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Figure 5: Bias, variance and RMSE versus subsample ratio used for training individual trees. The solid lines represent the means and the
filled regions depict the standard deviation for the different metrics across test points, averaged over 100 Monte Carlo experiments.

A. Two-forest ORF v.s. One-forest ORF
A natural question about ORF is whether it is necessary to have two separate forests for the two-stage estimation. We
investigate this question by implementing a variant of ORF without sample splitting (ORF-NS)—it builds only one random
forest over the entire dataset, and perform the two-stage estimation using the same set of importance weights. We empirically
compare ORF-CV with ORF-NS. In Figure 5, we note that the bias, variance and RMSE of the ORF-NS increase drastically
with the subsample ratio (s/n), whereas the same metrics are almost constant for the ORF-CV. This phenomenon is
consistent with the theory, since larger subsamples induce a higher probability of collision between independently drawn
samples, and the “spill-over” can incur large bias and error.

B. Formal Guarantee for Real-Valued Treatments
Corollary B.1 (Accuracy for real-valued treatments). Suppose that �0(X) and each coorindate uj

0(X), �j0(X) are Lipschitz
in X and have `1 norms bounded by O(1) for any X . Assume that distribution of X admits a density that is bounded
away from zero and infinity. For any feature X , the conditional covariance matrices satisfy E [⌘⌘| | X] ⌫ ⌦(1)Ip,
E [WW | | X] ⌫ ⌦(1)Id⌫ and E ['2(W )'2(W )| | X] ⌫ ⌦(1)Id2

⌫+d⌫
, where '2(W ) denotes the degree-2 polynomial

feature vector of W . Then with probability 1� �, ORF returns an estimator ✓̂ such that

k✓̂ � ✓0k  O
⇣
n

�1
2+2↵d

p
log(nd⌫/�)

⌘

as long as the sparsity k  O
⇣
n

1
8+8↵d

⌘
and the subsampling rate of ORF s = ⇥(n↵d/(1+↵d)). Moreover, for any b 2 Rp

with kbk  1, there exists a sequence �n = ⇥(
p
polylog(n)n�1/(1+↵d)) such that

��1
n

D
b, ✓̂ � ✓

E
!d N (0, 1),

as long as the sparsity k = o
⇣
n

1
8+8↵d

⌘
and the subsampling rate of ORF s = ⇥(n"+↵d/(1+↵d)) for any " > 0.

C. Uniform Convergence of Lipschitz U -Processes
Lemma C.1 (Stochastic Equicontinuity for U -statistics via Bracketing). Consider a parameter space ⇥ that is a bounded
subset of Rp, with diam(⇥) = sup✓,✓02⇥ k✓ � ✓0k2  R. Consider the U -statistic over n samples of order s:

Gs,nf(·; ✓) =
✓
n

s

◆�1 X

1i1...isn

f(zi1 , . . . , zis ; ✓) (15)

where f(·; ✓) : Zs ! R is a known symmetric function in its first s sarguments and L-Lipschitz in ✓. Suppose that
sup✓2⇥

p
E [f(Z1, . . . , Zs; ✓)2]  ⌘ and sup✓2⇥,Z1,...,Zs2Zs f(Z1, . . . , Zs; ✓)  G. Then w.p. 1� �:

sup
✓2⇥

|Gs,nf(·; ✓)� E[f(Z1:s; ✓)]| = O

 
⌘

r
s (log(n/s) + log(1/�))

n
+ (G+ LR)

s(log(n/s) + log(1/�))

n

!
(16)
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Proof of Lemma C.1. Note that for any fixed ✓ 2 ⇥,  s(✓, Z1:n) is a U-statistic of order s. Therefore by the Bernestein
inequality for U -statistics (see e.g. Theorem 2 of (Peel et al., 2010)), for any fixed ✓ 2 ⇥, w.p. 1� �

|Gs,nf(·; ✓)� E[f(Z1:s; ✓)]|  ⌘

s
2 log(1/�)

n/s
+G

2 log(1/�)

3(n/s)

Since diam(⇥)  R, we can find a finite space ⇥" of size R/", such that for any ✓ 2 ⇥, there exists ✓" 2 ⇥" with
k✓ � ✓"k  ". Moreover, since f is L-Lipschitz with respect to ✓:

|Gs,nf(·; ✓)� E[f(Z1:s; ✓)]|  |Gs,nf(·; ✓")� E[f(Z1:s✓")]|+ 2Lk✓ � ✓"k

Thus we have that:

sup
✓2⇥

|Gs,nf(·; ✓)� E[f(Z1:s; ✓)]|  sup
✓2⇥"

|Gs,nf(·; ✓")� E[f(Z1:s✓")]|+ 2L"

Taking a union bound over ✓ 2 ⇥", we have that w.p. 1� �:

sup
✓2⇥"

|Gs,nf(·; ✓")� E[f(Z1:s✓")]|  ⌘

s
2 log(R/(" �))

n/s
+G

2 log(R/(" �))

3(n/s)

Choosing " = sR

n
and applying the last two inequalities, yields the desired result.

D. Estimation Error and Asymptotic Normality
Since throughout the section we will fix the target vector x, we will drop it from the notation when possible, e.g. we will let
✓0 = ✓0(x) and ✓̂ = ✓̂(x). We begin by introducing some quantities that will be useful throughout our theoretical analysis.
First we denote with ! the random variable that corresponds to the internal randomness of the tree-splitting algorithm.
Moreover, when the tree splitting algorithm is run with target x, an input dataset of {Zi}si=1 and internal randomness !, we
denote with ↵i ({Zi}si=1,!) the weight that it assigns to the sample with index i. Finally, for each sub-sample b = 1 . . . B
we denote with Sb the index of the samples chosen and !b the internal randomness that was drawn.

We then consider the weighted empirical score, weighted by the sub-sampled ORF weights:

 (✓, h) =
nX

i=1

ai  (Zi; ✓, h(Wi)) =
1

B

BX

b=1

X

i2Sb

↵i ({Zi}i2Sb ,!b)  (Zi; ✓, h(Wi)) (17)

We will also be considering the complete multi-dimensional U -statistic, where we average over all sub-samples of size s:

 0(✓, h) =

✓
n

s

◆�1 X

1i1...isn

E!

"
sX

t=1

↵it ({Zit}st=1,!)  (Zit ; ✓, h(Wit))

#
. (18)

and we denote with:

f(Zi1 , . . . , Zis ; ✓, h) = E!

"
sX

t=1

↵it ({Zit}st=1,!)  (Zit ; ✓, h(Wit))

#
(19)

First, we will bound the estimation error as a sum of m(x; ✓, ĥ) and second order terms. The proof follows from the Taylor
expansion of the moment function and the mean-value theorem.
Lemma D.1. Under Assumption 4.1, for any nuisance estimate ĥ and for the ORF estimate ✓̂ estimated with plug-in
nuisance estimate ĥ:

✓̂ � ✓0 = M�1
⇣
m(x; ✓̂, ĥ)� (✓̂, ĥ)

⌘
+ ⇠

where ⇠ satisfies k⇠k = O
⇣
E
h
kĥ(W )� h0(W )k2 | x

i
+ k✓̂ � ✓0k2

⌘
.



Orthogonal Random Forest

Proof outline of main theorems. We will now give a rough outline of the proof of our main results. In doing so we
will also present some core technical Lemmas that we will use in the formal proofs of these theorems in the subsequent
corresponding subsections.

Lemma D.1 gives rise to the following core quantity:

⇤(✓, h) = m(x; ✓, h)� (✓, h) (20)

Suppose that our first stage estimation rate guarantees a local root-mean-squared-error (RMSE) of �n, i.e.:

E(h) =
r

E
h
kĥ(W )� h0(W )k2 | x

i
 �n (21)

Then we have that:

✓̂ � ✓0 = M�1 ⇤(✓̂, ĥ) +O(�2
n
+ k✓̂ � ✓0k2)

Thus to understand the estimation error of ✓̂ and its asymptotic distribution, we need to analyze the concentration of ⇤(✓̂, ĥ)
around zero and its asymptotic distribution. Subsequently, invoking consistency of ✓̂ and conditions on a sufficiently fast
nuisance estimation rate �n, we would be able to show that the remainder terms are asymptotically negligible.

Before delving into our two main results on mean absolute error (MAE) and asymptotic normality we explore a bit more the
term ⇤(✓, h) and decompose it into three main quantities, that we will control each one separately via different arguments.

