., 2017; Henderson et al., 2018; Fedus et al.,
2018; Lucic et al., 2017; Melis et al., 2018; Oliver et al.,
2018) —it’s tricky to make robust experimental conclusions
about techniques that are hard to debug.

Neural networks can be particularly difficult to debug be-
cause even relatively straightforward formal questions about
them can be computationally expensive to answer and be-
cause software implementations of neural networks can

'Google Brain *Open Philanthropy Project (work done while at
Google Brain) *Work done while at Google Brain. Correspondence
to: Augustus Odena <augustusodena@ google.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

deviate significantly from theoretical models. For exam-
ple, Reluplex (Katz et al., 2017) can formally verify some
properties of neural networks but is too computationally
expensive to scale to model sizes used in practice.

Moreover, Reluplex works by analyzing the description of
a ReLU network as a piecewise linear function, using a
theoretical model in which all of the matrix multiplication
operations are truly linear. In practice, matrix multiplica-
tion on a digital computer is not linear due to floating point
arithmetic, and machine learning algorithms can learn to
exploit this property to perform significantly nonlinear com-
putation (Foerster, 2017). This is not to criticize Reluplex,
but to illustrate the need for additional testing methods that
interact directly with software as it actually exists in order
to correctly test even software that deviates from theoretical
models.

In this work, we adapt an existing technique from tradi-
tional software testing —coverage-guided fuzzing (CGF)
(Zalewski, 2007; Serebryany, 2016) — to be applicable to
testing neural networks. We then combine this technique
with property-based testing (PBT) (Claessen & Hughes,
2011) and use the resulting system on a wide variety of
neural network testing problems. In particular, this work
makes the following contributions:

e First, we introduce the notion of CGF for neural net-
works and describe how approximate nearest neigh-
bor (ANN) algorithms can be used to check for coverage
in a general way.

e Second, we describe how PBT techniques can be com-
bined with CGF techniques into a general system that

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

The Fuzzer Process

Objective
Function

Neural Network

f

Mutator

f

Input Chooser 4_ Input Corpus < -

Coverage
Analyzer

Seed Corpus

Figure 1. A diagram of the fuzzing procedure, indicating the flow
of data.

Algorithm 1 Fuzzer Main Loop

Input: seed corpus of inputs to graph
Output: test cases satisfying the objective
for: =1to N do
parent = SampleFromCorpus()
data = Mutate(parent)
cov, meta = Fetch(parent)
if IsNewCoverage(cov) then
Add element to corpus
end if
if ObjectiveFunction(meta) then
Add element to list of test cases
end if
end for

performs reasonably well out-of-the-box for a variety
of applications where we would like to test neural net-
works.

e Third, we open source a software library called Tensor-
Fuzz that implements these ideas.

¢ Finally, we demonstrate the use of TensorFuzz for find-
ing numerical errors in trained neural networks, expos-
ing disagreements between neural networks and their
quantized versions, surfacing broken loss functions in
popular GitHub repositories, and making performance
improvements to TensorFlow.

2. Background

This section covers necessary background. It may help
to keep in mind the following motivating example while
reading: imagine that we have a trained neural network and
we suspect that some inputs may cause it to yield numerical

errors. If those inputs are hard to find, what sort of testing
can we perform?

Coverage-guided fuzzing: Coverage-guided fuzzing is
used to find many serious bugs in real software (Aizatsky
et al., 2016). Two of the most popular coverage-guided
fuzzers for normal computer programs are AFL (Zalewski,
2007) and libFuzzer (Serebryany, 2016). These have been
expanded in various ways in order to make them faster or to
increase the extent to which certain parts of the code can be
targeted (Bohme et al., 2017b;a).

In coverage-guided fuzzing, a fuzzing process maintains
an input corpus containing inputs to the program under
consideration. Random changes are made to those inputs
according to some mutation procedure, and mutated inputs
are kept in the corpus when they exercise new “coverage”.
What is coverage? It depends on the type of fuzzer and on
the goals at hand. One common measure is the set of parts
of the code that have been executed. By this measure, if a
new input causes the code to branch a different way at an
if-statement than it has previously, coverage has increased.

CGF has been successful at identifying defects in traditional
software, so it is natural to ask whether it could be applied to
neural networks. Traditional coverage metrics track which
lines of code have been executed and which branches have
been taken. In their most basic forms, neural networks
are implemented as a sequence of matrix multiplications
followed by elementwise operations. The underlying soft-
ware implementation of these operations may contain many
branching statements but many of these are based on the
size of the matrix and thus the architecture of the neural
network, so the branching behavior is mostly independent
of specific values of the neural network’s input.

A neural network run on several different inputs will thus
often execute the same lines of code and take the same
branches, yet produce interesting variations in behavior due
to changes in input and output values. Executing an existing
CGF tool such as AFL therefore may not find interesting
behaviors of the neural network. In this work, we elect to
use nearest neighbor algorithms to determine if two sets
of neural network “activations” are meaningfully different
from each other. This provides a coverage metric that yields
useful results for neural networks, even when the underlying
software implementation of the neural network does not use
many data-dependent branches.

