
Approximation and Non-parametric Estimation of
ResNet-type Convolutional Neural Networks

(Supplemental Material)

Kenta Oono 1 2 Taiji Suzuki 1 3

Abstract
In this supplemental material, we give proofs of theorems and corollaries in the main article. We prove them in
more general form. Specifically, we allow CNNs to have residual blocks with different depth and each residual
block to have varying numbers of channels and filter sizes. Similarly, FNNs can have blocks with different depth,
and the width of a block can be non-constant.

A. Notation
For tensor a, we define the positive part of a by a+ := a ∨ 0 where the maximum operation is performed in element-wise
manner. Similarly the negative part of a is defined as a− := −a ∨ 0. Note that a = a+ − a− holds for any tensor a.
For normed spaces (V, ‖ · ‖V), (W, ‖ · ‖W) and a linear operator T : V → W we denote the operator norm of T by
‖T‖op := sup‖v‖V =1 ‖Tv‖W . For a sequence w = (w(1), . . . , w(L)) and l ≤ l′, we denote its subsequence from the l-th
to l′-th elements by w[l : l′] := (w(l), . . . , w(l′)).

B. Definitions
We define general types of ResNet-type CNNs and block-sparse FNNs.

Definition 6 (Convolutional Neural Networks (CNNs)). Let M ∈ N+ and Lm ∈ N+, which will be the number of residual
blocks and the depth of m-th block, respectively. Let C(l)

m ,K
(l)
m be the channel size and filter size of the l-th layer of the m-th

block for m ∈ [M] and l ∈ [Lm]. We assume C(L1)
1 = · · · = C

(LM)
M and denote it by C(0). Let w(l)

m ∈ RK(l)
m ×C

(l)
m ×C

(l−1)
m

and b(l)m ∈ R be the weight tensors and biases of l-th layer of the m-th block in the convolution part, respectively. Here C(0)
m

is defined asC(0). Finally, letW ∈ RD×C
(L0)
0 and b ∈ R be the weight matrix and the bias for the fully-connected layer part,

respectively. For θ := ((w
(l)
m)m,l, (b

(l)
m)m,l,W, b) and an activation function σ : R → R, we define CNNσ

θ : RD → RD,
the CNN constructed from θ, by

CNNσ
θ := FCid

W,b ◦ (ConvσwM ,bM + id) ◦ · · · ◦ (Convσw1,b1 + id) ◦ P,

where Convσwm,bm := Convσ
w

(Lm)
m ,b

(Lm)
m

◦ · · · ◦ Convσ
w

(1)
m ,b

(1)
m

, id : RD×C(0) → RD×C(0)

is the identity function, and

P : RD → RD×C(0)

;x 7→
[
x 0 · · · 0

]
is a padding operation that adds zeros to align the number of channels.

Definition 7 (Fully-connected Neural Networks (FNNs)). Let M ∈ N+ be the number of blocks in an FNN. Let Dm =

(D
(1)
m , . . . , D

(Lm)
m) ∈ NLm+ be the sequence of intermediate dimensions of the m-th block, where Lm ∈ N+ is the depth of

the m-th block for m ∈ [M]. Let W (l)
m ∈ RD(l)

m ×D
(l−1)
m and b(l)m ∈ RD(l)

m be the weight matrix and the bias of the l-th layer

1Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan 2Preferred Networks, Inc.
(PFN), Tokyo, Japan 3Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan. Correspondence to: Kenta Oono
<kenta oono@mist.i.u-tokyo.ac.jp>.

Proceedings of the 36 th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by
the author(s).

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Figure 3. ResNet-type CNN defined in Definition 6. Variables are as in Definition 6.

of m-th block (with the convention D(0)
m = D). Let wm ∈ RD(Lm)

m be the weight (sub)vector of the final fully-connected
layer corresponding to the m-th block and b ∈ R be the bias for the last layer. For θ = ((W

(l)
m)m,l, (b

(l)
m)m,l, (wm)m, b)

and an activation function σ : R→ R, we define FNNσ
θ : RD → R, the block-sparse FNN constructed from θ, by

FNNσ
θ :=

M∑
m=1

w>mFCσWm,bm(·)− b,

where FCσWm,bm := FCσ
W

(Lm)
m ,b

(Lm)
m

◦ · · ·FCσ
W

(1)
m ,b

(1)
m

.

Figure 3 shows the schematic view of a ResNet-type CNNs defined in Definition 6 and Figure 4 shows that of Definition
7. Definition 6 is reduced to Definition 1 by setting Lm = L, C = (C)m,l and K = (K)m,l. Similarly, Definition 2 is a
special case of Definition 7 where Lm = L andD = (C)m,l. Correspondingly, we denote the set of functions realizable by
CNNs and FNNs by F (CNN)

C,K,B(conv),B(fc) and F (FNN)

D,B(bs),B(fin) , respectively 1.

C. Proof of Theorem 1
We restate Theorem 1 in more general form. Note that Theorem 1 is a special case of Theorem 5 where width, depth,
channel sizes and filter sizes are same among blocks.

Theorem 5. Let M ∈ N+, K ∈ {2, . . . D}, and L0 :=
⌈
D−1
K−1

⌉
. Let Lm, D

(l)
m ∈ N+ andD = (D

(l)
m)m,l for m ∈ [M] and

l ∈ [Lm]. Then, there exist L′m ∈ N+, C = (C
(l)
m)m,l, and K = (K

(l)
m)m,l (m ∈ [M], l ∈ [L′m]) satisfying the following

properties:

1. L′m ≤ Lm + L0 (∀m ∈ [M]),

2. max
l∈[L′m]

C(l)
m ≤ 4 max

l∈[Lm]
D(l)
m (∀m ∈ [M]), and

3. max
l∈[L′m]

K(l)
m ≤ K (∀m ∈ [M], ∀l ∈ [L′m])

such that for any B(bs), B(fin) > 0, any FNN in F (FNN)

D,B(bs),B(fin) can be realized by a CNN in F (CNN)

C,K,B(conv),B(fc) . Here,

B(conv) = B(bs) and B(fc) = B(fin)(1 ∨ (B(bs))−1). Further, if L1 = · · · = LM , then we can choose L′m to be a same
value.

Remark 1. For K ≤ K ′, we can embed RK into RK′ by inserting zeros: w = (w1, . . . , wK) 7→ w′ =
(w1, . . . , wK , 0, . . . , 0). It is easy to show Lw = Lw

′
. Using this equality, we can expand a size-K filter to size-K ′.

1Note that information of M and Lm are included in C, K, and D. Therefore, we do not have to put them as subscripts

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Figure 4. Schematic view of a block-sparse FNN. Variables are as in Definition 7.

Furthermore, we can arbitrary increase the number of output channels of a convolution layer by adding filters consisting of
zeros. Therefore, although properties 2 and 3 allow C

(l)
m and K(l)

m to be different values, we can choose C(l)
m and K(l)

m so
that inequalities in property 2. and 3. are actually equals by adding filters consisting of zeros. In particular, when D(l)

m ’s are
same value, we can choose C(l)

m to be same.

C.1. Proof Overview

For f (FNN) ∈ F (FNN), we realize a CNN f (CNN) usingM residual blocks by “serializing” blocks in the FNN and converting
them into convolution layers.

First we multiply the channel size by three using the first padding operation. We will use the first channel for storing the
original input signal for feeding to downstream blocks and the second and third ones for accumulating properly scaled outputs
of each blocks, that is,

∑m′

m=1 w
>
mFCReLU

Wm,bm(x) where wm is the weight of the final fully-connected layer corresponding to
the m-th block.

For m = 1, . . . ,M , we create the m-th residual block from the m-th block of f (FNN). First, we show that for any a ∈ RD
and t ∈ R, there exists L0-layered 4-channel ReLU CNN with O(D) parameters whose first output coordinate equals to a
ridge function x 7→ (a>x− t)+ (Lemma 1 and Lemma 2). Since the first layer of m-th block is concatenation of C hinge
functions, it is realizable by a 4C-channel ReLU CNN with L0-layers.

For the l-th layer of the m-th block (m ∈ [M], l = 2, . . . , L′m), we prepare C size-1 filters made from the weight parameters
of the corresponding layer of the FNN. Observing that the convolution operation with size-1 filter is equivalent to a
dimension-wise affine transformation, the first coordinate of the output of l-th layer of the CNN is inductively same as that of
the m-th block of the FNN. After computing the m-th block FNN using convolutions, we add its output to the accumulating
channel in the identity mapping.

Finally, we pick the first coordinate of the accumulating channel and subtract the bias term using the final affine transforma-
tion.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

C.2. Decomposition of Affine Transformation

The following lemma shows that any affine transformation is realizable with a
⌈
D−1
K−1

⌉
-layered linear conventional CNN

(without the final fully-connect layer).