Lemma D.2 (Error Decomposition). For any ✓, h, let µ0(✓, h) = E [ 0(✓, h)]. Then:

⇤(✓, h) = m(x; ✓, h)� µ0(✓, h)| {z }
�(✓,h) = kernel error

+µ0(✓, h)� 0(✓, h)| {z }
�(✓,h) = sampling error

+  0(✓, h)� (✓, h)| {z }
E(✓,h) = subsampling error

. (22)

When arguing about the MAE of our estimator, the decomposition presented in Lemma D.2 is sufficient to give us the final
result by arguing about concentration of each of the terms. However, for asymptotic normality we need to further refine the
decomposition into terms that when scaled appropriately converge to zero in probability and terms that converge to a normal
random variable. In particular, we need to further refine the sampling error term�(✓, h) as follows:

�(✓, h) = �(✓0, h̃0)| {z }
asymptotically normal term

+ �(✓, h)��(✓0, h̃0)| {z }
F (✓,h) = stochastic equicontinuity term

(23)

for some appropriately defined fixed function h̃0. Consider for instance the case where ✓ is a scalar. If we manage to show
that there exists a scaling �n, such that ��1

n
�(✓0, h̃0) !d N (0, 1), and all other terms �, E, F and �2

n
converge to zero in

probability when scaled by ��1
n

, then we will be able to conclude by Slutzky’s theorem that: ��1
n

M
⇣
✓̂ � ✓0

⌘
!d N (0, 1)

and establish the desired asymptotic normality result.

Since controlling the convergence rate to zero of the terms �,�, E would be useful in both results, we provide here three
technical lemmas that control these rates.

Lemma D.3 (Kernel Error). If the ORF weights when trained on a random sample {Zi}si=1, satisfy that:

E [sup{kXi � xk : ai({Zi}si=1,!) > 0}]  "(s) (24)

where expectation is over the randomness of the samples and the internal randomness ! of the ORF algorithm. Then

sup
✓,h

k�(✓, h)k =
p
pL "(s) (25)

Lemma D.4 (Sampling Error). Under Assumption 4.1, conditional on any nuisance estimate ĥ from the first stage, with
probability 1� �:

sup
✓

k�(✓, ĥ)k = O

 r
s (log(n/s) + log(1/�))

n

!
(26)
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Proof. Since �(✓, ĥ) is a U -statistic as it can be written as: Gs,nf(·; ✓, ĥ)� E
h
f(Z1:s; ✓, ĥ)

i
. Moreover, under Assump-

tion 4.1, the function f(·; ✓, ĥ) satisfies the conditions of Lemma C.1 with ⌘ = G =  max = O(1). Moreover, f(·; ✓, ĥ) is
L-Lipschitz for L = O(1), since it is a convex combination of O(1)-Lipschitz functions. Finally, diam(⇥) = O(1). Thus
applying Lemma C.1, we get, the lemma.

Lemma D.5 (Subsampling Error). If the ORF weights are built on B randomly drawn sub-samples with replacement, then

sup
✓,h

kE(✓, ĥ)k = O

✓
log(B) + log(1/�)p

B

◆
(27)

D.1. Consistency of ORF Estimate

Theorem D.6 (Consistency). Assume that the nuisance estimate satisfies:

E
h
E(ĥ)

i
= o(1) (28)

and that B � n/s, s = o(n) and s ! 1 as n ! 1. Then the ORF estimate ✓̂ satisfies:

k✓̂ � ✓0(x)k = op(1)

Moreover, for any constant integer q � 1:

⇣
E[k✓̂ � ✓0k2q]

⌘1/q
= o

✓⇣
E
h
k✓̂ � ✓0kq

i⌘1/q
◆

(29)

Proof. By the definition of ✓̂, we have that:  (✓̂, ĥ) = 0. Thus we have that:
���m(x; ✓̂, ĥ)

��� =
���m(x; ✓̂, ĥ)� (✓̂, ĥ

��� =
���⇤(✓̂, ĥ)

���

By Lemmas 3.1, D.2, D.3, D.4 and D.5, we have that with probability 1� 2�:

���⇤(✓̂, ĥ)
��� = O

 
s�1/(2↵d) +

r
s (log(n/s) + log(1/�))

n
+

r
log(B) + log(1/�)

B

!

Integrating this tail bound we get that:

E
h���⇤(✓̂, ĥ)

���
i
= O

 
s�1/(2↵d) +

r
s log(n/s)

n
+

r
log(B)

B

!

Thus if B � n/s, s = o(n) and s ! 1 then all terms converge to zero as n ! 1.

Since  (x; ✓, h(w)) is L-Lipschitz in h(w) for some constant L:

km(x; ✓̂, h0)�m(x; ✓̂, ĥ)k = LE
h���✓̂(W )� ĥ(W )

��� | x
i
 L

s

E
���✓̂(W )� ĥ(W )

���
2
| x
�
= LE(ĥ)

Moreover, by our consistency guarantee on ĥ:

E
h
km(x; ✓̂, h0)�m(x; ✓̂, ĥ)k

i
 LE

h
E(ĥ)

i
= o(1)

Thus we conclude that:
E[km(x; ✓̂, h0)k] = o(1)

which implies that km(x; ✓̂, h0)k = op(1).
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By our first assumption, for any ", there exists a �, such that: Pr[k✓̂ � ✓0(x)k � "]  Pr[km(x; ✓̂, h0)k � �]. Since
km(x; ✓̂, h0)k = op(1), the probability on the right-hand-side converges to 0 and hence also the left hand side. Hence,
k✓̂ � ✓0(x)k = op(1).

We now prove the second part of the theorem which is a consequence of consistency. By consistency of ✓̂, we have that for
any " and �, there exists n⇤(", �) such that for all n � n(", �):

Pr
h
k✓̂ � ✓0k � "

i
 �

Thus for any n � n⇤(", �):

E[k✓̂ � ✓0k2q]  "qE
h
k✓̂ � ✓0kq

i
+ �E

h
|✓̂ � ✓0k2q

i

Choosing " = (4C)�q and � = (4C)�1(diam(⇥))�q yields that:

E[k✓̂ � ✓0k2q] 
1

2C
E
h
k✓̂ � ✓0kq

i

Thus for any constant C and for n � n⇤((4C)�q, (4C)�1(diam(⇥))�q) = O(1), we get that:
⇣
E[k✓̂ � ✓0k2q]

⌘1/q
=

1

(2C)1/q

⇣
E
h
k✓̂ � ✓0kq

i⌘1/q

which concludes the claim that
⇣
E[k✓̂ � ✓0k2q]

⌘1/q
= o

✓⇣
E
h
k✓̂ � ✓0kq

i⌘1/q
◆

.

D.2. Proof of Theorem 4.2: Mean Lq Estimation Error

Proof. Applying Lemma D.1 and the triangle inequality for the Lq norm, we have that:
⇣
E
h
k✓̂ � ✓0kq

i⌘1/q
= O

✓⇣
E
h
k⇤(✓̂, ĥ)kq

i⌘1/q
+
⇣
E(ĥ)2q

⌘1/q
+
⇣
E
h
k✓̂ � ✓0k2q

i⌘1/q
◆

By assumption
⇣
E(ĥ)2q

⌘1/q
 �2

n,2q . By the consistency Theorem D.6:

⇣
E
h
k✓̂ � ✓0k2q

i⌘1/q
= o

✓⇣
E
h
k✓̂ � ✓0kq

i⌘1/q
◆
.

and therefore this term can be ignored for n larger than some constant. Moreover, by Lemma D.2:
⇣
E
h
k⇤(✓̂, ĥ)kq

i⌘1/q
= O

✓⇣
E
h
k�(✓̂, ĥ)kq

i⌘1/q
+
⇣
E
h
k�(✓̂, ĥ)kq

i⌘1/q
+
⇣
E
h
kE(✓̂, ĥ)kq

i⌘1/q
◆

By Lemma D.3 and Lemma 3.1 we have:
⇣
E
h
k�(✓̂, ĥ)kq

i⌘1/q
= O ("(s)) = O

⇣
s�1/(2↵d)

⌘

for a constant ↵ = log(⇢�1)
⇡ log((1�⇢)�1) . Moreover, by integrating the exponential tail bound provided by the high probability

statements in Lemmas D.4 and D.5, we have that for any constant q:
⇣
E
h
k�(✓̂, ĥ)kq

i⌘1/q
= O

 r
s log(n/s)

n

!