Property-based testing: Property-based testing is a test-
ing technique that automatically generates test cases for
software functions. The user specifies a property that their
function should satisfy, and the PBT system automatically
generates test cases that attempt to violate this property.
There are a variety of concrete instantiations of this abstract

https://github.com/brain-research/tensorfuzz
https://github.com/brain-research/tensorfuzz

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

idea, but the most well-known is QuickCheck (Claessen &
Hughes, 2011). QuickCheck is a Haskell library in which a
user specifies that inputs be of a specific type and the library
generates random examples satisfying that type constraint.
See Listing 1 for an illustrative example.

reverse (reverse XS) == XS
xs::[Int]

prop-a xs =
where types =

Listing 1. An example definition of a QuickCheck property. Line
1 asserts that calling reverse twice on a list is the same as the
identity. Line 2 explains to QuickCheck that it should
generate random test cases that are lists of type Int.

The concept has proved sufficiently useful that there are now
many other PBT libraries servicing languages such as Rust,
Java, and Python (Gallant, 2018; Holser, 2018; Hypothesis,
2018).

As with CGF, it is natural to ask whether PBT can be applied
fruitfully to neural networks. It is also worth asking whether
CGF and PBT can be combined to make a useful general-
purpose testing tool. We claim that the answer is yes in both
cases. Researchers and practitioners often write functions in
TensorFlow (or other libraries) about which they would like
to assert invariants. Moreover, if CGF can help us search
over the space of possible inputs more efficiently, then it
makes sense to combine CGF with PBT.

We are not the first to discuss the relationship between CGF
and PBT — though this work is arguably the first to com-
bine them this way. Both Elhage (2017) and Maclver (2017)
argue that PBT and fuzzing can be seen as similar in na-
ture, where the property one is checking with a fuzzer is
“this program doesn’t crash”, and the AFL documentation
(Zalewski, 2007) discusses the possibility of adding asser-
tions to code so that AFL will find the assertions. In Luu
(2015), the author speculates about a combination of CGF
and PBT wherein the coverage guidance is meant to im-
prove the efficiency of the search for property-violating
counter-examples.

Approximate Nearest Neighbor algorithms: Tensor-
Fuzz uses ANN algorithms to decide if a new input should
be added to the corpus. The approximate nearest neigh-
bor problem is formulated as follows: Consider a set
P ={p1,---,pn} of points in a metric space (X, D). The
problem is to build a data structure taking a query point
g € (X, D) and returning any point p sufficiently close to
q.

There are many different ANN techniques, including Lo-
cality Sensitive Hashing (Andoni et al., 2015), tree-based
methods (Bernhardsson, 2012), and Proximity Graph meth-
ods (Malkov et al., 2014; aalgo, 2012). For a benchmark
comparing these algorithms, see Bernhardsson (2017). With

n points lying in R¢ with the Euclidean Norm, modern
techniques for ANN (Indyk & Motwani, 1998) allow for
preprocessing costs polynomial in n and d and query costs
polynomial in d and log n. Empirical performance for these
algorithms is in many cases dramatically better than the
theoretical worst case performance guarantees (Indyk &
Motwani, 1998; Bernhardsson, 2017) and can be made even
faster if one uses properties of the specific dataset (An-
doni & Razenshteyn, 2015). These techniques have been
shown to be reasonably performant on datasets with millions
of elements and thousands of dimensions (Bernhardsson,
2017). For more thorough reviews, see Andoni et al. (2018);
Shakhnarovich et al. (2006); Andoni & Indyk (2006).

3. Related Work

Testing of neural networks: Methods for testing and
computing test coverage of traditional computer programs
cannot be straightforwardly applied to neural networks. We
can’t just naively compute branch coverage, for example,
for the reasons discussed above. Thus, we must think about
how to write down useful coverage metrics for neural net-
works. Though this work is the first (as far as we know) to
explore the idea of CGF for neural networks, it’s not the
first to address the issues of testing and test coverage for
neural networks. A variety of proposals (many of which
focus on adversarial examples (Szegedy et al., 2013)) have
been made for ways to test neural networks and to measure
their test coverage. We survey these proposals here:

Pei et al. (2017) introduce the metric of neuron coverage
for a neural network with rectified linear units (ReLUs) as
the activation functions. A test suite is said to achieve full
coverage under this metric if for every hidden unit in the
neural network, there is some input for which that hidden
unit has positive value. They then cross reference multiple
neural networks using gradient based optimization to find
misbehavior.

Ma et al. (2018) generalize neuron coverage in two ways.
In k-multisection coverage, they take — for each neuron —
the range of values seen during training, divide it into k
chunks, and measure whether each of the k chunks has been
“touched”. In neuron boundary coverage, they measure
whether each activation has been made to go above and
below a certain bound. They then evaluate how well these
metrics are satisfied by the test set.

Sun et al. (2018a) introduce a family of metrics inspired by
Modified Condition / Decision Coverage (Hayhurst et al.,
2001). We describe their ss-coverage proposal by example:
Given a neural network arranged into layers, a pair of neu-
rons (n1, ne) in adjacent layers is said to be ss-covered by
a pair (z,y) of inputs if the following 3 things are true: n4
has a different sign for each of z, y; no has a different sign

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

for each of x, y; all other elements of the layer containing
n1 have the same sign for x, y.

Tian et al. (2017) applies the neuron coverage metric to deep
neural networks that are part of self-driving car software.
They perform natural image transformations such as blur-
ring and shearing and use the idea of metamorphic testing
(Chen & Yiu) to find errors.

