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Abstract

Many modern learning tasks involve fitting non-
linear models which are trained in an overparame-
terized regime where the parameters of the model
exceed the size of the training dataset. Due to
this overparameterization, the training loss may
have infinitely many global minima and it is criti-
cal to understand the properties of the solutions
found by first-order optimization schemes such as
(stochastic) gradient descent starting from differ-
ent initializations. In this paper we demonstrate
that when the loss has certain properties over a
minimally small neighborhood of the initial point,
first order methods such as (stochastic) gradient
descent have a few intriguing properties: (1) the
iterates converge at a geometric rate to a global op-
tima even when the loss is nonconvex, (2) among
all global optima of the loss the iterates converge
to one with a near minimal distance to the initial
point, (3) the iterates take a near direct route from
the initial point to this global optimum. As part of
our proof technique, we introduce a new potential
function which captures the tradeoff between the
loss function and the distance to the initial point as
the iterations progress. The utility of our general
theory is demonstrated for a variety of problem
domains spanning low-rank matrix recovery to
shallow neural network training.

1. Introduction
1.1. Motivation

In a typical statistical estimation or supervised learning prob-
lem, we are interested in fitting a function f(-;0) : R% = R
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parameterized by 6 € RP to a training data set of n input-
output pairs «; € R and y; € R fori = 1,2,...,n. The
training problem then consists of finding a parameter 0
that minimizes the empirical risk £ Y7, £(f(2:;6),y;).
The loss £(7,y) measures the discrepancy between the
output(or label) y and the model prediction § = f(x;;0).
For regression tasks one typically uses a least-squares loss
0g,y) = %(gj —1y)? so that the training problem reduces to
a nonlinear least-squares problem of the form

1& 2

i == =0) -, 1.1
min £(6) 2;0”(%9) vi) (1.1)
In this paper we mostly focus on nonlinear least-squares
problems however Section 5 of the supplementary material
extends our results to a broader class of loss functions £(8).

Classical statistical estimation/learning theory postulates
that to find a reliable model that avoids overfitting, the size
of the training data must exceed the intrinsic dimension' of
the model class f(+; @) used for empirical risk minimization
(1.1). For many models such notions of intrinsic dimension
are at least as large as the number of parameters in the model
D, so that this literature requires the size of the training data
to exceed the number of parameters in the model i.e. n > p.
Contrary to this classical literature, modern machine learn-
ing models such as deep neural networks are often trained
via first-order methods in an over-parameterized regime
where the number of parameters in the model exceed the
size of the training data (i.e. n < p). Statistical learning
in this over-parameterized regime poses new challenges:
Given the nonconvex nature of the training loss (1.1) can
first-order methods converge to a globally optimal model
that perfectly interpolate the training data? If so, which of
the global optima do they converge to? What are the statisti-
cal properties of this model and how does this model vary as
a function of the initial parameter used to start the iterative
updates? What is the trajectory that iterative methods such
as (stochastic) gradient descent take to reach this point?
Why does a model trained using this approach generalize to

'Some common notions of intrinsic dimension include Vap-
nik—Chervonenkis (VC) Dimension (Vapnik & Chervonenkis,
2015), Rademacher/Gaussian complexity (Bartlett & Mendelson,
2002; Mohri et al., 2018; Talagrand, 2006), as well as naive param-
eter counting.
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new data and avoid overfitting to the training data?

In this paper we take a step towards addressing such chal-
lenges. We demonstrate that in many cases first-order meth-
ods do indeed converge to a globally optimal model that
perfectly fits the training data. Furthermore, we show that
among all globally optimal parameters of the training loss
these algorithms tend to converge to one which has a near
minimal distance to the parameter used for initialization.
Additionally, the path that these algorithms take to reach
such a global optima is rather short, with these algorithms
following a near direct trajectory from initialization to this
global optimum. We believe these key features may help
demystify why models trained using first-order methods
can achieve reliable learning in modern over-parametrized
regimes without over-fitting to the training data.