⇣
E
h
kE(✓̂, ĥ)kq

i⌘1/q
= O

 r
log(B)

B

!

For B > n/s, the second term is negligible compared to the first and can be ignored. Combining all the above inequalities:
⇣
E
h
k✓̂ � ✓0kq

i⌘1/q
= O

 
s�1/(2↵d) +

r
s log(n/s)

n

!
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D.3. Proof of Theorem 4.3: Finite Sample High Probability Error Bound for Gradients of Convex Losses

Proof. We condition on the event that E(ĥ)  �n,� , which occurs with probability 1� �. Since the Jacobian of m(x; ✓, h0)
has eigenvalues lower bounded by � and each entry of the Jacobian of  is L-Lispchitz with respect to the nuisance for
some constant L, we have that for every vector ⌫ 2 Rp (with p the dimension of ✓0):

⌫Tr✓m(x; ✓, ĥ)⌫

k⌫k2 � ⌫Tr✓m(x; ✓, h0)⌫

k⌫k2 +
⌫Tr✓

⇣
m(x; ✓, ĥ)�m(x; ✓, h0)

⌘
⌫

k⌫k2

� � � L · E
h
kĥ(W )� h0(W )k | x

i k⌫k21
k⌫k2

� � � L�n,� p = � �O(�n,�)

Where in the last inequality we also used Holder’s inequality to upper bound the L1 norm by the L2 norm of the first
stage error. Thus the expected loss function L(✓) = E

h
`(Z; ✓, ĥ(W ) | x

i
is �̂ = � � O(�n,�) strongly convex, since

r✓m(x; ✓, ĥ) is the Hessian of L(✓). We then have:

L(✓̂)� L(✓0) � r✓L(✓0)
0(✓̂ � ✓0) +

�̂

2
k✓̂ � ✓0k2 = m(x; ✓0, ĥ)

0(✓̂ � ✓0) +
�̂

2
k✓̂ � ✓0k2

Moreover, by convexity of L(✓), we have:

L(✓0)� L(✓̂) � r✓L(✓̂)
0(✓0 � ✓̂) = m(x; ✓̂, ĥ)0(✓0 � ✓̂)

Combining the above we get:

�̂

2
k✓̂ � ✓0k2  (m(x; ✓̂, ĥ)�m(x; ✓0, ĥ))

0(✓̂ � ✓0)  km(x; ✓̂, ĥ)�m(x; ✓0, ĥ)k k✓̂ � ✓0k

Dividing over by k✓̂ � ✓0k, we get:

k✓̂ � ✓0k  2

�̂

⇣
km(x; ✓̂, ĥ)k+ km(x; ✓0, ĥ)k

⌘

The term km(x; ✓̂, ĥ)k is upper bounded by k⇤(✓̂, ĥ)k (since  (✓̂, ĥ) = 0). Hence, by Lemmas 3.1, D.2, D.3, D.4 and D.5
and our assumptions on the choice of s,B, we have that with probability 1� 2�:

���⇤(✓̂, ĥ)
��� = O

 
s�1/(2↵d) +

r
s (log(n/s) + log(1/�))

n

!

Subsequently, using a second order Taylor expansion around h0 and orthogonality argument almost identical to the proof
of Lemma D.1, we can show that the second term km(x; ✓0, ĥ)k is it upper bounded by O(�2

n,�
). More formally, since

m(x; ✓0, h0) = 0 and the moment is locally orthogonal, invoking a second order Taylor expansion:

mj(x; ✓0, ĥ) = mj(x; ✓0, h0) +D j [ĥ� h0 | x] + 1

2
E
h
(ĥ(W )� h0(W ))|r2

h
 j(Z; ✓0, h̃

(j)(W ))(ĥ(W )� h0(W )) | x
i

| {z }
⇢j

= ⇢j

for some function h̃j implied by the mean value theorem. Since the moment is smooth, we have: k⇢k =

O

✓
E
���ĥ(W )� h0(W )

���
2
| x
�◆

= O
⇣
�2
n,�

⌘
. Thus

���mj(x; ✓0, ĥ)
��� = O

⇣
�2
n,�

⌘
. Combining all the latter inequali-

ties yields the result.
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D.4. Proof of Theorem 4.4: Asymptotic Normality

Proof. We want to show asymptotic normality of any fixed projection
D
�, ✓̂

E
with k�k  1. First consider the random

variable V =
D
�,M�1�(✓0, h̃0)

E
, where h̃0(X,W ) = g(W ; ⌫0(x)), i.e. the nuisance function h̃0 ignores the input X

and uses the parameter ⌫0(x) for the target point x. Asymptotic normality of V follows by identical arguments as in (Wager
& Athey, 2015) or (Mentch & Hooker, 2016), since this term is equivalent to the estimate of a random forest in a regression
setting, where we want to estimate E [Y | X = x] and where the observation of sample i is:

Yi =
D
�,M�1 (m(Xi; ✓0, h̃0)�  (Zi; ✓0, h̃0(Xi,Wi)))

E
(30)

By Theorem 1 of (Wager & Athey, 2015) and the fact that our forest satisfies Specification 1 and under our set of assumptions,
we have, that there exists a sequence �n, such that:

��1
n

V ! N (0, 1) (31)

for �n = ⇥
⇣p

polylog(n/s)�1 s/n
⌘

. More formally, we check that each requirement of Theorem 1 of (Wager & Athey,
2015) is satisfed:

(i) We assume that the distribution of X admits a density that is bounded away from zero and infinity,

(ii) E[Y |X = x⇤] = 0 and hence is continuous in x⇤ for any x⇤,

(iii) The variance of the Y conditional on X = x⇤ for some x⇤ is:

Var(Y |X = x⇤) = E
D
�,M�1  (Z; ✓0, h̃0(X,W ))

E2
| X = x⇤

�
� E

hD
�,M�1  (Z; ✓0, h̃0(X,W )) | X = x⇤

Ei2

The second term is O(1)-Lipschitz in x⇤ by Lipschitzness of m(x⇤; ✓0, h̃0) = E
h
 (Z; ✓0, h̃0(X,W )) | X = x⇤

i
. For

simplicity of notation consider the random variable V =  (Z; ✓0, h̃0(X,W )). Then the first part is equal to some
linear combination of the covariance terms:

Q(x⇤) , E
⇥
�|M�1V V T (M�1)|� | X = x⇤⇤ = �|M�1E

⇥
V V T | X = x⇤⇤ (M�1)|� =

Thus by Lipschitzness of the covariance matrix of  , we have that: kE [V V | | X = x⇤] � E [V V | | X = x̃] kF 
Lkx⇤ � x̃k and therefore by the Cauchy-Schwarz inequality and the lower bound � > 0 on the eigenvalues of M :

|Q(x⇤)�Q(x̃)|  Lkx⇤ � x̃kk�|M�1k2  L

�2
kx⇤ � x̃k

Thus Var(Y |X = x⇤) is O(1)-Lipschitz continuous in x⇤ and hence also E[Y 2|X = x⇤] is O(1)-Lipschitz continuous.

(iv) The fact that E[|Y � E[Y |X = x]|2+�|X = x]  H for some constant �, H follows by our assumption on the
boundedness of  and the lower bound on the eigenvalues of M ,

(v) The fact that Var[Y |X = x0] > 0 follows from the fact that Var
⇣
�|M�1 (Z; ✓0, h̃0(X,W )) | X = x0

⌘
> 0,

(vi) The fact that tree is honest, ↵-balanced with ↵  0.2 and symmetric follows by Specification 1,

(vii) From our assumption on s that s�1/(2↵d) = o((s/n)1/2�"), it follows that s = ⇥(n�) for some � 2
⇣
1� 1

1+↵d , 1
i
.

Since, by Lemmas D.1, D.2 and Equation (23):
���
D
�, ✓̂ � ✓0

E
� V

��� = O
⇣
k�(✓̂, ĥ)k+ k�(✓̂, ĥ)��(✓0, h̃0)k+ kE(ĥ)k2 + k✓̂ � ✓0k2

⌘

it suffices to show that:

��1
n

E
h
k�(✓̂, ĥ)k+ k�(✓̂, ĥ)��(✓0, h̃0)k+ kE(ĥ)k2 + k✓̂ � ✓0k2

i
! 0
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as then by Slutzky’s theorem we have that ��1
n

D
�, ✓̂ � ✓0

E
!d N (0, 1). The first term is of order O(s�1/(2↵d)), hence by

our assumption on the choice of s, it is o(�n). The third term is O(�2
n,2) = O(�2

n,4), which by assumption is also o(�n).
The final term, by applying our Lq estimation error result for q = 2 and the assumption on our choice of s, we get that it is
of order O

⇣
s log(n/s)

n

⌘
= o(�n).