Lemma 1. Let a ∈ RD, t ∈ R, K ∈ {2, . . . , D − 1}, and L0 :=
⌈
D−1
K−1

⌉
. Then, there exists

w(l) ∈


RK×2×1 (for l = 1)
RK×2×2 (for l = 2, . . . , L0 − 1)
RK×1×2 (for l = L0)

and b ∈ R such that

1. max
l∈[Lo]

‖wm‖∞ = ‖a‖∞, max
l∈[L0]

‖b(l)‖∞ = |t|, and

2. Convid
w,b : RD → RD satisfies Convid

w,b(x) = a>x− t for any x ∈ [−1, 1]D.

Proof. First, observe that the convolutional layer constructed from u =
[
u1 . . . uK

]> ∈ RK×1×1 takes the inner product

with the first K elements of the input signal: Lu(x) =
∑K
k=1 ukxk. In particular, u =

[
0 . . . 0 1

]> ∈ RK×1×1

works as the “left-translation” by K − 1. Therefore, we should define w so that it takes the inner product with the K
left-most elements in the first channel and shift the input signal by K − 1 with the second channel. Specifically, we define
w = (w(1), . . . , w(L0)) by

(w(1)):,1,: =

 a1

...
aK

 , (w(1)):,2,: =


0
...
0
1

 ,

(w(l)):,1,: =

0 a(l−1)K+1

...
...

0 alK

 , (w(l)):,2,: =


0 0
...

...
0 0
1 0

 ,

(w(L0)):,1,: =



0 a(L0−1)K+1

...
...

0 aD
0 0
...

...
0 0


.

We set b := (0, . . . , 0︸ ︷︷ ︸
L0 − 1 times

, t). Then, w and b satisfy the condition of the lemma.

C.3. Transformation of a Linear CNN into a ReLU CNN

The following lemma shows that we can convert any linear CNN to a ReLU CNN that has approximately 4 times larger
parameters. This type of lemma is also found in Petersen & Voigtlaender (2018b) (Lemma 2.3). The constructed network
resembles to a CNN with CReLU activation (Shang et al., 2016).

Lemma 2. Let C = (C(1), . . . , C(L)) ∈ NL+ be channel sizes K = (K(1), . . . ,K(L)) ∈ NL+ be filter sizes. Let
w(l) ∈ RK(l)×Cl×C(l)

and b(l) ∈ R(l). Consider the linear convolution layers constructed from w and b: fid := Convid
w,b :

RD → RD×C(L)NL+ where w = (w(l))l and b = (b(l))l . Then, there exists a pair w̃ = (w̃(l))l∈[L], b̃ = (b̃(l))l∈[L] where

w̃(l) ∈ RK(l)×2C(l)×2C(l−1)

and b̃(l) ∈ R2C(l)

such that

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

1. max
l∈[L]
‖w̃(l)‖∞ = max

l∈[L]
‖w(l)‖∞, max

l∈[L]
‖b̃(l)‖∞ = max

l∈[L]
‖b(l)‖∞, and

2. fReLU := ConvReLU
w̃,b̃

: RD → RD×2C(L)

, satisfies fReLU(·) = (fid(·)+, fid(·)−).

Proof. We define w̃ and b̃ as follows:

(w̃(1))k,:,: =

[
(w(1))k,:,:
−(w(1))k,:,:

]
for k = 1, . . . ,K(1),

(w̃(l))k,:,: =

[
(w(l))k,:,: −(w(l))k,:,:
−(w(l))k,:,: (w(l))k,:,:

]
for k = 1, · · ·K(l),

b̃(l) =

[
b(l)

−b(l)
]

By definition, a pair (w̃, b̃) satisfies the conditions (1) and (2). For any x ∈ RD, we set y(l) := Convid
w[1:l],b[1:l](x) ∈

RC(l)×D. We will prove

ConvReLU
w̃[1:l],b̃[1:l]

(x) =
[
y

(l)
+ y

(l)
−

]>
(1)

for l = 1, . . . , L by induction. Note that we obtain fReLU(·) = (fid+(·), fid−(·)) by setting l = L. For l = 1, by definition
of w̃(1) we have,

(w̃(1))α,:,:x
β,: =

[
(w(1))α,:,:x

β,:

−(w(1))α,:,:x
β,:

]
for any α, β ∈ [D]. Summing them up and using the definition of b̃(1) yield

[Lw̃
(1)

(x)− 1D ⊗ b̃(1)]> =

[
Lw

(1)

(x)− 1D ⊗ b(1)

−
(
Lw

(1)

(x)− 1D ⊗ b(1)
)]>

Suppose (1) holds up to l (l < L), by the definition of w̃(l+1),

(w̃(l+1))α,:,:

[
(y

(l)
+)β,:

(y
(l)
−)β,:

]
=

[
(w(l+1))α,:,: −(w(l+1))α,:,:
−(w(l+1))α,:,: (w(l+1))α,:,:

][
(y

(l)
+)β,:

(y
(l)
−)β,:

]

=

 (w(l+1))α,:,:

(
(y

(l)
+)β,: − (y

(l)
−)β,:

)
−(w(l+1))α,:,:

(
(y

(l)
+)β,: − (y

(l)
−)β,:

)
=

[
(w(l+1))α,:,:(y

(l))β,:

−(w(l+1))α,:,:(y
(l))β,:

]
for any α, β ∈ [D]. Again, by taking the summation and using the definition of b̃(l+1), we get

[Lw̃
(l+1)

([y
(l)
+ , y

(l)
−])− 1D ⊗ b̃(1)]> =

[
Lw

(l+1)

(y(l))− 1D ⊗ b(l+1)

−
(
Lw

(l+1)

(y(l))− 1D ⊗ b(l+1)
)]> .

By applying ReLU, we get

ConvReLU
w̃(l+1),b̃(l+1)

(
[y

(l)
+ , y

(l)
−]
)

= ReLU
(

[y(l+1),−y(l+1)]
)
. (2)

By using the induction hypothesis, we get

ConvReLU
w̃[1:(l+1)],b̃[1:(l+1)]

(x) = ConvReLU
w̃(l+1),b̃(l+1)

(
[y

(l)
+ , y

(l)
−]
)

= ReLU
(

[y(l+1),−y(l+1)]
)

= [y
(l+1)
+ ,−y(l+1)

−]

Therefore, the claim holds for l + 1. By induction, the claim holds for L, which is what we want to prove.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

C.4. Concatenation of CNNs

We can concatenate two CNNs with the same depths and filter sizes in parallel. Although it is almost trivial, we state it
formally as a proposition. In the following proposition, C(0) and C ′(0) is not necessarily 1.

Proposition 1. Let C = (C(l))l∈[L], C ′ = (C ′
(l)

)l∈[L], and K = (K(l))l∈[L] ∈ NL+. Let w(l) ∈ RK(l)×C(l)×C(l−1)

,

b ∈ RC(l)

and denote w = (w(l))l and b = (b(l))l. We define w′ and b′ in the same way, with the exception that C(l) is
replaced with C ′(l). We define w̃ = (w̃(1), . . . , w̃(L)) and b̃ = (b̃(1), . . . , b̃(L)) by

(w̃(l))k,:,: :=

[
w(l) 0

0 w′
(l)

]
∈ R(C(l)+C′(l))×(C(l−1)+C′(l−1))

b̃(l) :=

[
b(l)

b′
(l)

]
∈ R(C(l)+C′(l))

for l ∈ [L] and k ∈ [K(l)]. Then, we have,

Convσ
w̃,b̃

(
[
x x′

]
) =

[
Convσw,b(x) Convσw′,b′(x

′)
]

for any x, x′ ∈ RD×C(0)

and any σ : R→ R.

Note that by the definition of ‖ · ‖0 and ‖ · ‖∞, we have

max
l∈[L]
‖w̃(l)‖∞ = max

l∈[L]
‖w(l)‖∞ ∨ ‖w′

(l)‖∞, and

max
l∈[L]
‖b̃(l)‖∞ = max

l∈[L]
‖b(l)‖∞ ∨ ‖b′

(l)‖∞.

C.5. Proof of Theorem 5

By the definition of F (FNN)

D,B(bs),B(fin) , there exists a 4-tuple θ = ((W
(l)
m)m,l, (b

(l)
m)m,l, (wm)m, b) compatible with (D

(l)
m)m,l

(m ∈ [M] and l ∈ [Lm]) such that

max
m∈[M],l∈[Lm]

(‖W (l)
m ‖∞ ∨ ‖b(l)m ‖∞) ≤ B(bs),

max
m∈[M]

‖wm‖∞ ∨ |b| ≤ B(fin),

and f (FNN) = FNNReLU
θ . We will construct the desired CNN consisting of M residual blocks, whose m-th residual

block is made from the ingredients of the corresponding m-th block in f (FNN) (specifically, Wm := (W
(l)
m)l∈[Lm],

bm := (b
(l)
m)l∈[Lm], and wm).