Wicker et al. (2017) perform black box testing of image
classifiers using image-specific operations. Concurrent with
our work, Sun et al. (2018b) leverage a complementary ap-
proach called concolic execution. Whereas our approach is
analogous to AFL or libFuzzer, their approach is analogous
to CUTE (Sen et al., 2005).

Opportunities for improvement: It is heartening that so
much progress has been made recently on the problem of
testing neural networks. However, the success of AFL and
libFuzzer in spite of the existence of more sophisticated
techniques suggests that there is a role for an analogous tool
that works on neural networks. Ideally we would implement
CGF for neural networks using the coverage metrics above.
However, all of these metrics, though perhaps appropriate
in the context originally proposed, lack certain desirable
qualities. We describe below why this is true for the most
relevant metrics.

Sun et al. (2018a) claim that the neuron coverage metric is
too easy to satisfy. In particular, they show that 25 randomly
selected images from the MNIST test set yield close to 100%
neuron coverage for an MNIST classifier. This metric is
also specialized to work on rectified linear units (ReLUs)
which limits its generality.

Neuron boundary coverage (Ma et al., 2018) is nice in that
it doesn’t rely on using ReLUs, but it also still treats neu-
rons independently. This causes it to suffer from the same
problem as neuron coverage: it’s easy to exercise all of the
coverage with few examples.

The metrics from Sun et al. (2018a) improve upon neuron
coverage and may be useful in the context of more formal
methods, but for our desired application, they have several
disadvantages. They still treat ReLUs as a special case, they
require special modification to work with convolutional neu-
ral networks, and they do not offer an obvious generalization
that supports attention (Bahdanau et al., 2014) or residual
networks (He et al., 2016). They also rely on neural net-
works being arranged in hierarchical layers, which is often
not true for modern deep learning architectures.

What we would really like is a coverage metric that is sim-
ple, cheap to compute, and is easily applied to all sorts
of neural network architectures. Thus, we propose storing
the activations (or some subset of them) associated with
each input, and checking whether coverage has increased

on a given input by using an ANN algorithm to see whether
there are any other sets of activations within a pre-specified
distance. We discuss this idea in more detail in Section 5.

4. An Overview of the TensorFuzz Library

Drawing inspiration from the fuzzers described in the previ-
ous section and from the notion of property-based testing,
we have implemented a tool that we call TensorFuzz. It
works in a way that is analogous to those tools, but that
differs in ways that make it more suitable for neural network
testing. Instead of an arbitrary computer program written in
C or C++, it feeds inputs to an arbitrary TensorFlow graph.
Instead of measuring coverage by looking at basic blocks or
changes in control flow, it measures coverage by (roughly
speaking) looking at the “activations” of the computation
graph.

Overview of the fuzzing procecure: The overall struc-
ture of the fuzzing procedure is very similar to the structure
of coverage-guided fuzzers for normal computer programs.
The main difference is that instead of interacting with an
arbitary computer program that we have instrumented, Ten-
sorFuzz interacts with a TensorFlow graph that it can feed
inputs to and get outputs from.

The fuzzer starts with a seed corpus containing at least one
set of inputs for the computation graph. In traditional CGF,
inputs don’t generally have to be perfectly valid — they
may just be random bytes. In TensorFuzz, we restrict the
inputs to those that are valid neural network inputs. If the
inputs are images, we restrict our inputs to have the correct
size and shape, and to lie in the same interval as the input
pixels of the dataset under consideration. If the inputs are
sequences of characters, we only allow characters that are
in the vocabulary extracted from the training set.

Given this seed corpus, fuzzing proceeds as follows: Until
instructed to stop, the fuzzer chooses elements from the
input corpus according to some component we will call the
Input Chooser. For the purpose of this section, it’s ok to
imagine the Input Chooser as choosing uniformly at random,
though we describe more complicated strategies in 5.

Given an input, the Mutator component will perform some
sort of modification to that input. The modification can be as
simple as just flipping the sign of an input pixel in an image,
and it can also be restricted to obey some kind of constraint
on the total modification made to a corpus element over
time — see Section 5 for more on this.

Finally, the mutated inputs can be fed to the neural net-
work. In TensorFuzz, two things are extracted from the
neural network: a set of coverage arrays, from which the
actual coverage will be computed, and a set of metadata
arrays, from which the result of the objective function will

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

be computed.

Once the coverage is computed, the mutated input will be
added to the corpus if it exercises new coverage. The mu-
tated input will be added to the list of test cases if it causes
the objective function to be satisfied. The objective function
is a user defined function that asserts a property that the
graph being fuzzed should obey, as in (Claessen & Hughes,
2011). This property can be something like “this graph
should not report zero loss when the gradient is very large’
or “this graph should not contain non-finite elements”.

bl

See Figure 1 and Algorithm 1 for complementary depictions
of this procedure.

5. Details of the TensorFuzz Library

Input Chooser: At any given time, the fuzzer must
choose which inputs from the existing corpus to mutate.
The optimal choice will of course be problem dependent,
and traditional CGFs rely on a variety of heuristics to make
this determination. For the applications we tested, making a
uniform random selection worked acceptably well, but was
sometimes slow.

There were some contexts in which we attained a consider-
able speed-up by changing the Input Chooser to prioritize
certain inputs over others. For instance, when conducting
the experiment in Section 6, we found that fuzzing was sped
up considerably by preferentially sampling more recently
discovered corpus elements. This is somewhat analogous to
doing depth first search in the input-space, since it makes us
quickly explore some points far from the seed.