1.2. Contributions

Our main contributions can be summarized as follows:

* We provide a general convergence result for overparam-
eterized learning via gradient descent, that comes with
matching upper and lower bounds, showing that under
appropriate assumptions over a small neighborhood of the
initialization, gradient descent (1) finds a globally optimal
model, (2) among all possible globally optimal param-
eters it finds one which is approximately the closest to
initialization and (3) it follows a nearly direct trajectory
to find this global optima.

* We show that SGD exhibits the same behavior sand con-
verges linearly without ever leaving a small neighborhood
of the initialization even with rather large learning rates.

* We demonstrate the utility of our general results in the
context of three overparameterized learning problems:
generalized linear models, low-rank matrix regression,
and shallow neural network training.

2. Convergence Analysis for Gradient Descent

The nonlinear least-squares problem in (1.1) can be written
in the more compact form

i . 2
min £(8) := 5 [/(6) -yl , @2.1)

where y := [y1 Yo ... yn]T € R" and f(0) :=
[f(w1;9) f(x2;0) f(acn;a)]T € R™. A natural
approach to optimizing (2.1) is to use gradient descent up-
dates of the form

9T+1 = 07 - UTV£(97)7

starting from some initial parameter 6. For the formulation
(2.1) above the gradient takes the form

VL(8)=T(0)"(f(8)-y). 22

Here, J(0) € R™P? is the Jacobian matrix associated with
the mapping f(@) with entries given by J;; = %9;’9).
We note that in the over-parameterized regime (n < p),
the Jacobian has more columns than rows. Throughout,

Omin (+)/|-|| denote the minimum/maximum singular value.

Our first assumption ensures that the Jacobian matrix
smoothly changes as a function of the parameter 6.

Assumption 1 (Jacobian smoothness) Consider a set
D c RP containing the initial point 0 (i.e. 8y € D). We
assume that for all 61,05 € D,

17(62) - T(61)] < L|62-64],, .2

We will also assume that the spectrum of the Jacobian is
bounded in a local neighborhood of the initialization.

Assumption 2 (Jacobian Spectrum) Consider a set D c
RP containing the initial point @y (i.e. Oy € D). We assume
that for all 8 € D the following inequality holds

a < omin (J7(0)) < [T(0)] <5,
with «, B scalars obeying 3 > > 0.

With these assumptions in place we are now ready to state
our main result.

Theorem 2.1 Consider a nonlinear least-squares optimiza-

tion problem of the form (2.1). Suppose the Jacobian map-

ping associated with f obeys Assumption 2 over a ball
4] f(80)-

D of radius R := 27(60)yle, around a point 6, € RP.3

Furthermore, suppose Assumption 1 holds over D and set

2
[e]3

n < ﬁ . min(l, m) Then, running gradient
descent updates of the form 0.1 = 0. —nVL(0,) starting
from 0, all iterates obey.

2 T
o -ull < (1-75) Wrew-ul. e

1

10107 =00, +[£(0-) —yly, <1f(60) -yl 24
Furthermore, the total gradient path is bounded. That is,
4]£(60) - y”eg

«

S 16s01 -6, ], < 2.5)
=0

To apply our main result, one can simply verify that Jacobian
is nice at the initial point. The following corollary highlights
the key relations between smoothness, residual, and initial
Jacobian for global convergence.

Note that, if agée) is continuous, Lipschitzness condition
holds over any compact domain (for possibly large L).

That is, D = B(OO, w) with B(e,r) = {0 ¢ RP :
16-cl,, < r}
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Figure 1. In the left figure we show that the gradient descent iterates in over-parameterized learning exhibit a sharp tradeoff between
distance to the initial point (€ — 6o ,,) and the misfit error (|| f(6) - y[ ). Our upper (equation (2.10)) and lower bounds (Theorem
2.4) guarantee that the gradient descent iterates must lie in the green region. Additionally this is the tightest region as we provide examples
in Theorem 2.4 where gradient descent occurs only on the upper bound (green) line or on the lower bound (red line). Right figure shows
the same behavior in the parameter space. Our theorems predict that the gradient descent trajectory ends at a globally optimal point 8¢ p
in the green region and this point will have approximately the same distance to the initialization parameter as the closest global optima to
the initialization (6*). Furthermore, the GD iterates follow a near direct route from the initialization to this global optima.