[Padding Block]: We prepare the padding operation P that multiply the channel size by 3 (i.e., we set C(0) = 3).

[m = 1, . . . ,M Blocks]: For fixed m ∈ [M], we first create a CNN realizing FCReLU
Wm,bm . We treat the first layer (i.e.

l = 1) of FCReLU
Wm,bm as concatenation of D(1)

m hinge functions RD 3 x 7→ fd(x) := ((W
(1)
m)dx − b(1)

m)+ for d ∈ [D
(1)
m].

Here, (W
(1)
m)d ∈ R1×D is the d-th row of the matrix W (1)

m ∈ RD(1)
m ×D. We apply Lemma 1 and Lemma 2 and obtain ReLU

CNNs realizing the hinge functions. By combining them in parallel using Proposition 1, we have a learnable parameter θ(1)
m

such that the ReLU CNN ConvReLU

θ
(1)
m

: RD×2 → RD×2D(1)
m constructed from θ

(1)
m satisfies

ConvReLU

θ
(1)
m

(
[
x x′

]>
)1 =

[
f1(x) ∗ · · · f

D
(1)
m

(x) ∗
]>

.

Since we double the channel size in the m = 0 part, the identity mapping has 2 channels. Therefore, we made ConvReLU

θ
(1)
m

so
that it has 2 input channels and neglects the input signals coming from the second one. This is possible by adding filters
consisting of zeros appropriately.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Next, for l-th layer (l = 2, . . . , Lm), we prepare size-1 filters w(2)
m ∈ R1×D(2)

m ×2D(1)

m for l = 2 and w(l)
m ∈ R1×D(l)

m ×2D(l−1)
m

for l = 3, . . . , D
(Lm)
m defined by

(w(l)
m)1,:,: :=

{
W

(2)
m ⊗

[
1 0

]
if l = 2

W
(l)
m if l = 3, . . . , D

(Lm)
m ,

where⊗ is the Kronecker product of matrices. Intuitively, the l = 2 layer will pick all odd indices of the output of ConvReLU

θ
(1)
m

and apply the fully-connected layer. We construct CNNs from θ
(l)
m := (w

(l)
m , b

(l)
m) (l ≥ 2) and concatenate them along with

ConvReLU

θ
(1)
m

:

Convm := ConvReLU

θ
(Lm)
m

◦ · · · ◦ ConvReLU

θ
(2)
m
◦ ConvReLU

θ
(1)
m

.

Note that ConvReLU

θ
(l)
m

(l ≥ 2) just rearranges parameters of FCReLU
Wm,bm . The output dimension of Convm is either RD×2D(Lm)

m

(if Lm = 1) or RD×D(Lm)
m (if Lm ≥ 2)., We denote the output channel size (either 2D

(Lm)
m or D(Lm)

m) by D(out)
m . By the

inductive calculation, we have

Convm(x)1 =

{
FCReLU

Wm,bm(x)⊗
[
1 0

]
if Lm = 1

FCReLU
Wm,bm(x) if Lm ≥ 2

.

By definition, Convm has L0 + Lm − 1 layers and at most 4D
(1)
m ∨maxl=2,...Lm D

(l)
m ≤ 4 maxl∈[Lm]D

(l)
m channels. The

∞-norm of its parameters does not exceed that of parameters in FCReLU
Wm,bm .

Next, we consider the filter w̃m ∈ R1×3×D(out)
m defined by

(w̃m)1,:,: =
B(bs)

B(fin)




0 · · · 0

wm ⊗
[
0 1

]
−wm ⊗

[
0 1

]
 if Lm = 1

0 · · · 0

wm

−wm

 if Lm ≥ 2

,

Then, Conv′m := ConvReLU
w̃m,0 adds the output of m-th residual block, weighted by wm, to the second channel in the identity

connections, while keeping the first channel intact. Note that the final layer of each residual block does not have the ReLU
activation. By definition, Conv′m has D(Lm)

m parameters.

Given Convm and Conv′m for each m ∈ [M], we construct a CNN realizing FNNReLU
θ . Let f (conv) : RD → RD×3 be the

sequential interleaving concatenation of Convm and Conv′m, that is,

f (conv) := (Conv′M ◦ ConvM + I) ◦ · · · ◦ (Conv′1 ◦ Conv1 + I) ◦ P.

Then, we have

f
(conv)
1,: =

[
0 z1 z2

]
∈ R3

where z1 = B(bs)

B(fin)

∑M
m=1

(
w>mFCReLU

Wm,bm

)
+

and z2 = B(bs)

B(fin)

∑M
m=1

(
w>mFCReLU

Wm,bm

)
−.

[Final Fully-connected Layer] Finally, we set

w :=

 0 0 · · · 0
B(fin)

B(bs) 0 · · · 0

−B
(fin)

B(bs) 0 · · · 0

 ∈ RD×3

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

and put FCid
w,b on top of f (conv) to pick the first coordinate of f (conv) and subtract the bias term. By definition, f (CNN) :=

FCid
w,b ◦ f (conv) satisfies f (CNN) = f (FNN).

[Property Check] We will check f (FNN) satisfies the desired properties. (Property 1): Since Convm and Conv′m has
L0 + Lm − 1 and 1 layers, respectively, the m(≥ 1)-th residual block of f (CNN) has L′m = L0 + Lm layers. In particular,
if Lm’s are same, we can choose L′m to be the same value L0 + Lm. (Property 2): Convm has at most 4 maxl∈[Lm]D

(l)
m

channels and Conv′m has at most 2 channels, respectively. Therefore, the channel size of the m-th block is at most
4 maxl∈[Lm]D

(l)
m . (Property 3): Since each filter of Convm and Conv′m is at most K, the filter size of CNN is also at most

K. (Properties on B(conv) and B(fin)): Parameters of f (conv) are either 0, or parameters of FCReLU
Wm,Wm

, whose absolute

value is bounded by B(bs) or B(bs)

B(fin)wm. Since we have ‖wm‖∞ ≤ B(fin), the∞-norm of parameters in f (CNN) is bounded

by B(bs). The parameters of the final fully-connected layer FCw,b is either B
(fin)

B(bs) , 0, or b, therefore their norm is bounded

by B(fin)

B(bs) ∨B(fin).

As discussed in the beginning of this section, Theorem 1 is the special case of Theorem 5.

Remark 2. Another way to construct a CNN which is identical (as a function) to a given FNN is as follows. First, we use a
“rotation” convolution with D filters, each of which has a size D, to serialize all input signals to channels of a single input
dimension. Then, apply size-1 convolution layers, whose l-th layer consisting of appropriately arranged weight parameters
of the l-th layer of the FNN. This is essentially what Petersen & Voigtlaender (2018a) did to prove the existence of a CNN
equivalent to a given FNN. To restrict the size of filters to K, we should further replace the the first convolution layer with
O(D/K) convolution layers with size-K filters. We can show essentially same statement using this construction method.

D. Proof of Theorem 2
Same as Theorem 1, we restate Theorem 2 in more general form. We denote F (CNN) := F (CNN)

C,K,B(conv),B(fc) and F (FNN) :=

F (FNN)

D,B(bs),B(fin) in shorthand.

Theorem 6. Let f◦ : RD → R be a measurable function and B(bs), B(fin) > 0. Let M , K, L0, Lm, andD as in Theorem
5. Suppose L′m,C,K, B(conv) and B(fc) satisfy F (FNN) ⊂ F (CNN) for B(bs) and B(fin) (their existence is ensured for any
B(bs) and B(fin) by Theorem 5). Suppose that the covering nubmer of F (CNN) is larger than 3. Then, the clipped ERM
estimator f̂ in F := {clip[f] | f ∈ F (CNN)} satisfies

ED‖f̂ − f◦‖2L2(PX) ≤ C

(
inf
f
‖f − f◦‖2∞ +

F̃ 2

N
Λ2 log(2Λ1BN)

)
. (3)

Here, f ranges overF (FNN), C0 > 0 is a universal constant, F̃ := ‖f◦‖∞
σ ∨ 1

2 , andB = B(conv)∨B(fc). Λ1 = Λ1(F (CNN))

and Λ2 = Λ2(F (CNN)) are defined by

Λ1 := (2M + 3)C(0)D(1 ∨B(fc))(1 ∨B(conv))%%+

Λ2 :=

M∑
m=1

L′m∑
l=1

(
C(l−1)
m C(l)

m K(l)
m + C(l)

m

)
+ C(0)D + 1,

where % =
∏M
m=1(1 + ρm), %+ = 1 +

∑M
m=1 L

′
mρ

+
m, ρm :=

∏L′m
l=1 C

(l−1)
m K

(l)
m B(conv) and ρ+

m :=
∏L′m
l=1(1 ∨

C
(l−1)
m K

(l)
m B(conv)).