Mutator: Once the Input Chooser has chosen an element
of the corpus to mutate, the mutations must be applied. In
TensorFuzz, we have implemented mutation functions that
act on arbitary dense vectors of floats and mutations that are
specialized to image inputs, since a common use-case for
deep neural networks is in image classification.

For image inputs, we implemented two different types of
mutation. The first is to just add white noise of a user-
configurable variance to the input. The second is to add
white noise, but to constrain the difference between the
mutated element and the original element from which it
is descended to have a user-configurable L., norm. This
type of constrained mutation can be useful if we want to
find inputs that satisfy some objective function, but are still
plausibly of the same “class” as the original input that was
used as a seed. In both types of image mutation we clip the
image after mutation so that it lies in the same range as the
inputs used to train the neural network being fuzzed.

Objective Function: Generally we will be running the
fuzzer with some goal in mind. That is, we will want the

neural network to reach some particular state — maybe a
state that we regard as erroneous. The objective function
is used to assess whether that state has been reached. In
CGF, the goal is to find an input causing the program to
crash. Since we are interested in doing PBT, we allow
for arbitrary user-defined goals. When the mutated inputs
are fed into the computation graph, both coverage arrays
and metadata arrays are returned as output. The objective
function is applied to the metadata arrays, and flags inputs
that caused the objective to be satisfied. In this way, the
objective function asserts the property to be tested and the
fuzzer attempts to find a violation of this property.

Coverage Analyzer: The coverage analyzer is in charge
of reading arrays from the TensorFlow runtime, turning
them into Python objects representing coverage, and check-
ing whether that coverage is new. The algorithm by which
new coverage is checked is central to the proper functioning
of the fuzzer.

The characteristics of a desirable coverage checker are as
follows: First, we want it to check if the neural network is in
a state that it hasn’t been in before, so that we can find mis-
behaviors that might not be caught by the test set. We want
this check to be fast (so we probably want it to be simple),
so that we can find many of those misbehaviors quickly. We
also want it to work for many different types of computation
graphs without special engineering, so that practitioners
can use our tooling without having to make special adapta-
tions. Moreover, we want it to be appropriately difficult to
exercise all of the coverage. If every new input generated
new coverage, then we would just be doing random search
over the whole input space. If inputs never generated any
new coverage, then we would just be performing random
mutations on the initial corpus elements. Finally, we want
getting new coverage to help us make incremental progress,
so that continued fuzzing yields continued gains.

As alluded to in Section 3, none the coverage metrics dis-
cussed in Section 3 quite meet all these desiderata, but we
can design from first principles a coverage metric that comes
closer to meeting them.

A brute-force solution to this problem is to read out the
whole activation vector (that is, the whole vector of in-
termediate states from the neural network) and treat new
activation vectors as new coverage. However, such a cov-
erage metric would not provide useful guidance, because
most inputs would trivially yield new coverage. It is better
to detect whether an activation vector is close to one that
was observed previously. One way to achieve this is to use
an ANN algorithm, (as used for Neural Turing Machine
(Graves et al., 2014) memory by Rae et al. (2016)). When
we get a new activation vector, we can look up its nearest
neighbor, then check how far away the nearest neighbor is in

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

Euclidean distance and add the input to the corpus if the dis-
tance is greater than some amount L. This is the approach
we have chosen in the TensorFuzz prototype. Currently, we
use an open source libarary called FLANN (Muja & Lowe,
2014) to compute the approximate nearest neighbors. The
specific search algorithm used is user configurable. This
set-up raises a few questions, which we address now:

Which set of activations should you choose to observe? In
general, you may not need to see all the activations. There
are a few reasons to believe that this is true: First, the Ten-
sorFlow graph can be represented as a DAG. Thus, certain
subsets of the activations deterministically imply the val-
ues for the rest of the activations. Second, it’s well known
that trained neural networks are heavily compressible (see
Cheng et al. (2017) for a survey), so it can in principle suf-
fice to choose only a small subset of the activations. We
leave it to future work to determine the optimal way to ex-
ploit this compressibility, but one speculative idea we have
in this vein is to use something like the procedure in Raghu
et al. (2017) to project activations onto their most impor-
tant directions, and then consider only those directions for
coverage.

In practice, the set of activations to use is presently a matter
for empirical tuning. When fuzzing whole classifiers, we
find it is often possible to obtain good results by tracking
only the logits, or the layer before the logits. The compress-
ibility considerations mentioned above may hint at why this
works OK: the “intrinsic dimension” of the activations is
just not that large. When fuzzing smaller graphs, it may
make sense to just use all of the activations.

How do you choose the distance L? If the distance is too
small, coverage is too easy to find. If it’s too large, coverage
is too hard to find. Both of these situations cause issues,
as described above. In practice, we do the simplest thing
possible: we tune the distance for a given fuzzing problem
by tracking whether the number of new coverage elements
per mutation is neither too high nor too low. This represents
another potential optimization: we could instead automati-
cally modify the distance to maintain a constant rate of new
coverage per mutation.

What are the performance characteristics of ANN in this
context? First we note that, when doing CGF, the size of
the corpus tends to grow quite slowly in comparison with
the number of mutations performed, and we should never
expect the corpus to grow that large. Thus, we ought to care
much more about the cost of checking for new coverage
than the memory use of the corpus. That being said, the
memory usage of the corpus can be quite small for many
choices of the nearest-neighbor algorithm.