Theorem 2.2 Suppose the Jacobian at 6y obeys

200 < omin (T (60)) < | T (60)] < B/2.
Additionally, suppose Assumption 1 holds over a ball of

00)—
radius R = M around 6y and
o’ 24L|y - f(60)|e,- (2.6)
Then, the conclusions of Theorem 2.1 hold with n < #

Another trivial consequence of our theorem is the following.

Corollary 2.3 Consider the setting and assumptions of The-
orem 2.1 above. Let 8 denote the global optima of the loss
L(0) with smallest Euclidean distance to the initial param-
eter 0. Then, the gradient descent iterates 0. obey

16, - 8ol <42 1" - ol @)

S 16~ 0, <42 6" - 00l @)
7=0 «Q

The theorems and corollary above show that if the Jacobian
of the nonlinear mapping has bounded/smooth deviations
(Assumptions 1) and is well-conditioned (Assumption 2)
in a ball of radius R around the initial point, then gradient
descent enjoys three intriguing properties.

Zero traning error: The first property demonstrated by
Theorem 2.1 above is that the iterates converge to a global
optima B¢ p. This hold despite the fact that the fitting prob-
lem may be highly nonconvex in general. Indeed, based
on (2.3) the fitting/training error || f (0 ) - y||,, achieved by
Gradient Descent (GD) iterates converges to zero. There-
fore, GD can perfectly interpolate the data and achieve zero

training error. Furthermore, this convergence is rather fast
and the algorithm enjoys a geometric (a.k.a. linear) rate of
convergence to this global optima.

Gradient descent iterates remain close to the initializa-
tion: The second interesting aspect of these results is that
they guarantee the GD iterates never leave a neighborhood
of radius 2 | £(6o) -y ¢, around the initial point. That is
the GD iterates remain rather close to the initialization. In
fact, based on (2.7) we can conclude that

. B s
|8cp - 6oll,, = lim |67~ Boll,, < 4= (67 - o, -

Thus the distance between the global optima GD converges
to and the initial parameter 6 is within a factor 4% of the
distance between the closest global optima to 8 and the
initialization. This shows that among all global optima
of the loss, the GD iterates converge to one with a near
minimal distance to the initialization. In particular, (2.4)
shows that for all iterates the weighted sum of the distance
to the initialization and the misfit error remains bounded so
that as the loss decreases the distance to the initialization
only moderately increases.

Gradient descent follows a short path: Another interest-
ing aspect of the above results is that the total length of the
path taken by gradient descent remains bounded. Indeed,
based on (2.8) the length of the path taken by GD is within
a factor of the distance between the closest global optima
and the initialization. This implies that GD follows a near
direct route from the initialization to a global optima!

We would like to note that Theorem 2.1 and Corollary
2.3 are special instances of a more general result stated
in Theorem 9.3 of the supplementary material. This more
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general result requires Assumptions 1 and 2 to hold in a
smaller neighborhood and improves the approximation ra-
tios. Specifically, the radius R can be chosen as small as

0,) —
1760) -yl 00
Q
and (2.4) can be improved to
a0, - 00l,, + 1£(6:) ~yll,, <17 (60) ~yl,, (210

This improves th approximation ratios in Corollary 2.3 to

16~ - 60ll,, < — 0" - 60, (2.11)

Sl e l™

> 1071 -6- lg, <= 10" =60],, - (2.12)
7=0

The role of the sample size: Theorem 2.1 provides a good
intuition towards the role of sample size in the overparame-
terized optimization landscape. First, observe that adding
more samples can only increase the condition number of the
Jacobian matrix (larger S and smaller ). Second, assuming
samples are i.i.d, the initial misfit |y — f(00)|¢, is propor-
tional to /n. Together these imply that more samples lead
to a more challenging optimization problem as: (1) More
samples leads to a slower convergence rate by degrading the
condition number of the Jacobian. (2) The required conver-
gence radius R increases proportional to /7 and we need
Jacobian to be well-behaved over a larger neighborhood.