Again, Theorem 2 is a special case of Theorem 6 where width, depth, channel sizes and filter sizes are same among blocks.
Note that the definitions of Λ1, Λ2, ρ, ρ+, %, and %+ in Theorem 2 and Theorem 6 are consistent by this specialization.

D.1. Proof Overview

We relate the approximation error of Theorem 2 with the estimation error using the covering number of the hypothesis class
F (CNN). Although there are several theorems of this type, we employ the one in Schmidt-Hieber (2017) due to its convenient
form (Lemma 5). We can prove that the logarithm of the covering number is upper bounded by Λ2 log((B(conv)∨B(fc))Λ1/ε)

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

(Lemma 4) using the similar techniques to the one in Schmidt-Hieber (2017). Theorem 2 is the immediate consequence of
these two lemmas.

To prove Corollary 1, we set M = O(Nα) for some α > 0. Then, under the assumption of the corolarry, we have
‖f◦ − f̂‖2L2(Px) = Õ

(
max

(
N−2αγ1 , Nαγ2−1

))
from Theorem 2. The order of the right hand side with respect to N is

minimized when α = 1
2γ1+γ2

. By substituting α, we can prove Corollary 1.

D.2. Covering Number of CNNs

The goal of this section is to prove Lemma 4, stated in Section D.2.5, that evaluates the covering number of the set of
functions realized by CNNs.

D.2.1. BOUNDS FOR CONVOLUTIONAL LAYERS

We assume w,w′ ∈ RK×J×I , b, b′ ∈ R, and x ∈ RD×I unless specified. We have in mind that the activation function σ is
either the ReLU function or the identity function id. But the following proposition holds for any 1-Lipschitz function such
that σ(0) = 0. Remember that we can treat Lw as a linear operator from RD×I to RD×J . We endow RD×I and RD×J with
the sup norm and denote the operator norm Lw by ‖Lw‖op.

Proposition 2. It holds that ‖Lw‖op ≤ IK‖w‖∞.

Proof. Write w = (wkji)k∈[K],j∈[J],i∈[I], Lw = ((Lw)β,jα,i)α,β∈[D],j∈[J],i∈[I]. For any x = (xα,i)α∈[D],i∈[I] ∈ RD×I , the
sup norm of y := (yβj)β∈[D]j∈[J] = Lw(x) is evaluated as follows:

‖y‖∞ = max
β,j
|yβ,j | ≤ max

β,j

∑
α,i

|(Lw)β,jα,i ||xα,i|

≤ max
β,j

∑
α,i

|(Lw)β,jα,i |‖x‖∞

= max
β,j

∑
α,i

|w(α−β+1),j,i|‖x‖∞

≤ IK‖w‖∞‖x‖∞

Proposition 3. It holds that ‖Convσw,b(x)‖∞ ≤ ‖Lw‖op‖x‖∞ + |b|.

Proof.

‖Convσw,b(x)‖∞ ≤ ‖σ(Lw(x)− 1D ⊗ b)‖∞
≤ ‖Lw(x)− 1D ⊗ b‖∞
≤ ‖Lw(x)‖∞ + ‖1D ⊗ b‖∞
≤ ‖Lw‖op‖x‖∞ + |b|.

Proposition 4. The Lipschitz constant of Convσw,b is bounded by ‖Lw‖op.

Proof. For any x, x′ ∈ RD×I ,

‖Convσw,b(x)− Convσw,b(x
′)‖∞ = ‖σ (Lw(x)− 1D ⊗ b)− σ (Lw(x′)− 1D ⊗ b) ‖∞

≤ ‖ (Lw(x)− 1D ⊗ b)− (Lw(x′)− 1D ⊗ b) ‖∞
≤ ‖Lw(x− x′)‖∞
≤ ‖Lw‖op‖x− x′‖∞.

Note that the first inequality holds because the ReLU function is 1-Lipschitz.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Proposition 5. It holds that ‖Convσw,b(x)− Convσw′,b′(x)‖ ≤ ‖Lw−w′‖op‖x‖∞ + |b− b′|.

Proof.

‖Convσw,b(x)− Convσw′,b′(x)‖∞ = ‖σ(Lw(x)− 1D ⊗ b)− σ(Lw
′
(x)− 1D ⊗ b′)‖∞

≤ ‖(Lw(x)− 1D ⊗ b)− (Lw
′
(x)− 1D ⊗ b′)‖

= ‖Lw(x)− Lw
′
(x)‖+ ‖1D ⊗ (b− b′)‖∞

≤ ‖Lw−w
′
‖op‖x‖∞ + |b− b′|

D.2.2. BOUNDS FOR FULLY-CONNECTED LAYERS

In the following propositions in this subsection, we assume W,W ′ ∈ RDC×C′ , b, b′ ∈ RC′ , and x ∈ RD×C . Again, these
propositions hold for any 1-Lipschitz function σ : R→ R such that σ(0) = 0. But σ = ReLU or id is enough for us.

Proposition 6. It holds that ‖FCσW,b(x)‖∞ ≤ ‖W‖0‖W‖∞‖x‖∞ + ‖b‖∞.

Proof.

‖FCσW,b(x)‖∞ ≤ ‖Wvec(x)− b‖∞ ≤ ‖Wvec(x)‖∞ + ‖b‖∞ ≤ max
j

∑
α,i

∣∣Wα,i,jx
α,i
∣∣+ ‖b‖∞.

The number of non-zero summand in the summation is at most ‖W‖0 and each summand is bounded by ‖W‖∞‖x‖∞
Therefore, we have ‖FCσW,b(x)‖∞ ≤ ‖W‖0‖W‖∞‖x‖∞ + ‖b‖∞.

Proposition 7. The Lipschitz constant of FCσW,b is bounded by ‖W‖0‖W‖∞.

Proof. For any x, x′ ∈ RD×C ,

‖FCσW,b(x)− FCσW,b(x
′)‖∞ ≤ ‖(Wvec(x)− b)− (Wvec(x′)− b)‖∞

≤ ‖W (vec(x)− vec(x′))‖∞
≤ ‖W‖0‖W‖∞‖vec(x)− vec(x′)‖∞.

Proposition 8. It holds that ‖FCσW,b(x)− FCσW ′,b′(x)‖∞ ≤ (‖W‖0 + ‖W ′‖0)‖W −W ′‖∞‖x‖∞ + ‖b− b′‖∞.

Proof.

‖FCσW,b(x)− FCσW ′,b′(x)‖∞ ≤ ‖(Wvec(x)− b)− (W ′vec(x)− b′)‖∞
= ‖((W −W ′)vec(x)− (b− b′)‖∞
≤ ‖(W −W ′)vec(x)|+ ‖b− b′‖∞
≤ ‖W −W ′‖0‖W −W ′‖∞‖x‖∞ + ‖b− b′‖∞
≤ (‖W‖0 + ‖W ′‖0)‖W −W ′‖∞‖x‖∞ + ‖b− b′‖∞

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

D.2.3. BOUNDS FOR RESIDUAL BLOCKS

In this section, we denote the architecture of CNNs by C = (C(l))l∈[L] ∈ NL+ and K = (K(l))l∈[L] ∈ NL+ and the norm
constraint on the convolution part by B(conv) (C(0) need not equal to 1 in this section). Let w(l), w′

(l) ∈ RK(l)×C(l)×C(l−1)

and b(l), b′(l) ∈ R. We denote w := (w(l))l∈[L], b := (b(l))l∈[L], w′ := (w′
(l)

)l∈[L], and b := (b(l))l∈[L].

For 1 ≤ l ≤ l′ ≤ L, we denote ρ(l, l′) :=
∏l′

i=l(C
(i−1)K(i)B(conv)) and ρ+(l, l′) :=

∏l′

i=l 1 ∨ (C(i−1)K(i)B(conv)).

Proposition 9. Let l ∈ [L]. We assume maxl∈[L] ‖w(l)‖∞ ∨ ‖b(l)‖∞ ≤ B(conv). Then, for any x ∈ [−1, 1]D×C
(0)

, we
have ‖Convσw[1:l],b[1:l](x)‖∞ ≤ ρ(1, l)‖x‖∞ +B(conv)lρ+(1, l).

Proof. We write in shorthand as C[s:t] := Convσw[s:t],b[s:t]. Using Proposition 3 recursively, we get

‖C[1:l](x)‖∞ ≤ ‖Lw
(l)

‖op‖C[1:l−1](x)‖∞ + ‖b(l)‖∞
. . .