Second, our use case seems to require that new elements
be added to the corpus as they are produced, but only some

ANN algorithms support incremental additions to the index,
and incremental additions may require periodic rebalancing.
For now, we simply reconstruct the index periodicially while
keeping a buffer of elements over which the exact nearest
neighbor is computed temporarily. See the open source
release for more details on this.

Third, given the cost of moving data back and forth between
the CPU and the GPU and the large cost of evaluating many
machine learning models, we expect that much of the work
involved in the nearest neighbor computation can be moved
to a “background thread”, so that the GPU is always satu-
rated, as it would be with random search. Anecdotally, this
seems to be true for our current experiments, but we have
not conducted a thorough study of this point.

Finally, note that our particular use case does not re-
quire that we actually retrieve an approximate nearest
neighbor. We only need to know whether such a neigh-
bor exists. This means that we don’t need to store all of the
corpus elements. There are moderately-exotic data struc-
tures (such as distance-sensitive Bloom filters (Kirsch &
Mitzenmacher, 2006)) that support precisely this type of
query, but we haven’t found a usable open-source imple-
mentation of one, so in future work we plan to implement
something similar ourselves. We haven’t done this yet out
of both a general wariness of premature optimization and a
feeling that it’s possible that storage of the elements won’t
become a bottleneck for realistic use-cases.

6. Experimental Results

The goal of these results is to establish that TensorFuzz is
(or can be) a useful general purpose tool that practitioners
could reach for first when trying to perform some kind of
testing or debugging task for neural networks. The model
we aspire to is AFL, which is easy to use on new code-bases
and tasks and performs acceptably well in most of those
cases. We don’t aspire to build a tool that is the very best
at any specific task — this often requires specialization to
that task and sacrifices generality or ease of use. Instead,
we aspire to build a good general purpose tool for neural
network testing and debugging.

This section presents experimental results from four differ-
ent settings. For some of these results we compare with a
random search baseline, and for some we don’t compare to
any sort of baseline. Why don’t we show comparisons to
some of the methods from Section 3? First, as discussed in
that section, many of those coverage definitions are trivial
to completely exercise, and so quickly reduce to random
search. For the rest, it’s not obvious how to apply them
to arbitrary TensorFlow graphs. Moreover, none of those
methods seem to support arbitrary objective functions —
that is, they don’t do generic PBT.

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

TensorFuzz can efficiently find numerical errors in
trained neural networks: Because neural networks use
floating point math (Goldberg, 1991), they are susceptible
to numerical issues, both during training and at evaluation
time. These issues are notoriously hard to debug, partly
because they may only be triggered by a small set of rarely
encountered inputs. This is one case where CGF can help.
We focus on finding inputs that result in not-a-number (NaN)
values.

Numerical errors, especially those resulting in NaNs, could
cause dangerous behavior of important systems if these
errors are first encountered “in the wild”. CGF can be used
to identify errors before deployment, and reduce the risk of
errors occurring in a harmful setting.

With CGF, we should be able to simply add operations to
the metadata that check for non-finite elements and then
run our fuzzer. To test this hypothesis, we trained a fully
connected neural network to classify MNIST (LeCun et al.,
1998) digits. We performed fault injection by using a poorly
implemented cross entropy loss so that there would be a
chance of numerical errors. We trained the model for 35000
steps with a mini-batch size of 100, at which point it had
a validation accuracy of 98%. We then checked that there
were no elements in the MNIST dataset that caused a numer-
ical error. As shown in Figure 2, TensorFuzz found NaNs
quickly across 10 different random initializations.

One potential objection to using CGF techniques is that
gradient-based search techniques might be more efficient.
However, it is not obvious how to specify this objective for
a gradient based search. There is not a straightforward way
to measure how similar a real-valued output of the model is
to a NaN value'.

To establish that random search is insufficient and that cov-
erage guidance is necessary for efficiency, we compared
to random search. > We implemented a baseline random
search algorithm and ran it for 10 million mutations with 10
different random initializations. The baseline was not able
to find a non-finite element in any of these trials.

TensorFuzz surfaces disagreements between models
and their quantized versions: Quantization (Hubara
etal., 2016) is a process by which neural network weights
are stored and neural network computations performed us-

! In principle, if you know exactly where in the neural network
you expect to find the NaN, and you know that e.g., it will come
from a division by 0, then you could use gradient-based optimiza-
tion to find an input that triggered it, but this technique won’t help
you if all you know is that your code has (or may have) a numerical
issue somewhere.

2 By random search we mean a search where we randomly
decide whether a given activation qualifies as new coverage, rather
than using ANN to decide.

unique corpus elements

Figure 2. We trained an MNIST classifier with some unsafe nu-
merical operations. Klees et al. (2018) recommend evaluating
fuzzers with multiple random restarts, so we ran the fuzzer 10
times on random seeds from the MNIST dataset. The fuzzer found
a non-finite element every run. Random search never found a
non-finite element. Left: the accumulated corpus size of the fuzzer
while running, for 10 runs. Right: an example satisfying image
found by the fuzzer. Inspecting the classifier when exposed to the
image on the right, we see that the NaN surfaces because there
was one logit with a very positive value and one logit with a very
negative value, which broke the loss calculation.

ing numerical representations that consist of fewer bits of
computer memory. Quantization is a popular approach to
reducing the computational cost or size of neural networks,
and is widely used for e.g., running inference on cell phones
as in Android Neural Networks API or TFLite and in the con-
text of custom machine learning hardware — e.g., Google’s
Tensor Processing Unit (Jouppi et al., 2017) or NVidia’s
TensorRT. Of course, quantization is not very useful if it
reduces the accuracy of the model too dramatically. Given a
quantized model, it would thus be nice to check how much
quantization reduced the accuracy.