Thus it remains to bound the second term. For that we will invoke the stochastic equicontinuity Lemma C.1. Observe
that each coordinate j of the term corresponds to the deviation from its mean of a U statistic with respect to the class of
functions:

�j(·; ✓, ĥ) = fj(·; ✓, ĥ)� fj(·; ✓0, h0) (32)

Observe that by Lipschitzness of  with respect to ✓ and the output of h and the locally parametric form of h, we have that:

|�j(Z1:s; ✓, h)| =

�����E!

"
sX

t=1

↵t ({Zt}st=1,!)
⇣
 j(Zt; ✓, ĥ(Wt))�  j(Zt; ✓, h̃0(Wt))

⌘#�����

 E!

"
sX

t=1

↵t ({Zt}st=1,!)
��� j(Zt; ✓, ĥ(Wt))�  j(Zt; ✓0, h̃0(Wt))

���

#

 LE!

"
sX

t=1

↵t ({Zt}st=1,!) (k✓ � ✓0k+ kg(Wt; ⌫)� g(Wt; ⌫0(x))k)
#

 LE!

"
sX

t=1

↵t ({Zt}st=1,!) (k✓ � ✓0k+ L k⌫ � ⌫0(x)k)
#

= L (k✓ � ✓0k+ L k⌫ � ⌫0(x)k)

Thus by Jensen’s inequality and the triangle inequality:
q
E [|�j(Z1:s; ✓, h)|2]  Lk✓ � ✓0k+ L2 k⌫ � ⌫0(x)k

Thus:
sup

✓:k✓�✓0k⌘,k⌫�⌫0(x)k�

q
E [|�j(Z1:s; ✓, g(·; ⌫))|2] = O(⌘ + �)

By our Lq error result and Markov’s inequality, we have that with probability 1� �: k✓̂ � ✓0k  ⌘ = O(�n/�). Similarly,
by our assumption on the nuisance error

�
E
⇥
k⌫̂ � ⌫0(x)k4

⇤�1/4  �n,4 and Markov’s inequality we have that with
probability 1 � �: k⌫̂ � ⌫0(x)k  O(�n,4/�). Thus applying Lemma C.1, we have that conditional on the event that
k⌫̂ � ⌫0(x)k  O(�n,4/�), w.p. 1� �:

sup
✓:k✓�✓0k�n/�

r
E
h
|�j(Z1:s; ✓, ĥ)|2

i
= O

 
(�n/� + �n,4/�)

r
s(log(n/s) + log(1/�))

n
+

s(log(n/s) + log(1/�))

n

!

= O

✓
�2
n
polylog(n/s)/� + �n,4�n polylog(n/s)/� +

s(log(n/s) + log(1/�))

n

◆

= O(�3/2
n

polylog(n/s)/�)

where we used the fact that �2
n,4 = o(�n),

p
log(1/�)  1/� and that �n = ⇥

⇣p
polylog(n/s)�1 s/n

⌘
. By a union

bound we have that w.p. 1� 3�:

k�(✓̂, ĥ)��(✓0, h̃0)k = O(�3/2
n

polylog(n/s)/�)

Integrating this tail bound and using the boundedness of the score we get:

E
h
k�(✓̂, ĥ)��(✓0, h̃0)k

i
= O(�3/2

n
polylog(n/s) log(1/�n)) = o(�n) (33)

This completes the proof of the theorem.
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D.5. Omitted Proofs of Technical Lemmas

Proof of Lemma D.1. Fix a conditioning vector x. By performing a second order Taylor expansion of each coordinate
j 2 [p] of the expected score function mj around the true parameters ✓0 = ✓0(x) and h0 and applying the multi-dimensional
mean-value theorem, we can write that for any ✓ 2 ⇥:

mj(x; ✓, ĥ) = mj(x; ✓0, h0) +r✓mj(x; ✓0, h0)
0(✓ � ✓0) +D j [ĥ� h0 | x]

+
1

2
E
h
(✓ � ✓0, ĥ(W )� h0(W ))|r2

✓,h
 j(Z; ✓̃(j), h̃(j)(W ))(✓ � ✓0, ĥ(W )� h0(W )) | x

i

| {z }
⇢j

where each ✓̃(j) is some convex combination of ✓ and ✓0 and each h̃(j)(W ) is some convex combination of ĥ(W ) and
h0(W ). Note that m(x; ✓0, h0) = 0 by definition and D j [ĥ� h0 | x] = 0 by local orthogonality. Let ⇢ denote the vector
of second order terms. We can thus write the above set of equations in matrix form as:

M(✓ � ✓0) = m(x; ✓, ĥ)� ⇢

where we remind that M = r✓m(x; ✓0, h0) is the Jacobian of the moment vector. Since by our assumptions M is invertible
and has eigenvalues bounded away from zero by a constant, we can write:

(✓ � ✓0) = M�1 m(x; ✓, ĥ)�M�1 ⇢

Letting ⇠ = �M�1 ⇢, we have that by the boundedness of the eigenvalues of M�1:

k⇠k = O(k⇢k)

By our bounded eigenvalue Hessian assumption on E
h
r2
✓,h
 j(Z; ✓̃(j), h̃(j)(W )) | x,W

i
, we know that:

k⇢k1 = O
⇣
E
h
kĥ(W )� h0(W )k2 | x

i
+ k✓ � ✓0k2

⌘

Combining the above two equations and using the fact that k⇢k  p
pk⇢k1, yields that for any ✓ 2 ⇥:

✓ � ✓0 = M�1
⇣
m(x; ✓, ĥ)� (✓, ĥ)

⌘
+ ⇠

Evaluating the latter at ✓ = ✓̂ and also observing that by the definition of ✓̂,  (✓̂, ĥ) = 0 yields the result.

Proof of Lemma D.3. First we argue that by invoking the honesty of the ORF weights we can re-write µ0(✓, h) as:

µ0(✓, h) = E

2

4
✓
n

s

◆�1 X

1i1...isn

E!

"
sX

t=1

↵it ({Zit}st=1,!) m(Xit ; ✓, h)

#3

5 (34)

To prove this claim, it suffices to show that for any subset of s indices:

E [↵it ({Zit}st=1,!)  (Zit ; ✓, h)] = E [↵it ({Zit}st=1,!) m(Xit ; ✓, h)] (35)

By honesty of the ORF weights, we know that either it 2 S1, in which case ↵it ({Zit}st=1,!) = 0, or otherwise it 2 S2 and
then ↵it ({Zit}st=1,!) is independent of Zit , conditional on Xit , Z�it ,!. Thus in any case ↵it ({Zit}st=1,!) is independent
of Zit , conditional on Xit , Z�it ,!. Moreover since Zit is independent of Z�it ,! conditional on Xit :

E [ (Zit ; ✓, h) | Xit , Z�it ,!] = E [m(Xit ; ✓, h) | Xit , Z�it ,!]

By the law of iterated expectation and the independence properties claimed above, we can write:

E [↵it ({Zit}st=1,!)  (Zit ; ✓, h)] = = E [E [↵it ({Zit}st=1,!) | Xit , Z�it ,!] E [ (Zit ; ✓, h) | Xit , Z�it ,!]]

= E [E [↵it ({Zit}st=1,!) | Xit , Z�it ,!] E [m(Xit ; ✓, h) | Xit , Z�it ,!]]

= E [↵it ({Zit}st=1,!) m(Xit ; ✓, h)]
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Finally, by a repeated application of the triangle inequality and the lipschitz property of the conditional moments, we have:

k�(✓, h)k 
✓
n

s

◆�1 X

1i1...isn

E
"

sX

t=1

↵it ({Zit}st=1,!) km(x; ✓, h)�m(Xit ; ✓, h)k
#

 p
pL

✓
n

s

◆�1 X

1i1...isn

E
"

sX

t=1

↵it ({Zit}st=1,!) kXit � xk
#

 p
pL

✓
n

s

◆�1 X

1i1...isn

E [sup{kXit � xk : ↵it ({Zit}st=1,!) > 0}]

 p
pL "(s)

Proof of Lemma D.5. We prove that the concentration holds conditional on the samples Z1:n and ĥ, the result then follows.
Let

f̃(Sb,!b; ✓, h) =
X

i2Sb

↵i (Sb,!b)  (Zi; ✓, h(Wi)).