≤ ‖x‖∞
l∏
i=1

‖Lw
(i)

‖op +

l∑
i=2

‖b(i−1)‖∞
l∏
j=i

‖Lw
(j)

‖op + ‖b(l)‖∞.

By Proposition 2 and assumptions ‖w(i)‖∞ ≤ B(conv) and ‖b(i)‖∞ ≤ B(conv), it is further bounded by

‖x‖∞
l∏
i=1

(C(i−1)K(i)B(conv)) +B(conv)
l∑
i=2

l∏
j=i

(C(j−1)K(j)B(conv)) +B(conv)

≤ ρ(1, l)‖x‖∞ +B(conv)lρ+(1, l)

Proposition 10. Let ε > 0, suppose maxl∈[L] ‖w(l) − w′(l)‖∞ ≤ ε and maxl∈[L] ‖b(l) − b′
(l)‖∞ ≤ ε, then ‖C[1:L] −

C ′[1:L](x)‖∞ ≤ (Lρ(1, L)‖x‖∞ + (1 ∨B(conv))L2ρ+(1, L))ε for any x ∈ RD×C(0)

.

Proof. For any l ∈ [L], we have∣∣∣C ′[l+1:L] ◦ (Cl − C ′l) ◦ C[1:l−1](x)
∣∣∣

≤ ‖C ′[l+1:L] ◦ (Cl − C ′l) ◦ C[1:l−1](x)‖∞
≤ ρ(l + 1, L)

∥∥(Cl − C ′l) ◦ C[1:l−1](x)
∥∥
∞ (by Proposition 2 and 4)

≤ ρ(l + 1, L)
(
ρ(l, l)‖C[1:l−1]‖∞ε+ ε

)
(by Proposition 2 and 5)

≤ ρ(l + 1, L)
(
ρ(l, l)(ρ(1, l − 1)‖x‖∞ +B(conv)(l − 1)ρ+(1, l − 1)) + 1

)
ε

(by Proposition 9)

=
(
ρ(1, L)‖x‖∞ + (1 ∨B(conv))Lρ+(1, L)

)
ε (4)

Therefore,

‖C[1:L](x)− C ′[1:L](x)‖∞ ≤
L∑
l=1

‖C[l+1:L] ◦ (Cl − C ′l) ◦ C[1:l−1](x)‖∞

≤ (Lρ(1, L)‖x‖∞ + (1 ∨B(conv))L2ρ+(1, L))ε

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

D.2.4. PUTTING THEM ALL

Let M,Lm, C
(l)
m ,K

(l)
m ∈ N+, C := (C

(l)
m)m,l, and K := (K

(l)
m)m,l for m ∈ [M] and l ∈ [Lm]. Let θ =

((w
(l)
m)m,l, (b

(l)
m)m,l,W, b) and θ′ = ((w′

(l)
m)m,l, (b

′(l)
m)m,l,W

′, b′) be tuples compatible with (C,K) such that CNNReLU
θ ,

CNNReLU
θ′ ∈ F (CNN)

C,K,B(conv),B(fc) for some B(conv), B(fc) > 0. We denote the l-th convolution layer of the m-th block by

C
(l)
m and the m-th residual block of by Cm:

C(l)
m :=

{
Convid

w
(l)
m

(if l = Lm)

ConvReLU

w
(l)
m

(otherwise)

Cm := C(Lm)
m ◦ · · · ◦ C(1)

m .

Also, we denote by C[m:m′] the subnetwork of ConvReLU
θ between the m-th and m′-th block. That is,

C[m:m′] :=

{
(Cm′ + I) ◦ · · · ◦ (Cm + I) (if m ≥ 1)

(Cm′ + I) ◦ · · · ◦ (C1 + I) ◦ P (if m = 0)

for m,m′ = 0, . . . ,M . We define C ′(l)m , C ′m and C ′[m:m′] similarly for θ′.

Proposition 11. For m ∈ [M] and x ∈ [−1, 1]D, we have ‖C[0:m](x)‖∞ ≤ (1 ∨ B(conv))%m%
+
m. Here, %m =

(
∏m
i=1(1 + ρi)) and %+

m =
(
1 +

∑m
i=1 Liρ

+
i

)
(ρm and ρ+

m are constants defined in Theorem 6).

Proof. By using Proposition 9 inductively, we have

‖C[0:m](x)‖∞ ≤ ‖Cm(C[0:m−1](x)) + C[0:m−1](x)‖∞
≤ ‖(1 + ρm)C[0:m−1](x) +B(conv)Lmρ+m)‖∞
≤ (1 + ρm)‖C[0:m−1](x)‖∞ +B(conv)Lmρ

+
m

· · ·

≤ ‖P (x)‖∞
m∏
i=1

(1 + ρi) +B(conv)
m∑
i=1

Liρ
+
i

m∏
j=i+1

(1 + ρj)

≤
m∏
i=1

(1 + ρi) +B(conv)
m∑
i=1

Liρ
+
i

m∏
j=i+1

(1 + ρj)

≤ (1 ∨B(conv))%m%
+
m.

Lemma 3. Let ε > 0. Suppose θ and θ′ are within distance ε, that is, maxm,l ‖w(l)
m − w′(l)m ‖∞ ≤ ε, ‖b

(l)
m − b′(l)m ‖∞ ≤ ε,

‖W −W ′‖∞ ≤ ε, and ‖b − b′‖∞ ≤ ε. Then, ‖CNNReLU
θ − CNNReLU

θ′ ‖∞ ≤ Λ1ε where Λ1 is the constant defined in
Theorem 6.

Proof. For any x ∈ [−1, 1]D, we have∣∣CNNReLU
θ (x)− CNNReLU

θ′ (x)
∣∣ =

∣∣∣FCid
W,b ◦ C[0:M](x)− FCid

W ′,b′ ◦ C ′[0:M](x)
∣∣∣

=
∣∣∣(FCid

W,b − FCid
W ′,b′

)
◦ C[0:M](x)

∣∣∣
+

M∑
m=1

∣∣∣FCid
W ′,b′ ◦ C[m+1:M] ◦ (Cm − C ′m) ◦ C ′[0:m−1](x)

∣∣∣ . (5)

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

We will bound each term of (5). By Proposition 8 and Proposition 11,∣∣∣(FCid
W,b − FCid

W ′,b′

)
◦ C[0:M](x)

∣∣∣ ≤ (‖W‖0 + ‖W ′‖0)‖W −W ′‖∞‖C[0:M](x)‖∞ + ‖b− b′‖∞

≤ 2C
(L0)
0 D‖C[0:M](x)‖∞ε+ ε

≤ 2C
(L0)
0 D(1 ∨B(conv))%M%

+
Mε+ ε

≤ 3C
(L0)
0 D(1 ∨B(conv))%M%

+
Mε. (6)

On the other hand, for m ∈ [M],∣∣∣FCid
W ′,b′ ◦ C ′[m+1:M] ◦ (Cm − C ′m) ◦ C[0:m−1](x)

∣∣∣
≤ ‖W ′‖0‖W ′‖∞‖C ′[m+1:M] ◦ (Cm − C ′m) ◦ C[1:m−1](x)‖∞ (by Proposition 7)

≤ C(L0)
0 DB(fc)‖C ′[m+1:M] ◦ (Cm − C ′m) ◦ C[0:m−1](x)‖∞

≤ C(L0)
0 DB(fc)

(
M∏

i=m+1

ρi

)∥∥(Cm − C ′m) ◦ C[0:m−1](x)
∥∥
∞ (by Proposition 2 and 4)

≤ C(L0)
0 DB(fc)

(
M∏

i=m+1

ρi

)(
ρm‖C[0:m−1]‖∞ε+ ε

)
(by Proposition 2 and 5)

≤ C(L0)
0 DB(fc)

(
M∏

i=m+1

ρi

)(
ρm(1 ∨B(conv))%m−1%

+
m−1 + 1

)
ε (by Proposition 9)

≤ 2C
(L0)
0 DB(fc)(1 ∨B(conv))%M%

+
Mε (7)

By applying (6) and (7) to (5), we have

|CNNReLU
θ (x)− CNNReLU

θ′ (x)| ≤ 3C
(L0)
0 D(1 ∨B(conv))%M%

+
Mε

+ 2MC
(L0)
0 DB(fc)(1 ∨B(conv))%M%

+
Mε

≤ (2M + 3)C
(L0)
0 D(1 ∨B(fc))(1 ∨B(conv))%M%

+
Mε

= Λ1ε.