As a baseline experiment, we trained an MNIST classifier
(this time without intentionally introducing numerical is-
sues) using 32-bit floating point numbers. We then truncated
all weights and activations to 16-bits. We then compared
the predictions of the 32-bit and the 16-bit model on the
MNIST test set and found 0 disagreements.

We then ran the fuzzer with mutations restricted to lie in a
radius 0.4 infinity norm ball surrounding the seed images,
using the activations of only the 32-bit model as coverage.
We restrict to inputs near seed images because these inputs
nearly all have unambiguous class semantics. It is less
interesting if two versions of the model disagree on out-of-
domain garbage data with no true class. With these settings,
the fuzzer was able to generate disagreements for 70% of
the examples we tried. Thus, CGF allowed us to find real
errors that could have occured at test time. See Figure 3 for
more details.

As in Section 6 we tried a baseline random search method in
order to demonstrate that the coverage guidance specifically
was useful in this context. The random search baseline was
not able to find any disagreements when given the same

 https://developer.android.com/ndk/guides/neuralnetworks/
 https://www.tensorflow.org/mobile/tflite/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

unique corpus elements

150000 200000 250000
inputs tried

Figure 3. We trained an MNIST classifier with 32-bit floats and
then truncated the associated TensorFlow graph to 16-bit floats.
Both the original and the truncated graph made the same predic-
tions on all 10000 elements of the MNIST test set, but the fuzzer
was able to find disagreements within an infinity-norm ball of ra-
dius 0.4 around 70% of the test images that we tried to fuzz. Left:
the accumulated corpus size of the fuzzer while running, for 10
runs. Lines that go all the way to the right correspond to failed
fuzzing runs. Right: an image found by the fuzzer that is classified
differently by the 32-bit and 16-bit neural networks.

number of mutations as the fuzzer.?

TensorFuzz can find real bugs in popular model imple-
mentations: Another application of TensorFuzz is to help
with testing of TensorFlow code. If we have a library of
Python functions that instantiate TensorFlow graphs, we
can write down properties that we would like each func-
tion to satisfy, express the violation of this property as the
TensorFuzz objective function, and then run TensorFuzz for
as long as we think is appropriate. If TensorFuzz satisfies
the objective, we consider the test failed. This application
seems promising to us because it allows for fuzzing to be
easily integrated with the workflow of developing machine
learning models.

To corroborate this intuition, we wrote several tests for a
popular TensorFlow implementation of a machine learn-
ing model. In particular, we add tests to the code from
https://github.com/carpedm20/DCGAN-tensorflow. This is
a very popular (it has roughly 4700 GitHub stars) imple-
mentation of the DCGAN model (Radford et al., 2015). We
already knew that the loss function had a certain issue such
that if you made the learning rate too high, the loss would
get stuck at a very high value.

Thus, we hooked up TensorFuzz to the sub-graph defined
by the loss function and wrote an objective that would be

* It might not be obvious why we have chosen to compare
based on number of mutations rather than wall-clock time. There
are two reasons. First, for the experiments described here, the
computation is theoretically bottlenecked on the neural network
forward pass, not the ANN lookup time. Second, to keep the com-
parison straightforward, we implemented random search inside
TensorFuzz by just accepting all new inputs into the corpus. The
lookup technically still happens, which means that the wall-clock
time would not be reduced.

satisfied if the loss was high and the gradient was close to
ZEero.

TensorFuzz was able to quickly find a satsifying input. The
input was one in which the output of the discriminator had
too high a magnitude, which caused the incorrectly imple-
mented loss function to have saturating gradients. In this
way, TensorFuzz was able to reproduce a known issue in a
real, heavily used piece of TensorFlow code.

TensorFuzz can help make semantics-preserving code
transformations: When implementing a machine learn-
ing model, it’s common to have the following problem: You
would like to make a change to your code that preserves
the semantics of the model. However, this can be diffi-
cult, because you may not be able to reason formally about
how different operations compose, or you might be worried
about numerical differences between seemingly equivalent
implementations. You might want to make one of these
transformations for a variety of reasons. Maybe the change
is preparation for a future change that will modify semantics.
Maybe the the change is just a refactoring. Maybe you are
trying to optimize your code. We will consider an example
of this last case. In particular, we optimized TensorFlow’s
implementation of batch-wise random flipping of images.

First, we “attached” TensorFuzz to two copies of the old
implementation and wrote an objective function asserting
that both implementations are the same. Having done this,
we could then make incremental changes to one of the im-
plementations while asserting that each change did not mod-
ify the semantics for a large set of possible inputs. Since
the operation involves pseudorandom number generators
(PRNGs), this involved carefully setting all of the graph
level and operation level seeds, but once this was done it
provided a high degree of assurance. Of course, this pro-
cedure can yield false negatives, but in the absence of the
abilility to do equational reasoning it is a strong tool.