Observe that conditional on Z1:n and ĥ, the random variables f̃(S1,!1; ✓, h), . . . , f̃(SB ,!B ; ✓, h) are conditionally in-
dependent and identically distributed (where the randomness is over the choice of the set Sb and the internal algorithm
randomness !b). Then observe that we can write  (✓, h) = 1

B

P
B

b=1 f̃(Sb,!b; ✓, h). Thus conditional on Z1:n and ĥ,
 (✓, ĥ) is an average of B independent and identically distributed random variables. Moreover, since Sb is drawn uniformly
at random among all sub-samples of [n] of size s and since the randomness of the algorithm is drawn identically and
independently on each sampled tree:

E
h
f̃(Sb,!b; ✓, ĥ) | Z1:n

i
=

✓
n

s

◆�1 X

1i1...isn

f({Zit}st=1; ✓, ĥ) =  0(✓, h)

Finally, observe that under Assumption 4.1, |f̃(Sb,!b; ✓, ĥ)|   max = O(1) a.s.. Thus by a Chernoff bound, we have that
for any fixed ✓ 2 ⇥, w.p. 1� �:

k (✓, ĥ)� 0(✓, ĥ)k  O

 r
log(1/�)

B

!

Since ⇥ has constant diameter, we can construct an "-cover of ⇥ of size O(1/"). By Lipschitzness of  with respect to ✓
and following similar arguments as in the proof of Lemma C.1, we can also get a uniform concentration:

k (✓, ĥ)� 0(✓, ĥ)k  O

 r
log(B) + log(1/�)

B

!

E. Omitted Proofs from Section 5
Proof of Theorem 5.2. By convexity of the loss ` and the fact that ⌫̂(x) is the minimizer of the weighted penalized loss, we
have:

� (k⌫0(x)k1 � k⌫̂(x)k1) �
nX

i=1

ai(x) `(Zi; ⌫̂(x))�
nX

i=1

ai(x) `(Zi; ⌫0(x)) (optimality of ⌫̂(x))

�
nX

i=1

ai(x) hr⌫`(zi; ⌫0(x)), ⌫̂(x)� ⌫0(x)i (convexity of `)

� �

�����
X

i

ai(x)r⌫`(zi; ⌫0(x))

�����
1

k⌫̂(x)� ⌫0(x)k1 (Cauchy-Schwarz)

� � �

2
k⌫̂(x)� ⌫0(x)k1 (assumption on �)
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If we let ⇢(x) = ⌫̂(x)� ⌫0(x), then observe that by the definition of the support S of ⌫0(x) and the triangle inequality, we
have:

k⌫0(x)k1 � k⌫̂(x)k1 = k⌫0(x)Sk1 + k⌫0(x)Sck1 � k⌫̂(x)Sk1 � k⌫̂(x)Sck1 (separability of `1 norm)
= k⌫0(x)Sk1 � k⌫̂(x)Sk1 � k⌫̂(x)Sck1 (definition of support)
= k⌫0(x)Sk1 � k⌫̂(x)Sk1 � k⌫̂(x)Sc � ⌫0(x)Sck1 (definition of support)
= k⌫0(x)S � ⌫̂(x)Sk1 � k⌫̂(x)Sc � ⌫0(x)Sck1 (triangle inequality)
 k⇢(x)Sk1 � k⇢(x)Sck1 (definition of ⇢(x))

Thus re-arranging the terms in the latter series of inequalities, we get that ⇢(x) 2 C(S(x); 3).

We now show that the weighted empirical loss function satisfies a conditional restricted strong convexity property with
constant �̂ = � � k

p
s ln(d⌫/�)/n with probability 1� �. This follows from observing that:

H = r⌫⌫

nX

i=1

ai(x) `(zi; ⌫) =
nX

i=1

air⌫⌫`(zi; ⌫) ⌫
nX

i=1

aiH(zi) =
1

B

X

b

X

i2b

aib(x)H(zi)

Thus the Hessian is lower bounded by a matrix whose entries correspond to a Monte-Carlo approximation of the U -statistic:

U =
1�
n

s

�
X

S✓[n]:|S|=s

1

s!

X

i2S

E
!
[ai(S,!)H(zi)] (36)

where ⇧s denotes the set of permutations of s elements, S⇡ denotes the permuted elements of S according to ⇡ and S1
⇡
, S2

⇡

denotes the first and second half of the ordered elements of S according to ⇡. Finally, ai(S,!) denotes the tree weight
assigned to point i by a tree learner trained on S under random seed !.

Hence, for sufficiently large B, by a U -statistic concentration inequality (Hoeffding, 1963) and a union bound, each entry
will concentrate around the expected value of the U statistic to within 2

p
s ln(d⌫/�)/n, i.e.: with probability 1� �:

�����
1

B

X

b

X

i2b

aib(x)H(zi)� E [U ]

�����
1

 2

r
s ln(d⌫/�)

n
(37)

Moreover, observe that by the tower law of expectation and by honesty of the ORF trees we can write:

E [U ] = E

2

4 1�
n

s

�
X

S✓[n]:|S|=s

1

s!

X

i2S

ai(S,!)E [H(zi) | xi]

3

5 (38)

Since each E [H(zi) | xi] satisfies the restricted eigenvalue condition with constant �, we conclude that E [U ] also satisfies
the same condition as it is a convex combination of these conditional matrices. Thus for any vector ⇢ 2 C(S(x); 3), we
have w.p. 1� �:

⇢TH⇢ � ⇢T
 

nX

i=1

ai(x)H(zi)

!
⇢ (lower bound on Hessian)

� ⇢T E [U ] ⇢� 2

r
s ln(d⌫/�)

n
k⇢k21 (U -statistic matrix concentration)

� �k⇢k22 � 2

r
s ln(d⌫/�)

n
k⇢k21 (restricted strong convexity of population)

�
 
� � 32k

r
s ln(d⌫/�)

n

!
k⇢k22 (⇢ 2 C(S(x); 3) and sparsity, imply: k⇢k1  4

p
kk⇢k2)

Since ⇢(x) 2 C(S(x); 3) and since the weighted empirical loss satisfies a �̂ restricted strong convexity:
nX

i=1

ai(x) `(zi; ⌫̂(x))�
nX

i=1

ai(x) `(zi; ⌫0(x)) �
nX

i=1

ai(x) hr⌫`(zi; ⌫0(x)), ⌫̂ � ⌫0(x)i+ �̂k⇢(x)k22

� � �

2
k⇢(x)k21 + �̂k⇢(x)k22 (assumption on �)
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Combining with the upper bound of �
�
k⇢(x)S(x)k1 � k⇢(x)S(x)ck1

�
on the difference of the two weighted empirical losses

via the chain of inequalities at the beginning of the proof, we get that:

�̂k⇢(x)k22 � 3�

2
k⇢(x)S(x)k1 �

�

2
k⇢(x)S(x)ck1  3�

2
k⇢(x)S(x)k1  3�

p
k

2
k⇢(x)S(x)k2  3�

p
k

2
k⇢(x)k2

Dividing both sides by k⇢(x)k2 and combining with the fact that k⇢(x)k1  4
p
kk⇢(x)k2 yields the first part of the theorem.

Bounding the gradient. Let ⌧ = 1/(2↵d). We first upper bound the expected value of each entry of the gradient. By the
shrinkage property of the ORF weights:
�����

nX

i=1

E
⇥
ai(x)r⌫j `(zi; ⌫0(x)) | xi

⇤
����� 

���E
⇥
r⌫j `(z; ⌫0(x)) | x

⇤���+ E
"

nX

i=1

ai(x)
���E

⇥
r⌫j `(zi; ⌫0(x)) | xi

⇤
� E

⇥
r⌫j `(z; ⌫0(x)) | x

⇤���

#


��r⌫jL(⌫0(x);x)

��+ LE
"

nX

i=1

ai(x) kxi � xk
#

(Lipschitzness of r⌫L(⌫;x))


��r⌫jL(⌫0(x);x)

��+ Ls�⌧ (Kernel shrinkage)

 Ls�⌧ (First order optimality condition of ⌫0(x))

Moreover, since the quantity
P

i
ai(x)r⌫j `(zi; ⌫0(x)) is also a Monte-Carlo approximation to an appropriately defined

U -statistic (defined analogous to quantity U ), for sufficiently large B, it will concentrate around its expectation to withinp
s ln(1/�)/n, w.p. 1� �. Since the absolute value of its expectation is at most Ls�⌧ , we get that the absolute value of

each entry w.p. 1� � is at most Ls�⌧ +
p
s ln(1/�)/n. Thus with a union bound over the p entries of the gradient, we get

that uniformly, w.p. 1� � all entries have absolute values bounded within Ls�⌧ +
p

s ln(d⌫/�)/n.