D.2.5. BOUNDS FOR COVERING NUMBER OF CNNS

For a metric space (M0, d) and ε > 0, we denote the (external) covering number of M ⊂ M0 by N (ε,M, d):
N (ε,M, d) := inf{N ∈ N | ∃f1, . . . , fN ∈M0 s.t. ∀f ∈M,∃n ∈ [N] s.t. d(f, fn) ≤ ε}.

Lemma 4. Let B := B(conv) ∨B(fc). For ε > 0, we have N (ε,F (CNN), ‖ · ‖∞) ≤
(
2BΛ1ε

−1
)Λ2 .

Proof. The idea of the proof is same as that of Lemma 5 of Schmidt-Hieber (2017). We divide the interval of each parameter
range ([−B(conv), B(conv)] or [−B(fc), B(fc)]) into bins with width Λ−1

1 ε (i.e., 2B(conv)Λ1ε
−1 or 2B(fc)Λ1ε

−1 bins for
each interval). If f, f ′ ∈ F (CNN) can be realized by parameters such that every pair of corresponding parameters are in a
same bin, then, ‖f − f ′‖∞ ≤ ε by Lemma 3. We make a subset F0 of F (CNN) by picking up every combination of bins for
Λ2 parameters. Then, for each f ∈ F (CNN), there exists f0 ∈ F0 such that ‖f − f0‖∞ ≤ ε. There are at most 2BΛ1ε

−1

choices of bins for each parameter. Therefore, the cardinality of F0 is at most
(
2BΛ1ε

−1
)Λ2 .

D.3. Proofs of Theorem 2 and Corollary 1

We use the lemma in Schmidt-Hieber (2017) to bound the estimation error of the clipped ERM estimator f̂ . Since our
problem setting is slightly different from one in the paper, we restate the statement.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Lemma 5 (cf. Schmidt-Hieber (2017) Lemma 4). Let F be a family of measurable functions from [−1, 1]D to R. Let f̂ be
the clipped ERM estimator of the regression problem described in Section 3.1. Suppose the covering number of F satisfies
N (N−1,F , ‖ · ‖∞) ≥ 3. Then,

ED‖f◦ − f̂‖2L2(PX) ≤ C

(
inf
f∈F
‖f − f◦‖2L2(PX) + logN

(
1

N
,F , ‖ · ‖∞

)
F̃ 2

N

)
,

where C > 0 is a universal constant, F̃ := RF
σ ∨

‖f◦‖∞
σ ∨ 1

2 and RF := sup{‖f‖∞ | f ∈ F}.

Proof. Basically, we convert our problem setting so that it fits to the assumptions of Lemma 4 of Schmidt-Hieber (2017) and
apply the lemma to it. For f : [−1, 1]D → [−σF̃ , σF̃], we defineA[f] : [0, 1]D → [0, 2F̃] byA[f](x′) := 1

σf(2x′−1)+F̃ .
Let f̂1 be the (non-clipped) ERM etimator of F . We define X ′ := 1

2 (X + 1), f ′◦ := A[f◦], Y ′ := f ′◦(X) + ξ′, F ′ :=

{A[f] | f ∈ F}, f̂ ′1 := A[f̂1], and D′ := ((x′n, y
′
n))n∈[N] where x′n := 1

2 (xn + 1) and y′n := f ′◦(x′n) + 1
σ (yn − f◦(xn)).

Then, the probability that D′ is drawn from P ′⊗N is same as the probability that D is drawn from P⊗N where P ′ is the joint
distribution of (X ′, Y ′). Also, we can show that f̂ ′ is the ERM estimator of the regression problem Y ′ = f ′◦ + ξ′ using the
dataset D′: f̂ ′1 ∈ arg minf ′∈F ′ R̂D′(f ′). We apply the Lemma 4 of Schmidt-Hieber (2017) with n← N , d← D, ε← 1,
δ ← 1

N , ∆n ← 0, F ′ ← F , F ← 2F̃ , f̂ ← f̂ ′1 and use the fact that the estimation error of the clipped ERM estimator is no
worse than that of the ERM estimator, that is, ‖f◦ − f̂‖2L2(PX) ≤ ‖f

◦ − f̂1‖2L2(PX) to conclude.

Proof of Theorem 6. By Lemma 4, we have logN := logN (N−1,F (CNN), ‖ · ‖∞) ≤ Λ2 log(2BΛ1N), where B =
B(conv) ∨B(fc). Therefore, by Lemma 5,

‖f◦ − f̂‖2L2(PX) ≤ C0

(
inf
f∈F
‖f − f◦‖2L2(PX) + logN F̃ 2

N

)

≤ C1

(
inf

f∈F(FNN)
‖f − f◦‖2∞ +

F̃ 2

N
Λ2 log(2BΛ1N)

)
,

whereC0, C1 > 0 are universal constants. We used in the last inequality the fact ‖clip[f]−f◦‖L2(PX) ≤ ‖clip[f]−f◦‖∞ ≤
‖f − f◦‖∞ any f ∈ F (CNN) and the assumption F (FNN) ⊂ F (CNN).

As discussed in the beginning of this section, Theorem 2 is the special case of Theorem 6.

Proof of Corollay 1. We only care the order with respect to N in the O-notation. Set M = bNαc for α > 0. Using the
assumptions of the corollary, the estimation error is

‖f◦ − f̂‖2L2(Px) = Õ
(
max

(
N−2αγ1 , Nαγ2−1

))
by Theorem 2. The order of the right hand side with respect to N is minimized when α = 1

2γ1+γ2
. By substituting α, we

can derive Corollary 1.

E. Proofs of Corollary 2 and Corollary 3
By Theorem 2 of (Klusowski & Barron, 2018), for each M ∈ N+, there exists

f (FNN) :=
1

M

M∑
m=1

bm(a>mx− tm)+ =

M∑
m=1

bm

(
a>m
M

x− tm
M

)
+

with |bm| ≤ 1, ‖am‖1 = 1, and |tm| ≤ 1 such that ‖f◦ − f (FNN)‖∞ ≤ Cvf◦
√

logM +DM−
1
2−

1
D where vf◦ :=∫

RD ‖w‖
s
2 |F [f◦](w)|dw and C > 0 is a universal constant. We set Lm ← 1, D(1)

m ← 1, B(bs) ← 1
M , B(fin) ← 1

(m ∈ [M]) in the Theorem 5, then, we have f (FNN) ∈ F (FNN)

D1,B(bs),B(fin) . By applying Theorem 5, there exists a CNN

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

f (CNN) ∈ F (CNN)

C,K,B(conv),B(fc) such that f (FNN) = f (CNN). Here, C = (C
(1)
m)m with C(1)

m = 4, K = (K
(1)
m)m with

K
(1)
m = K, B(conv) = 1

M , and B(fc) = M . This proves Corollary 2.

With these evaluations, we have Λ1 = O(M3) (note that sinceB(conv) = 1
M , we have

∏M
m=0(1+ρm) = O(1)). In addition,

B(conv) is O(1) and B(fc) is O(M). Therefore, we have log Λ1B = Õ(1). Since Λ2 = O(M), we can use Corollary 1 with
γ1 = 1

2 + 1
D , γ2 = 1.

F. Proofs of Corollary 4 and Corollary 5
We first prove the scaling property of the FNN class.

Lemma 6. Let M ∈ N+, Lm ∈ N+, and D(l)
m ∈ N+ for m ∈ [M] and l ∈ [Lm]. Let B(bs), B(fin) > 0. Then, for any

k ≥ 1, we have F (FNN)

D,B(bs),B(fin) ⊂ F
(FNN)

D,k−1B(bs),kLB(fin) where L := maxm∈[M] Lm is the maximum depth of the blocks.

Proof. Let θ = ((W
(l)
m)m,l, (b

(l)
m)m,l, (wm)m, b) be the parameter of an FNN and suppose that FNNReLU

θ ∈ F (FNN)

D,B(bs),B(fin) .

We define θ′ := ((W ′
(l)
m)m,l, (b

′(l)
m)m,l, (w

′
m)m, b

′) by

W ′
(l)
m := k−

L
LmW (l)

m , b′
(l)
m := k−l

L
Lm b(l)m , w′m := kLwm, b′ := b.

Since k ≥ 1, we have FNNReLU
θ′ ∈ F (FNN)

D,k−1B(bs),kLB(fin) . Also, by the homogeneous property of the ReLU function (i.e.,

ReLU(ax) = aReLU(x) for a > 0), we have FNNReLU
θ = FNNReLU

θ′ .

Next, we prove the existence of a block-sparse FNN with constant-width blocks that optimally approximates a given
β-Hölder function. It is almost same as the proof appeared in Schmidt-Hieber (2017). However, we need to construct the
FNN so that it has a block-sparse structure.