7. Conclusion

This paper has introduced coverage-guided fuzzing for neu-
ral networks and described how to build a useful coverage
checker in this context. We have demonstrated the practical
utility of TensorFuzz by finding numerical errors, exposing
disagreements between neural networks and their quantized
versions, surfacing broken loss functions in popular reposito-
ries, and making performance improvements to TensorFlow.
Finally, we have released an open source libary so that other
researchers can build on this work and so that practitioners
can use it to test their machine learning code.

 https://github.com/carpedm20/DCGAN-tensorflow

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

Acknowledgments

We thank Kostya Serebryany for helpful explanations of
libFuzzer. We thank Rishabh Singh, Alexey Kurakin, and
Martin Abadi for general input.

References

aalgo. Kgraph, 2012. URL https://github.com/
aaalgo/kgraph.

Aizatsky, M., Serebryany, K., Chang, O., Arya, A., and
Whittaker, M. Announcing oss-fuzz: Continuous fuzzing
for open source software. Google Testing Blog, 2016.

Andoni, A. and Indyk, P. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In
Foundations of Computer Science, 2006. FOCS’06. 47th
Annual IEEE Symposium on, pp. 459-468. IEEE, 2006.

Andoni, A. and Razenshteyn, I. Optimal data-dependent
hashing for approximate near neighbors. In Proceedings
of the forty-seventh annual ACM symposium on Theory
of computing, pp. 793-801. ACM, 2015.

Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, 1., and
Schmidt, L. Practical and optimal Ish for angular distance.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama,
M., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 28, pp. 1225-1233. Curran
Associates, Inc., 2015.

Andoni, A., Indyk, P, and Razenshteyn, I. Approxi-
mate nearest neighbor search in high dimensions. arXiv
preprint arXiv:1806.09823, 2018.

Angelova, A., Krizhevsky, A., Vanhoucke, V., Ogale, A. S.,
and Ferguson, D. Real-time pedestrian detection with
deep network cascades.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Berk, R., Heidari, H., Jabbari, S., Kearns, M., and Roth, A.
Fairness in criminal justice risk assessments: the state of
the art. arXiv preprint arXiv:1703.09207, 2017.

Bernhardsson, E. Approximate nearest neighbors oh yeah,
2012. URL https://github.com/spotify/
annoy.

Bernhardsson, E. ann-benchmarks, 2017. URL https:
//github.com/erikbern/ann-benchmarks.

Bohme, M., Pham, V.-T., Nguyen, M.-D., and Roychoud-
hury, A. Directed greybox fuzzing. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2329-2344. ACM, 2017a.

Bohme, M., Pham, V.-T., and Roychoudhury, A. Coverage-
based greybox fuzzing as markov chain. IEEE Transac-
tions on Software Engineering, 2017b.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Chen, T. Y. and Yiu, S. M. Metamorphic testing: a new
approach for generating next test cases. Technical report.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. A survey
of model compression and acceleration for deep neural
networks. CoRR, abs/1710.09282, 2017. URL http:
//arxiv.org/abs/1710.09282.

Claessen, K. and Hughes, J. Quickcheck: a lightweight
tool for random testing of haskell programs. Acm sigplan
notices, 46(4):53-64, 2011.

Elhage, N. Property-based testing is fuzzing, 2017.
URL https://blog.nelhage.com/post/
property-testing-is-fuzzing/.

Fedus, W., Rosca, M., Lakshminarayanan, B., Dai, A. M.,
Mohamed, S., and Goodfellow, I. Many paths to equi-
librium: GANs do not need to decrease a divergence at
every step. International Conference on Learning Repre-
sentations, 2018.

Foerster, J. Nonlinear computation in deep linear net-
works, 2017. URL https://blog.openai.com/

nonlinear—-computation—-in-linear—networks/.

Gallant, A. Quickcheck for rust, 2018. URL https:
//github.com/BurntSushi/quickcheck.

Goldberg, D. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys
(CSUR), 23(1):5-48, 1991.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu,
D., Narayanaswamy, A., Venugopalan, S., Widner, K.,
Madams, T., Cuadros, J., et al. Development and valida-
tion of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. Jama, 316(22):
2402-2410, 2016.

Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., and Rier-
son, L. K. A practical tutorial on modified condition/de-
cision coverage. 2001.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

https://github.com/aaalgo/kgraph
https://github.com/aaalgo/kgraph
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282
https://blog.nelhage.com/post/property-testing-is-fuzzing/
https://blog.nelhage.com/post/property-testing-is-fuzzing/
https://blog.openai.com/nonlinear-computation-in-linear-networks/
https://blog.openai.com/nonlinear-computation-in-linear-networks/
https://github.com/BurntSushi/quickcheck
https://github.com/BurntSushi/quickcheck

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

Holser, P. junit-quickcheck, 2018. URL https://
github.com/pholser/junit—-quickcheck/.

Hubara, 1., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neu-
ral networks with low precision weights and activations.
arXiv preprint arXiv:1609.07061, 2016.

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W.,
Pazhayampallil, J., Andriluka, M., Rajpurkar, P., Migi-
matsu, T., Cheng-Yue, R., et al. An empirical evaluation
of deep learning on highway driving. arXiv preprint
arXiv:1504.01716, 2015.

Hypothesis. Hypothesis, 2018. URL https://github.
com/HypothesisWorks/hypothesis.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604-613. ACM, 1998.