F. Omitted Proofs from Heterogeneous Treatment Effects Estimation
We now verify the moment conditions for our CATE estimation satisfies the required conditions in Assumption 4.1.

F.1. Local Orthogonality

Recall that for any observation Z = (T, Y,W,X), any parameters ✓ 2 Rp, nuisance estimate ĥ parameterized by functions
q, g, we first consider the following residualized score function for PLR is defined as:

 (Z; ✓, h(X,W )) = {Y � q(X,W )� h✓, (T � g(X,W ))i} (T � g(X,W )), (39)

with h(X,W ) = (q(X,W ), g(X,W )).

For discrete treatments, we also consider the following doubly robust score function, with each coordinate indexed by
treament t defined as:

 t(Z; ✓, h(X,W )) = mt(X,W ) +
(Y �mt(X,W ))1[T = t]

gt(X,W )
�m0(X,W )�

�
Y �m0(X,W )

�
1[T = 0]

g0(X,W )
� ✓t

(40)

where h(X,W ) = (m(X,W ), g(X,W )).
Lemma F.1 (Local orthogonality for residualized moments). The moment condition with respect to the score function  
defined in (39) satisfies conditional orthogonality.

Proof. We establish local orthogonality via an even stronger conditional orthogonality:

E [rh (Z, ✓0(x), h0(X,W )) | W,x] = 0 (41)

In the following, we will write rh to denote the gradient of  with respect to the nuisance argument. For any W,x, we
can write

E [rh (Z; ✓0(x), (q0(x,W ), g0(x,W ))) | W,x] = E [(T � g0(x,W ),�Y + q0(x,W ) + 2✓0(x)
| (T � g0(x,W ))) | W,x]
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Furthermore, we have E [T � g0(x,W ) | W,x] = E [⌘ | W,x] = 0 and

E [�Y + q0(x,W ) + 2✓0(x)
| (T � g0(x,W )) | W,x] = E [q0(x,W )� Y + 2✓(x)|⌘ | W,x] = 0

where the last equality follows from that E [⌘ | W,x] = 0 and E [hW, q0i � Y | W,x] = 0.

Lemma F.2 (Local orthogonality for doubly robust moments). The moment condition with respect to the score function  
defined in (44) satisfies conditional orthogonality.

Proof. For every coordinate (or treatment) t, we have

E
⇥
rg 

t (Z; ✓0(x), (m0(x,W ), g0(x,W ))) | W,x
⇤

= E

� (Y �mt

0(X,W ))1[T = t]

(gt0(x,W ))2
+

(Y �m0
0(X,W ))1[T = t]

(g00(x,W ))2
| W,x

�

= E

� (Y �mt

0(X,W ))

(gt0(x,W ))2
| W,x, T = t

�
Pr[T = t | W,x]

+ E

(Y �m0

0(X,W ))

(g00(x,W ))2
| W,x, T = 0

�
Pr[T = 0 | W,x] = 0

and

E
⇥
rm 

t (Z; ✓0(x), (m0(x,W ), g0(x,W ))) | W,x
⇤

= E
"
rm

 
mt

0(x,W ) +
(Y �mt

0(x,W ))1[T = t]

gt0(x,W )
�m0

0(x,W )�
�
Y �m0

0(x,W )
�
1[T = 0]

g00(x,W )

!
| W,x

#

= E
"
rm

 
mt

0(x,W ) +
(�mt

0(x,W ))1[T = t]

gt0(x,W )
�m0

0(x,W )�
�
�m0

0(x,W )
�
1[T = 0]

g00(x,W )

!
| W,x

#

= rm

⇣
E
⇥
mt

0(x,W )�mt

0(x,W )�m0
0(x,W ) +m0

0(x,W ) | W,x
⇤⌘

= 0

This complets the proof.

F.2. Identifiability

Lemma F.3 (Identifiability for residualized moments.). As long as µ(X,W ) is independent of ⌘ conditioned on X and the
matrix E [⌘⌘| | X = x] is invertible for any x, the parameter ✓(x) is the unique solution to m(x; ✓, h) = 0.

Proof. The moment conditions m(x; ✓, h) = 0 can be written as

E [{Y � q0(X,W )� ✓| (T � g0(X,W ))} (T � g0(X,W )) | X = x] = 0

The left hand side can re-written as

E [{h⌘, µ0(X,W )i+ "� h✓, ⌘i)} ⌘ | X = x] = E [{h⌘, µ0(X,W )i � h✓, ⌘i)} ⌘ | X = x]

= E [hµ0(X,W )� ✓, ⌘i)⌘ | X = x]

= E [⌘⌘| | X = x]E [µ0(X,W )� ✓ | X = x]

Since the conditional expected covariance matrix E [⌘⌘| | X = x] is invertible, the expression above equals to zero only if
E [µ0(X,W )� ✓ | X = x] = 0. This implies that ✓ = E [µ0(X,W ) | X = x] = ✓0(x).

Lemma F.4 (Identifiability for doubly robust moments.). As long as µ(X,W ) is independent of ⌘ conditioned on X and
the matrix E [⌘⌘| | X = x] is invertible for any x, the parameter ✓(x) is the unique solution to m(x; ✓, h) = 0.
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Proof. For each coordinate t, the moment condition can be written as

E
"
mt

0(X,W ) +
(Y �mt

0(X,W ))1[T = t]

gt0(X,W )
�m0

0(X,W )�
�
Y �m0

0(X,W )
�
1[T = 0]

g00(X,W )
� ✓t | X = x

#
= 0 (42)

Equivalently,

E
⇥
mt

0(X,W )�m0
0(X,W )� ✓t | X = x

⇤
= E

W

"
E
"
� (Y �mt

0(X,W ))1[T = t]

gt0(X,W )
+

�
Y �m0

0(X,W )
�
1[T = 0]

g00(X,W )
| W,X = x

##

The inner expectation of the right hand side can be written as:

E
"
� (Y �mt

0(X,W ))1[T = t]

gt0(X,W )
+

�
Y �m0

0(X,W )
�
1[T = 0]

g00(X,W )
| W,X = x

#
= 0

This means the moment condition is equivalent to

E
⇥
mt

0(X,W )�m0
0(X,W ) | X = x

⇤
= ✓t.

This completes the proof.

F.3. Smooth Signal

Now we show that the moments m(x; ✓, h) are O(1)-Lipschitz in x for any ✓ and h under standard boundedness conditions
on the parameters.

First, we consider the residualized moment function is defined as

 (Z; ✓, h(X,W )) = {Y � q(X,W )� ✓| (T � g(X,W ))} (T � g(X,W )),

Then for any ✓ and h given by functions g and q,

m(x; ✓, h) = E [{Y � q(x,W )� ✓| (T � g(x,W ))} (T � g(x,W )) | X = x]

Real-valued treatments In the real-valued treatment case, each coordinate j of g is given by a high-dimensional linear
function: gj(x,W ) = hW, �ji, where �j is a k-sparse vectors in Rd⌫ with`1 norm bounded by a constant, and q(x,W ) can
be written as a hq0,�2(W )i with q0 is a k2-sparse vector in Rd

2
⌫ and �2(W ) denotes the degree-2 polynomial feature vector

of W .
mj(x; ✓, h) = E

⇥�
Y � hq0,�2(W )i � ✓j

�
T � h�j ,W i

� 
(T � g(x,W )) | X = x

⇤

Note that as long as we restrict the space ⇥ and H to satisfy k✓k  O(1), k�k1, kq0k1  1, we know each coordinate mj is
smooth in x.