Lemma 7 (cf. Schmidt-Hieber (2017) Theorem 5). Let β > 0, M ∈ N+ and f◦ : [−1, 1]D → R be a β-Hölder
function. Then, there exists D′ = O(1), L′ = O(logM), and a block-sparse FNN f (FNN) ∈ F (FNN)

D,1,2M‖f◦‖β such that

‖f◦ − f (FNN)‖∞ = Õ(M−
β
D). Here, we set Lm := L′ and D(l)

m := D′ for all m ∈ [M] and l ∈ [Lm] and define
D := (D

(l)
m)m,l.

Proof. First, we prove the lemma when the domain of f◦ is [0, 1]D. LetM ′ be the largest interger satisfying (M ′+1)D ≤M .
Let Γ(M ′) =

(Z
M ′

)D∩[0, 1]D = {m
′

M ′ | m
′ ∈ {0, . . . ,M ′}D} be the set of lattice points in [0, 1]D2. Note that the cardinality

of Γ(M ′) is (M ′ + 1)D. Let P βa f
◦ be the Taylor expansion of f◦ up to order bβc at a ∈ [0, 1]D:

(P βa f
◦)(x) =

∑
0≤|α|<β

(∂αf◦)(a)

α!
(x− a)α.

For a ∈ [0, 1]D, we define a hat-shaped function Ha : [0, 1]D → [0, 1] by

Ha(x) :=

D∏
j=1

(M ′
−1 − |xj − aj |+).

Note that we have
∑
a∈Γ(M ′)Ha(x) = 1, i.e., they are a partition of unity. Let P βf◦ be the weighted sum of the Taylor

expansions at lattice points of Γ(M ′):

(P βf◦)(x) := M ′
D

∑
a∈D(M ′)

(P βa f
◦)(x)Ha(x).

By Lemma B.1 of Schmidt-Hieber (2017), we have

‖P βf◦ − f◦‖∞ ≤ ‖f◦‖βM ′
−β
.

2Schmidt-Hieber (2017) used D(M ′) to denote this set of lattice points. We used different character to avoid notational conflict.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Let m be an interger specified later and set L∗ := (m+ 5)dlog2De. By the proof of Lemma B.2 of Schmidt-Hieber (2017),
for any a ∈ Γ(M ′), there exists an FNN Hata : [0, 1]D → [0, 1] whose depth and width are at most 2 + L∗ and 6D,
respectively and whose parameters have sup-norm 1, such that

‖Hata −Ha‖∞ ≤ 3D2−m.

Next, let B := 2‖f◦‖β and CD,β be the number of distinct D-variate monomials of degree up to bβc. By the equation
(7.11) of Schmidt-Hieber (2017), for any a ∈ Γ(M), there exists an FNN Qa : [0, 1]D → [0, 1] 3 whose depth and width are
1 + L∗ and 6DCD,β respectively and whose parameters have sup-norm 1, such that∥∥∥∥Qa − (P βa f◦B

+
1

2

)∥∥∥∥
∞
≤ 3D2−m.

Thirdly, by Lemma A.2 of (Schmidt-Hieber, 2017), there exists an FNN Mult : [0, 1]2 → [0, 1], whose depth and width are
m+ 4 and 6, respectively and whose parameters have sup-norm 1 such that

|Mult(x, y)− xy| ≤ 2−m

for any x, y ∈ [0, 1]. For each a ∈ Γ(M ′), we combine Hata and Qa using Mult and constitute a block of the block-sparse
FNN corresponding to a ∈ Γ(M) by FCa := Mult(Qa(·),Hata(·)). Then, we have∥∥∥∥FCa −

(
P βa f

◦

B
+

1

2

)
Ha

∥∥∥∥
∞
≤ 2−m + 3D2−m + 3D2−m ≤ 3D+12−m.

We define f (FNN)(x) :=
∑
a∈Γ(M)(BM

′DFCa(x)) − B
2 . By construction, f (FNN) is a block-sparse FNN with (M ′ +

1)D(≤M) blocks each of which has depth and width at most L′ := 2+L∗+(m+4) andD′ := 6(CD,β+1)D, respectively.
The norms of the block-sparse part and the finally fully-connected layer are 1 and BM ′D(≤ BM), respectively. In addition,
we have

|f (FNN)(x)− (P βf◦)(x)|

≤
∑

a∈Γ(M)

BM ′
D

∣∣∣∣FCa(x)−
(

(P βa f
◦)(x)

B
+

1

2

)
Ha(x)

∣∣∣∣+
B

2

∣∣∣∣∣∣1−M ′D
∑

a∈Γ(M ′)

Ha(x)

∣∣∣∣∣∣
≤ (M ′ + 1)D ×BM ′D3D+12−m

≤ 3D+12−mBM2

for any x ∈ [0, 1]D. Therefore,

|f (FNN)(x)− f◦(x)| ≤ |f (FNN) − (P βf◦)(x)|+ |(P βf◦)(x)− f◦(x)|

≤ 3D+12−mBM2 + ‖f◦‖βM ′
−β

≤ 2 · 3D+12−m‖f◦‖βM2 + ‖f◦‖βM−
β
D .

We set m = dlog2M
2+ β

D e, then, we have L′ = O(logM), D′ = O(1), and

‖f (FNN) − f◦‖ ≤ ‖f◦‖β(2 · 3D+1 + 2β)M−
β
D .

By the defnition of f (FNN) we have f (FNN) ∈ F (FNN)
D,1,2‖f◦‖βM .

When the domain of f◦ is [−1, 1]D, we should add the function x 7→ 1
2 (x+1) = 1

2 (x+1)+− 1
2 (−x−1)+ as a first layer of

each block to fit the range into [0, 1]D. Specifically, suppose the first layer of m-th block in f (FNN) is x 7→ ReLU(Wx− b),
then the first two layers become x 7→ ReLU(

[
1
2 (x+ 1) − 1

2 (x+ 1)
]
) and

[
y1 y2

]
7→ ReLU(Wy1 − Wy2 − b),

respectively. Since this transformation does not change the maximum sup norm of parameters in the block-sparse and the
order of L′ and D′, the resulting FNN still belongs to F (FNN)

D,1,2‖f◦‖M .
3We prepare Qa for each a ∈ Γ(M) as opposed to the original proof of (Schmidt-Hieber, 2017), in which Qa’s shared the layers the

except the final one and were collectively denoted by Q1.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Proofs of Corollary 4 and Corollary 5. In this proof, we only care the dependence on M in the O-notation. Let M̃ :=

2‖f◦‖βM . By Lemma 7, there exists f (FNN) ∈ F (FNN)

D,1,M̃
such that ‖f (FNN) − f◦‖∞ = O(M−

β
D) (L′, D′, and D as in

Lemma 7). Let k := 16D′K(M
1
L′ ∧ 1)−1 = 16D′K(e

1
C′ ∧ 1)−1 ≥ 1 where C ′ is a constant such that L′ = C ′ logM .

Using Lemma 6, there exists f̃ (FNN) ∈ F (FNN)

D,k−1,kL′M̃
such that f̃ (FNN) = f (FNN). We apply Theorem 5 to F (FNN)

D,k−1,kL′M̃

and find f (CNN) ∈ F (CNN)

C,K,B(conv),B(fc) such that L ≤ M(L′ + L0), C := (C
(l)
m)m∈[M],l∈[Lm] with C(l)

m ≤ 4D′, K :=

(K
(l)
m)m∈[M],l∈[Lm] withK(l)

m ≤ K,B(conv) = k−1,B(fc) = kL
′
(k∨1)M̃ = kL

′+1M̃ , and f (CNN) = f̃ (FNN). This proves
Corollary 4 (note that by definition, we have B(conv) = k−1 = O(1) and logB(fc) = (L′ + 1)k + log(M̃) = O(logM)).

By the definition of k and the bound on C(l)
m and K(l)

m , we have C(l−1)
m K

(l)
m k−1 ≤ 1

4M
− 1
L′ . Therefore, we have ρm ≤∏L′

l=1(C
(l−1)
m K

(l)
m k−1) ≤ M−1 and hence

∏M
m=0(1 + ρm) = O(1). Since C(l−1)

m K
(l)
m k−1 ≤ 1

2 for sufficiently large M ,
we have ρ+

m = 1 for sufficiently large M . In addition, we have log(B(conv) ∨B(fc)) = Õ(1). Combining them, we have
log Λ1 = Õ(1) and hence log Λ1(B(conv) ∨B(fc)) = Õ(1). For Λ2, we can bound it by Λ2 = O(M logM) using bounds
for C(l)

m , K(l)
m and L′. Therefore, we can apply Corollary 2 with γ1 = β

D , γ2 = 1 and obtain the desired estimation error.