Jouppi, N. P,, Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, pp. 1-12.
ACM, 2017.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification, pp. 97-117. Springer, 2017.

Ke, R. N., Goyal, A., Lamb, A., Pineau, J., Bengio, S., and
Bengio, Y. (eds.). Reproducibility in Machine Learning
Research, 2017.

Kirsch, A. and Mitzenmacher, M. Distance-sensitive bloom
filters. In 2006 Proceedings of the Eighth Workshop on
Algorithm Engineering and Experiments (ALENEX), pp.
41-50. SIAM, 2006.

Klees, G. T., Ruef, A., Cooper, B., Wei, S., and Hicks,
M. Evaluating fuzz testing. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), October 2018.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 1998.

Lipton, Z. C. The mythos of model interpretability. arXiv
preprint arXiv:1606.03490, 2016.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bous-
quet, O. Are GANs created equal? A large-scale study.
arXiv preprint arXiv:1711.10337, 2017.

Luu, D. Afl + quickcheck = ?, 2015. URL https://
danluu.com/testing/.

Ma, L., Juefei-Xu, F.,, Sun, J., Chen, C., Su, T., Zhang,
F., Xue, M., Li, B, Li, L., Liu, Y., Zhao, J., and Wang,
Y. Deepgauge: Comprehensive and multi-granularity
testing criteria for gauging the robustness of deep learning
systems. CoRR, abs/1803.07519, 2018. URL http:
//arxiv.org/abs/1803.075109.

Maclver, D. R. What is property based testing, 2017.
URL https://hypothesis.works/articles/
what-is—-property-based-testing/.

Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov,
V. Approximate nearest neighbor algorithm based on
navigable small world graphs. Information Systems, 45:
61-68, 2014.

Melis, G., Dyer, C., and Blunsom, P. On the state of the
art of evaluation in neural language models. In Proceed-
ings of the 6th International Conference on Learning
Representations, 2018.

Muja, M. and Lowe, D. G. Scalable nearest neighbor al-
gorithms for high dimensional data. IEEE transactions
on pattern analysis and machine intelligence, 36(11):
2227-2240, 2014.

Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., and Good-
fellow, L. J. Realistic evaluation of deep semi-supervised
learning algorithms. CoRR, abs/1804.09170, 2018. URL
http://arxiv.org/abs/1804.09170.

Pei, K., Cao, Y., Yang, J., and Jana, S. Deepxplore: Auto-
mated whitebox testing of deep learning systems. CoRR,
abs/1705.06640, 2017. URL http://arxiv.org/
abs/1705.06640.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. CoRR, abs/1511.06434, 2015. URL
http://arxiv.org/abs/1511.06434.

Rae, J. W,, Hunt, J. J., Harley, T., Danihelka, I., Senior,
A., Wayne, G., Graves, A., and Lillicrap, T. P. Scaling
Memory-Augmented Neural Networks with Sparse Reads
and Writes. ArXiv e-prints, October 2016.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein,
J. Svcca: Singular vector canonical correlation analy-
sis for deep learning dynamics and interpretability. In

Advances in Neural Information Processing Systems, pp.
6076-6085, 2017.

https://github.com/pholser/junit-quickcheck/
https://github.com/pholser/junit-quickcheck/
https://github.com/HypothesisWorks/hypothesis
https://github.com/HypothesisWorks/hypothesis
https://danluu.com/testing/
https://danluu.com/testing/
http://arxiv.org/abs/1803.07519
http://arxiv.org/abs/1803.07519
https://hypothesis.works/articles/what-is-property-based-testing/
https://hypothesis.works/articles/what-is-property-based-testing/
http://arxiv.org/abs/1804.09170
http://arxiv.org/abs/1705.06640
http://arxiv.org/abs/1705.06640
http://arxiv.org/abs/1511.06434

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

Scarborough, D. and Somers, M. J. Neural networks in
organizational research: Applying pattern recognition
to the analysis of organizational behavior. American
Psychological Association, 2006.

Sen, K., Marinov, D., and Agha, G. Cute: a concolic unit
testing engine for c. In ACM SIGSOFT Software Engi-
neering Notes, volume 30, pp. 263-272. ACM, 2005.

Serebryany, K. Libfuzzer: A library for coverage-guided
fuzz testing (within llvm), 2016.

Shakhnarovich, G., Darrell, T., and Indyk, P. Nearest-
neighbor methods in learning and vision: theory and
practice (neural information processing). 2006.

Siano, P., Cecati, C., Yu, H., and Kolbusz, J. Real time
operation of smart grids via FCN networks and optimal
power flow. IEEE Transactions on Industrial Informatics,
8(4):944-952, 2012.

Sun, Y., Huang, X., and Kroening, D. Testing Deep Neural
Networks. ArXiv e-prints, March 2018a.

Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M.,
and Kroening, D. Concolic Testing for Deep Neural
Networks. ArXiv e-prints, April 2018b.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tian, Y., Pei, K., Jana, S., and Ray, B. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars.
CoRR, abs/1708.08559, 2017. URL http://arxiv.
org/abs/1708.08559.

Wicker, M., Huang, X., and Kwiatkowska, M. Feature-
guided black-box safety testing of deep neural networks.
CoRR, abs/1710.07859, 2017. URL http://arxiv.
org/abs/1710.078509.

Zalewski, M. American fuzzy lop, 2007.

http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1710.07859
http://arxiv.org/abs/1710.07859