A natural question about the results discussed so far is
whether the size of the local neighborhood for which we
require our assumptions to hold is optimal. In particular,
one may hope to be able to show that a significantly smaller
neighborhood is sufficient. We now state a lower bound
showing that this is not possible.

Theorem 2.4 Consider a nonlinear least-squares optimiza-
tion problem of the form (2.1) and assume Assumption 1
holds over a set D around a point 8y € RP. Then,

ly = £(O)le, + 816 = olle, > [y = f(60) e

holds for all 0 € D. Hence, any 0 that sets the loss to zero
satisfies |0 — 0o le, > |y — f(60)|e,/B. Furthermore, for
any « and [ obeying o, > 0 and 8 > «, there exists a
linear regression problem such that

ly = £(O)le, + @0 = Oolle, 2 [y = f(60) e

holds for all 0. Also, for any o and 5 obeying o, 3 > 0
and B > «, there also exists a linear regression problem
where running gradient descent updates of the form 0,1 =
0., —nVL(0,) starting from Oy = 0 with a sufficiently small
learning rate n, all iterates 0. obey

ly = £(0:) e, + B07 = Bole, = [y = f(60)]e.-

(2.13)

(2.14)

(2.15)

The result above shows that any global optima is at least a
distance ||@ - 6y ¢, > % away from the initializa-
tion so that the minimum ball around the initial point needs
to have radius at least R > ly=F(80)le, for convergence
to a global optima to occur. Comparing this lower-bound
with that of Theorem 2.1 and in particular the improve-
ment discussed in (2.9) suggests that the size of the local
neighborhood is optimal up to a factor 3/« which is the
condition number of the Jacobian in the local neighbor-
hood. More generally, this result shows that the weighted
sum of the residual/misfit to the model (|| f(@) - y||,,) and
distance to initialization (|6 — 6| ,,) has nearly matching
lower/upper bounds (compare (2.10) and (2.13)). Theorem
2.4 also provides two specific examples in the context of
linear regression which shows that both of these upper and
lower bounds are possible under our assumptions.

Collectively our theorems (Theorem 2.1, Corollary 2.3, im-
provements in equations (2.9) and (2.10), and Theorem 2.4)
demonstrate that the path taken by gradient descent is by
no means arbitrary. Indeed as depicted in the left picture
of Figure 1, gradient descent iterates in over-parameterized
learning exhibit a sharp tradeoff between distance to the ini-
tial point (|6 - 6] ,,) and the misfit error (| f(8) - y|,,)-
Our upper (equation (2.10)) and lower bounds (Theorem
2.4) guarantee that the gradient descent iterates must lie in
the green region in this figure. Additionally this is the tight-
est region as we provide examples in Theorem 2.4 where
gradient descent occurs only on the upper bound (green)
line or on the lower bound (red line). In the right picture of
Figure 1 we also depict the gradient descent trajectory in the
parameter space. As shown, the GD iterates end at a globally
optimal point O p in the green region and this point will
have approximately the same distance to the initialization
parameter as the closest global optima to the initialization
(@™). Furthermore, the GD iterates follow a near direct route
from the initialization to this global optima.

3. Convergence Analysis for Stochastic
Gradient Descent

Arguably the most widely used algorithm in modern learn-
ing is Stochastic Gradient Descent (SGD). For optimizing
nonlinear least-squares problems (2.1) a natural implemen-
tation of SGD is to sample a data point at random and use
that data point for the gradient updates. Specifically, let
{7122, be an i.i.d. sequence of integers chosen uniformly
from {1,2,...,n}. The SGD iterates take the form

01 =0-—n(f(2y,:07) =Yy, )V f(2,:0-).

We are interested in understanding the trajectory of SGD
for over-parameterized learning. In particular, whether the
intriguing properties of GD continue to hold for SGD. Our
next theorem addresses this challenge.