Discrete treatments with residualized moments. In the discrete treatment case, each coordinate j of g is of the form
gj(x,W ) = L(hW, �ji), where L(t) = 1/(1 + e�t) is the logistic function. The estimate q consists of several components.
First, consider function f of the form f(x,W ) = hW,�i as an estimate for the outcome of the null treament. For each
t 2 {e1, . . . , ep}, we also have an estimate mt(x,W ) for the expected counter-factual outcome function µt(x) + f(x,W ),
which takes the form of hb,W i. Then the estimate q is defined as:

q(x,W ) =
pX

t=1

(mt(x,W )� f(x,W ))gt(x,W ) + f(x,W ).

With similar reasoning, as long as we restrict ⇥ and H to satisfy |✓|  O(1), k�jk1  1 for all j, and k�k1, kbk1  1, we
know each coordinate mj is smooth in x.
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Discrete treatments with doubly robust moments. Redcall that for each coordinate t, the moment function with input ✓
and nuisance parameters m, g is defined as

E
"
mt(x,W ) +

(Y �mt(x,W ))1[T = t]

gt(x,W )
�m0(x,W )�

�
Y �m0(x,W )

�
1[T = 0]

g0(x,W )
� ✓t | X = x

#
(43)

where each mt(x,W ) takes the form of hb,W i and each gt(x,W ) = L(hW, �ti), with L denoting the logistic function.
Then as long as we restrict the parameter space and H to satisfy k�tk1 for all t, then we know that |h�t,W i|  O(1) and so
gt(x,W ) � ⌦(1). Furthermore, if we restrict the vector b to satisfy kbk1  1, we know each coordinate mj is smooth in x.

F.4. Curvature

Now we show that the jacobian r✓m(x; ✓0(x), h0) has minimum eigenvalues bounded away from 0.

Residualized moments. First, we consider the residualized moment function is defined as

 (Z; ✓, h(X,W )) = {Y � q(X,W )� ✓| (T � g(X,W ))} (T � g(X,W )),

Then for any ✓ and h given by functions g and q,

m(x; ✓, h) = E [{Y � q(x,W )� ✓| (T � g(x,W ))} (T � g(x,W )) | X = x]

Let J be the expected Jacobian r✓m(x; ✓0(x), h0), and we can write

Jjj0 = E
h
(Tj � gj0(x,W ))(Tj0 � gj

0

0 (x,W )) | X = x
i

Then for any v 2 Rp with unit `2 norm, we have

vJv| = E

2

4
X

j

(Tj � gj0(x,W ))2v2
j
+ 2

X

j,j0

(Tj � gj0(x,W ))(Tj0 � gj
0

0 (x,W ))vjvj0 | X = x

3

5

= E

2

64

0

@
X

j

(Tj � gj0(x,W ))vj

1

A
2

| X = x

3

75

= E [v|(⌘⌘|)v | X = x]

Then as long as the conditional expected covariance matrix E [⌘⌘| | X = x] has minimum eigenvalue bounded away from
zero, we will also have minv vJv| bounded away from zero.

Discrete treatments with doubly robust moments. Redcall that for each coordinate t, the moment function with input ✓
and nuisance parameters m, g is defined as

E
"
mt(x,W ) +

(Y �mt(x,W ))1[T = t]

gt(x,W )
�m0(x,W )�

�
Y �m0(x,W )

�
1[T = 0]

g0(x,W )
� ✓t | X = x

#
(44)

Then r✓m(x; ✓0(x), h0) = �I , which implies the minimum eigevalue is 1.

F.5. Smoothness of scores

Residualized moments. First, we consider the residualized moment function with each coordinate defined as

 j(Z; ✓, h(X,W )) = {Y � q(X,W )� ✓| (T � g(X,W ))} (Tj � gj(X,W )),

Observe that for both real-valued and discrete treatments, the scales of ✓, q(X,W ), and g(X,W ) are bounded by O(1).
Thus, the smoothness condition immediately follows.
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Doubly robust moments. For every treatment t,

 t(Z; ✓, h(X,W )) = mt(X,W ) +
(Y �mt(X,W ))1[T = t]

gt(X,W )
�m0(X,W )�

�
Y �m0(X,W )

�
1[T = 0]

g0(X,W )
� ✓t

Recall that each mt(x,W ) takes the form of hb,W i and each gt(x,W ) = L(hW, �ti), with L denoting the logistic function.
Then as long as we restrict the parameter space and H to satisfy k�tk1 for all t, then we know that |h�t,W i|  O(1) and
so gt(X,W ) � ⌦(1). Furthermore, if we restrict the vector b to satisfy kbk1  1, we know each mj(X,W )  O(1).
Therefore, the smoothness condition also holds.

F.6. Accuracy for discrete treatments

For both score functions, we require that each discrete treatment (including the null treatment) is assigned with constant
probability.

Corollary F.5 (Accuracy for residualized scores). Suppose that �0(X) and each coorindate �0(X), �j0(X) and ✓(X) are
Lipschitz in X and have `1 norms bounded by O(1) for any X . Assume that distribution of X admits a density that is
bounded away from zero and infinity. For any feature X , the conditional covariance matrices satisfy E [⌘⌘| | X] ⌫ ⌦(1),
E [WW | | X] ⌫ ⌦(1)Id⌫ . Then with probability 1� �, ORF returns an estimator ✓̂ such that

k✓̂ � ✓0k  O
⇣
n

�1
2+2↵d

p
log(nd⌫/�)

⌘

as long as the sparsity k  O
⇣
n

1
4+4↵d

⌘
and the subsampling rate of ORF s = ⇥(n↵d/(1+↵d)). Moreover, for any b 2 Rp

with kbk  1, there exists a sequence �n = ⇥(
p
polylog(n)n�1/(1+↵d)) such that

��1
n

D
b, ✓̂ � ✓

E
!d N (0, 1),

as long as the sparsity k = o
⇣
n

1
4+4↵d

⌘
and the subsampling rate of ORF s = ⇥(n"+↵d/(1+↵d)) for any " > 0.

Corollary F.6 (Accuracy for doubly robust scores). Suppose that �0(X) and each coorindate uj

0(X), �j0(X) are Lipschitz
in X and have `1 norms bounded by O(1) for any X . Assume that distribution of X admits a density that is bounded away
from zero and infinity. For any feature X , the conditional covariance matrices satisfy E [⌘⌘| | X] ⌫ ⌦(1), E [WW | | X] ⌫
⌦(1)Id⌫ . Then with probability 1� �, ORF returns an estimator ✓̂ such that

k✓̂ � ✓0k  O
⇣
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⌘
and the subsampling rate of ORF s = ⇥(n"+↵d/(1+↵d)) for any " > 0.
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G. Orange Juice Experiment
Dominick’s orange juice dataset (provided by the University of Chicago Booth School of Business) contains 28,947 entries
of store-level, weekly prices and sales of different brands of orange juice. The dataset also contains 15 continuous and
categorical variables that encode store-level customer information such as the mean age, income, education level, etc, as
well as brand information. The goal is to learn the elasticity of orange juice as a function of income (or education, etc) in the
presence of high-dimensional controls.

In the experiment depicted in Figure 1, we trained the ORF using 500 trees, a minimum leaf size of 50, subsample ratio
of 0.02, with Lasso models for both residualization and kernel estimation. We evaluated the resulting algorithm on 50
log(Income) points between 10.4 and 10.9. We then followed-up with 100 experiments on bootstrap samples of the original
dataset to build bootstrap confidence intervals. The emerging trend in the elasticity as a function of income follows our
intuition: higher income levels correspond to a more inelastic demand.

H. All Experimental Results
We present all experimental results for the parameter choices described in Section 7. We vary the support size k 2
{1, 5, 10, 15, 20, 25, 30}, the dimension d 2 {1, 2} of the feature vector x and the treatment response function ✓ 2
{piecewise linear, piecewise constant and piecewise polynomial}. We measure the bias, variance and root mean square
error (RMSE) as evaluation metrics for the different estimators we considered in Section 7. In addition, we add another
version of the GRF (GRF-xW) where we run the GRF R package directly on the observations, using features and controls
(x,W ) jointly as the covariates. For the parameter space we consider, the ORF-CV and the ORF algorithms outperform the
other estimators on all regimes.

H.1. Experimental results for one-dimensional, piecewise linear ✓0

Consider a piecewise linear function: ✓0(x) = (x+ 2)Ix0.3 + (6x+ 0.5)Ix>0.3 and x0.6 + (�3x+ 5.9)Ix>0.6.