Since we have M = O(N
1

2γ1+γ2) by the proof of Corollary 1, we can derive the bounds for Lm with respect to N .

G. Proofs of Theorem 3 and Theorem 4
Lemma 8. Let L,L′, C ′,K ′ ∈ N+ and B > 0. Suppose we can realize f + id : RD×C′ → RD×C′ with a residual block
with an identity connection whose depth, channel size, and filter size are L′, C ′, and K ′, respectively and whose parameter
norm is bounded by B. Let S0 = dL

′

L e. Then, there exist S = 2S0 − 1 functions f̃1, . . . , f̃S : RD×3C′ → RD×3C′ and
S masks z1, . . . , zS ∈ {0, 1}3C

′
, such that fs is realizable by a residual block whose depth, channel size, filter size, and

parameter norm bound are L, 3C ′, K ′, and B, respectively and f̃ := (f̃S + JS) ◦ · · · ◦ (f̃1 + J1) : RD×3C′ → RD×3C′

satisfies f̃(
[
x 0 0

]
) =

[
f(x) 0 0

]
. Here Js is a channel-wise mask operation made from zs.

Proof. We divide the residual block representing f into S0 CNNs with depth at most L and denote them sequentially by
g1, . . . , gS0

so that f = gS0
◦ · · · ◦ g1. We define g̃s : RD×3C′ → RD×3C′ (s ∈ [S0]) from gs by

g̃s([x1 x2 x3]) =



[0 y1 0] (if s = 1)
[0 y3 0] (if s 6= 1, S0 and odd)
[0 0 y2] (if s 6= 1, S0 and even)
[y3 0 0] (if s = S0 and odd)
[y2 0 0] (if s = S0 and even)

,

where yi = gs(xi) (i = 1, 2, 3). Note that we can construct g̃s by a residual block with depth L, channel size 3C ′, filter size
K ′, and parameter norm B. Next, we define us (s ∈ [S0 − 1]) by

us =


[
1 1 0

]>
(if s: odd)[

1 0 1
]>

(if s: even)

Then, we define f̃ := (g̃S0 + id) ◦ (0 + J ′S0−1) ◦ (g̃S0−1 + id) ◦ (0 + J ′1) ◦ (f̃1 + id) where J ′s is a channel-wise mask
constructed from us and 0 : RD×3C′ → RD×3C′ is a constant zero function, which is obviously representable by a residual
block. By definition, f̃ is realizable by S residual blocks with channel-wise masking identity connections and satisfy the
conditions on the depth, channel size, filter size, and norm bound.

Proof of Theorem 3. The first part of the proof is same as that of Corollary 4, except that we define k using L instead
of L′: k = 16D′K(M

1
L ∧ 1)−1. Here, D′ is a constant satisfying D′ = O(1) as a function of M . Then, there exists a

CNN f̃ (CNN) ∈ F (CNN)

M,L′,C′,K′,B(conv),B(fin) such that ‖f̃ (CNN) − f◦‖ = O(M−
β
D). Parameter of the set of CNNs satisfy

L′ = O(logM) C ′ ≤ 4D′, K ′ ≤ K, B(conv) = k−1, and B(fc) = 2‖f◦‖βkL
′
M . We apply Lemma 8 to each residual

block of f̃ (CNN). Then, there exists f (CNN) ∈ GM̃,L,C,K,B(conv),B(fin) such that f (CNN) = f̃ (CNN) and M̃ = MdL
′

L e,
C ≤ 3C ′, K ′ ≤ K, B(conv) = k−1, and B(fin) = 2‖f◦‖βkL

′+1M .

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Before going to the proof of Theorem 4, we first note that the definitions of Λ1 and Λ2 in Theorem 2 are valid even if we
replace F (CNN)

M̃,L,C,K,B(conv),B(fin)
with G = GM̃,L,C,K,B(conv),B(fin) .

Lemma 9. Let M̃, L,C,K ∈ N+ and B(conv), B(fin), ε > 0. Set B = B(conv) ∨B(fin). Then, the covering number of G
with respect to the sup-norm N (ε,G, ‖ · ‖∞) is bounded by (2BΛ1ε

−1)Λ2 · 2CM̃L, where Λ1 = Λ1(G) and Λ2 = Λ2(G)
are ones defined in Theorem 2, except that F (CNN) is replaced with G.

Proof. First we note that we can apply same inequalities in Section D.2.1 – D.2.3 and Proposition 11 to CNNs in G.
Therefore, if two masked CNNs f, g ∈ G have same masking patterns in identity connections and distance of each pair of
corresponding parameters in residual blocks is at most ε, then, we can show ‖f − g‖∞ ≤ Λ1ε in the same way as Lemma 3.
Therefore, by the same argument of Lemma 4, the covering number of the subset of G consisting of CNNs with a specific
masking pattern is bounded by (2BΛ1ε

−1)Λ2 . Since each CNN in G has CM̃L parameters in identity connections which
take values in {0, 1}, there are 2CM̃L masking patterns. Therefore, we have N (ε,G, ‖ · ‖∞) ≤ (2BΛ1ε

−1)Λ2 · 2CM̃L.

The strategy for the proof of Theorem 4 is almost same as the proofs for Theorem 6 and Corollary 5, except that we should
replace Λ2 log(2BΛ1N) in (3) with Λ2 log(2BΛ1N) + CM̃L log 2 (and Λ1 and Λ2 are defined via G instead of F (CNN)).
However, the second term is at most as same order (upto logarithmic factors) as the first one in our situation. Therefore, we
can derive the same estimation error rate.

Proof of Theorem 4. Take G as in the proof of Theorem 3. Let logN := logN (N−1,G, ‖ · ‖∞). By Lemma 5, we have

‖f◦ − f̂‖2L2(PX) ≤ C0

(
inf

f∈F(FNN)
‖f − f◦‖2∞ +

F̃ 2

N

(
Λ2 log(2BΛ1N) + CM̃L log 2

))
,

where C0 > 0 is a universal constant. The first term in the outer-most parenthesis is O(M−
β
D) by Lemma 7. We will

evaluate the order of the second term. First, we have Λ2 = O(M̃) = Õ(M) by the definition of Λ2. By the definition of
k, we have ρ ≤ M−1 and ρ+ = 1 for sufficiently large M therefore, % = O(1) and %+ = O(M) for sufficiently large
M . Again, by the definition of k, we have B(conv) = O(1) and B(fc) = O(M). Therefore, we have Λ1 = O(M3) and
B = O(M) and hence Λ2 log(2BΛ1N) = Õ(MN). On the other hand, since C = O(1), M̃ = Õ(M), L = O(1), we
have CM̃L log 2 = Õ(M).

Therefore, by setting M = bNαc for α > 0, the estimation error is

‖f◦ − f̂‖2L2(Px) = Õ
(
max

(
N−2αγ1 , Nαγ2−1

))
,

where γ1 = β
D and γ2 = 1. The order of the right hand side with respect to N is minimized when α = 1

2γ1+γ2
. By

substituting α, we can derive the theorem.

H. One-sided padding vs. Equal-padding
In this paper, we adopted one-sided padding, which is not used so often practically, in order to make proofs simple. However,
with slight modifications, all statements are true for equally-padded convolutions, a widely employed padding style which
adds (approximately) same numbers of zeros to both ends of an input signal, with the exception that the filter size K is
restricted to K ≤

⌊
D
2

⌋
instead of K ≤ D.

I. Difference between Original ResNet and Ours
There are several differences between the CNN in this paper and the original ResNet (He et al., 2016), aside from the
number of layers. The most critical one is that our CNN does not have pooling nor Batch Normalization layers (Ioffe
& Szegedy, 2015). We will consider a scaling scheme simpler than Batch Normalization to derive optimality of CNNs
with constant-depth residual blocks (see Definition 5). It is left for future research whether our result can extend to the
ResNet-type CNNs with pooling or other scaling layers such as Batch Normalization.

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

References
He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456. PMLR, 2015.

Klusowski, J. M. and Barron, A. R. Approximation by combinations of ReLU and squared ReLU ridge functions with `1
and `0 controls. IEEE Transactions on Information Theory, 64(12):7649–7656, 2018.

Petersen, P. and Voigtlaender, F. Equivalence of approximation by convolutional neural networks and fully-connected
networks. arXiv preprint arXiv:1809.00973, 2018a.

Petersen, P. and Voigtlaender, F. Optimal approximation of piecewise smooth functions using deep ReLU neural networks.
Neural Networks, 108:296–330, 2018b.

Schmidt-Hieber, J. Nonparametric regression using deep neural networks with ReLU activation function. arXiv preprint
arXiv:1708.06633, 2017.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Understanding and improving convolutional neural networks via concatenated
rectified linear units. In Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pp. 2217–2225. PMLR, 2016.