@3.1)
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Theorem 3.1 Consider a nonlinear least-squares optimiza-
tion problem of the form gnéen L£(6):=3]f(0)- yHi, with
eRP
f:RP —» R"™and y € R". Suppose the Jacobian mapping as-
sociated with f obeys Assumption 2 over a ball D of radius
0y)-
R:= VM around a point 6y € R? with v a scalar

obeying v > 3. Also assume the rows of the Jacobian have
bounded Euclidean norm over this ball, that is

max [J;(0)|,, <B forall 6¢D.

Furthermore, suppose Assumption 1 holds over D and set
2
. Then, there exists an event

(e}
"< VBB rwBBLIf(80)ul,,

1
withP(E) >1- % (g) P such that running SGD updates of
the form (3.1) starting from 0y, all iterates obey

2 T
e (170 -v12, 1] <122 ) 1o -,

Furthermore, on this event the SGD iterates never leave the
local neighborhood D.

This result shows that SGD converges to a global optima
that is close to the initialization. Furthermore, SGD always
remains in close proximity to the initialization with high

probability. Specifically, the neighborhood is on the order of

00)- R . . .
17(60) 4l which is consistent with the results on gradient

desce?lt and the lower bounds. However, unlike for gradient
descent our approach to proving such a result is not based
on the potential function (2.4). Rather we introduce a new
potential function that keeps track of the average distances
to multiple points around the initialization 8.

One interesting aspect of the result above is that the learn-
ing rate used is rather large. Indeed, ignoring an 3/« ratio
our convergence rate is on the order of 1 — ¢/n so that n
iterations of SGD correspond to a constant decrease in the
misfit error on par with a full gradient iteration. This is
made possible by a novel martingale-based technique which
is in part inspired by (Tan & Vershynin, 2017) which studies
SGD for nonconvex phase retrieval. Our novelty is analyz-
ing SGD without knowing where it eventually converges
by utilizing our potential function and ensuring that SGD
iterations never exit the local neighborhood.

‘We note that it is possible to also used Azuma’s inequality
applied to the sequence log | f(6-) - y|,, to show that the
SGD iterates stay in a local neighborhood with very high
probability. This idea has been utilized by recent related
works (Allen-Zhu et al., 2018b; Li & Liang, 2018). How-
ever, such an argument requires a very small learning rate
to ensure that one can take many steps without leaving the
neighborhood at which point the concentration effect of
Azuma becomes applicable. In contrast, our proof allows
for using aggressive learning rates (on par with gradient
descent) without ever leaving the local neighborhood.

4. Case studies

In this section we specialize and further develop our general
convergence analysis in the context of three fundamental
problems: fitting a generalized linear model, low-rank re-
gression, and shallow neural network training.

4.1. Learning generalized linear models

In this section we focus on learning Generalized Linear
Models (GLM) from data which involves fitting functions
of the form f(-;0) :RY - R

f(x;0) = ¢((x,0)).

A natural approach for fitting such GLMs is via minimizing
the nonlinear least-squares misfit of the form

min £(0) = 33 (o((@.0) -9’ @D

OcRP

Define the data matrix X € R™*P with rows given by x; for
i1=1,2,...,n. We thus recognize the above fitting problem
as a special instance of (2.1) with f(0) = ¢ (X 0). Here, ¢
when applied to a vector means applying the nonlinearity
entry by entry. We wish to understand the behavior of GD
in the over-parameterized regime where n < p. This is the
subject of the next two theorems.

Theorem 4.1 (Overparameterized GLM) Consider a
GLM fitting problem of the form (4.1) with ¢ : R - R a
strictly increasing nonlinearity with continuous derivatives
obeying 0 < ~v < ¢'(2) < T for all z. Starting from
arbitrary 8y, we run gradient descent on the loss (4.1) with
n < W Furthermore, let 0* denote the closest global

optimum to 0y. Then, all GD iterates obey

10: =0 ey < (1= 77" Amin (X X)) 60 -0 ey (42)

This theorem demonstrates that when fitting GLMs in the
over-parameterized regime, gradient descent converges at a
linear to a globally optimal model. Furthermore, this conver-
gence is to the closest global optimum to the initialization.