Figure 6: Bias, variance and
RMSE as a function of support
size for n = 5000, p = 500,
d = 1 and ✓0. The solid lines
represent the mean of the met-
rics across test points, averaged
over the 100 experiments, and
the filled regions depict the stan-
dard deviation, scaled down by
a factor of 3 for clarity.

Figure 7: Treatment effect esti-
mations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 1, and a piecewise linear
treatment response. The shaded
regions depict the mean and the
5%-95% interval of the 100 ex-
periments.
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Figure 8: Treatment effect esti-
mations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 5, and a piecewise linear
treatment response. The shaded
regions depict the mean and the
5%-95% interval of the 100 ex-
periments.

Figure 9: Treatment effect esti-
mations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 10, and a piecewise linear
treatment response. The shaded
regions depict the mean and the
5%-95% interval of the 100 ex-
periments.

Figure 10: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 15, and a piecewise linear
treatment response. The shaded
regions depict the mean and the
5%-95% interval of the 100 ex-
periments.
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Figure 11: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 20, and a piecewise linear
treatment response. The shaded
regions depict the mean and the
5%-95% interval of the 100 ex-
periments.

Figure 12: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 25, and a piecewise linear
treatment response. The shaded
regions depict the mean and the
5%-95% interval of the 100 ex-
periments.

Figure 13: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 30, and a piecewise linear
treatment response. The shaded
regions depict the mean and the
5%-95% interval of the 100 ex-
periments.
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H.2. Experimental results for one-dimensional, piecewise constant ✓0

We introduce the results for a piecewise constant function given by:

✓0(x) = Ix0.2 + 5Ix>0.2 and x0.6 + 3Ix>0.6

Figure 14: Bias, variance and RMSE as a function of support size for n = 5000, p = 500, d = 1 and a piecewise constant treatment
function. The solid lines represent the mean of the metrics across test points, averaged over the Monte Carlo experiments, and the filled
regions depict the standard deviation, scaled down by a factor of 3 for clarity.

Figure 15: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 1, and a piecewise con-
stant treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 16: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 5, and a piecewise con-
stant treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.
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Figure 17: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 10, and a piecewise con-
stant treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 18: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 15, and a piecewise con-
stant treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 19: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 20, and a piecewise con-
stant treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.
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Figure 20: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 25, and a piecewise con-
stant treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 21: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 30, and a piecewise con-
stant treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.
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H.3. Experimental results for one-dimensional, piecewise polynomial ✓0

We present the results for a piecewise polynomial function given by:

✓0(x) = 3x2Ix0.2 + (3x2 + 1)Ix>0.2 and x0.6 + (6x+ 2)Ix>0.6

Figure 22: Bias, variance and RMSE as a function of support size for n = 5000, p = 500, d = 1 and a piecewise polynomial treatment
function. The solid lines represent the mean of the metrics across test points, averaged over the Monte Carlo experiments, and the filled
regions depict the standard deviation, scaled down by a factor of 3 for clarity.

Figure 23: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 1, and a piecewise polyno-
mial treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 24: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 5, and a piecewise polyno-
mial treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.
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Figure 25: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 10, and a piecewise poly-
nomial treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 26: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 15, and a piecewise poly-
nomial treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 27: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 20, and a piecewise poly-
nomial treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.
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Figure 28: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 25, and a piecewise poly-
nomial treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 29: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 30, and a piecewise poly-
nomial treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.
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H.4. Experimental results for larger control support

We present experimental results for a piecewise linear treatment response ✓0, with n = 5000 samples and large support
k 2 {50, 75, 100, 150, 200}. Figures 30-35 illustrate that the behavior of the ORF-CV algorithm, with parameters set in
accordance our theoretical results, is consistent up until fairly large support sizes. Our method performs well with respect to
the chosen evaluation metrics and outperform other estimators for larger support sizes.

Figure 30: Bias, variance and RMSE as a function of support size. The solid lines represent the mean of the metrics across test points,
averaged over the Monte Carlo experiments, and the filled regions depict the standard deviation, scaled down by a factor of 3 for clarity.

Figure 31: Treatment effect esti-
mations for 100 Monte Carlo ex-
periments with parameters n =
5000, p = 500, d = 1, k = 50,
and a piecewise linear treatment re-
sponse. The shaded regions depict
the mean and the 5%-95% interval
of the 100 experiments.

Figure 32: Treatment effect esti-
mations for 100 Monte Carlo ex-
periments with parameters n =
5000, p = 500, d = 1, k = 75,
and a piecewise linear treatment re-
sponse. The shaded regions depict
the mean and the 5%-95% interval
of the 100 experiments.
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Figure 33: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 100, and a piecewise lin-
ear treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 34: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 150, and a piecewise lin-
ear treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.

Figure 35: Treatment effect es-
timations for 100 Monte Carlo
experiments with parameters
n = 5000, p = 500, d = 1,
k = 200, and a piecewise lin-
ear treatment response. The
shaded regions depict the mean
and the 5%-95% interval of the
100 experiments.
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H.5. Experimental results for two-dimensional heterogeneity

We introduce experimental results for a two-dimensional x and corresponding ✓0 given by:

✓0(x1, x2) = ✓piecewise linear(x1)Ix2=0 + ✓piecewise constant(x1)Ix2=1

where x1 ⇠ U [0, 1] and x2 ⇠ Bern(0.5). In Figures 36-44, we examine the overall behavior of the ORF-CV and ORF
estimators, as well as the behavior across the slices x2 = 0 and x2 = 1. We compare the performance of the ORF-CV and
ORF estimators with alternative methods for n = 5000 and k 2 {1, 5, 10, 15, 20, 25, 30}. We conclude that the ORF-CV
algorithm yields a better performance for all support sizes and evaluation metrics.

Figure 36: Overall bias, variance and RMSE as a function of support size for n = 5000, p = 500, d = 2. The solid lines represent the
mean of the metrics across test points, averaged over the Monte Carlo experiments, and the filled regions depict the standard deviation,
scaled down by a factor of 3 for clarity.

Figure 37: Bias, variance and
RMSE as a function of support
for n = 5000, p = 500, d = 2
and slices x2 = 0 and x2 = 1,
respectively. The solid lines rep-
resent the mean of the metrics
across test points, averaged over
the Monte Carlo experiments,
and the filled regions depict the
standard deviation, scaled down
by a factor of 3 for clarity.
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Figure 38: Treatment effect estimations for
100 Monte Carlo experiments with parameters
n = 5000, p = 500, d = 2, k = 1, and
slices x2 = 0 and x2 = 1, respectively. The
shaded regions depict the mean and the 5%-
95% interval of the 100 experiments.

Figure 39: Treatment effect estimations for
100 Monte Carlo experiments with parameters
n = 5000, p = 500, d = 2, k = 5, and
slices x2 = 0 and x2 = 1, respectively. The
shaded regions depict the mean and the 5%-
95% interval of the 100 experiments.
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Figure 40: Treatment effect estimations for
100 Monte Carlo experiments with parameters
n = 5000, p = 500, d = 2, k = 10, and
slices x2 = 0 and x2 = 1, respectively. The
shaded regions depict the mean and the 5%-
95% interval of the 100 experiments.

Figure 41: Treatment effect estimations for
100 Monte Carlo experiments with parameters
n = 5000, p = 500, d = 2, k = 15, and
slices x2 = 0 and x2 = 1, respectively. The
shaded regions depict the mean and the 5%-
95% interval of the 100 experiments.
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Figure 42: Treatment effect estimations for
100 Monte Carlo experiments with parameters
n = 5000, p = 500, d = 2, k = 20, and
slices x2 = 0 and x2 = 1, respectively. The
shaded regions depict the mean and the 5%-
95% interval of the 100 experiments.

Figure 43: Treatment effect estimations for
100 Monte Carlo experiments with parameters
n = 5000, p = 500, d = 2, k = 25, and
slices x2 = 0 and x2 = 1, respectively. The
shaded regions depict the mean and the 5%-
95% interval of the 100 experiments.
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Figure 44: Treatment effect estimations for
100 Monte Carlo experiments with parameters
n = 5000, p = 500, d = 2, k = 30, and
slices x2 = 0 and x2 = 1, respectively. The
shaded regions depict the mean and the 5%-
95% interval of the 100 experiments.