4.2. Low-rank regression

A variety of modern learning problems spanning recom-
mender engines to controls involve fitting low-rank models
to data. In this problem given a data set of size n con-
sisting of input/features X; € R™? and labels y; € R for
i=1,2,...,n, we aim to fit nonlinear models of the form

X~ f(X;0)=(X,007) = trace(@TXG),

with ® ¢ R the parameter of the model. Fitting such
models require optimizing losses of the form
12 2

min £(©)=-)" (yz - (Xia ®®T))

4.3
OcRdxr 24 “43)
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This approach, originally proposed by Burer and Monteiro
(Burer & Monteiro, 2003), shifts the search space from
a large low-rank positive semidefinite matrix @@ to its
factor ©. In this section we study the behavior of GD on this
problem in the over-parameterized regime where n < dr.

Theorem 4.2 Consider the problem of fitting a low-rank
model of the form (4.3). Assume the input features X;
are i.i.d. matrices with i.i.d. N'(0,1) entries. Further-
more, assume the labels y; are arbitrary and denote the
vector of all labels by y € R". Set the initial parameter
Oy € R™" 1o a matrix with singular values lying in the

\/uyuiz \/Hszz

interval [ ] Furthermore, let c,cq,co > 0
be numertcal constants and assume
n < cdr.
We set n = % and run GD starting from ©g. Then,
2

with probability at least 1 — 4e™% all iterates obey

n

> (v

=1

_ (X“@TQZ’))2 < 100(1 - T/z) HyH?Q s

This theorem shows that with modest over-parametrization
dr 2 n, GD linearly converges to a globally optimal model
and achieves zero loss. Note that the degrees of freedom of
a d x r matrices is on the order of dr hence as soon as n > dr,
gradient descent can no longer perfectly fit arbitrary labels
highlighting a phase transition from zero loss to non-zero as
sample size increases. Furthermore, our result holds despite
the nonconvex nature of the Burer-Monteiro approach.

4.3. Training shallow neural networks

In this section we specialize our general approach in the
context of training simple shallow neural networks. We
shall focus on neural networks with only one hidden layer
with d inputs, k hidden neurons and a single output. The
overall input-output relationship of the neural network in
this case is a function f(-;@) : R¢ - R that maps the input
vector € R into a scalar output via the following equation

k
x> f(x; W) = ;ve¢((w&$>)-

In the above the vectors w, € R? contains the weights of
the edges connecting the input to the /th hidden node and
vy € R is the weight of the edge connecting the ¢th hidden
node to the output. Finally, ¢ : R — R denotes the activation
function applied to each hidden node. For more compact no-
tation we gather the weights wy /v, into larger matrices W €

R¥*d and v € R* of the form W = [w1 wo wk]T

T .
and v = [m vy ... vk] We can now rewrite our
input-output model in the more succinct form

x e f(x; W) =0l ¢p(W). (4.4)

Here, we have used the convention that when ¢ is applied
to a vector it corresponds to applying ¢ to each entry of
that vector. In this paper we assume v € R¥ is fixed and
we train for the input-to-hidden weights W. Without loss
of generality we assume v € R* has unit Euclidean norm
ie. [v]|,, = 1. The training problem then takes the form

min L(W) := i(’UTQS(Wwi)_yi)Q

4.5
W eRkxd 2 = ( )

The theorem below provides global geometric convergence
guarantees for one-hidden layer neural networks in a simple
over-parametrized regime.

Theorem 4.3 Consider a data set of input/label pairs x; €
Re and y; € R fori=1,2,...,n aggregated as rows/entries
of a matrix X € R and a vector y € R™ with n < d. Also
consider a one-hidden layer neural network with k hidden
units and one output as in (4.4). We assume the activation
¢ is strictly increasing with bounded derivatives i.e. 0 <y <
@' (2) <T and ¢"(2) < M for all z, v is fixed with unit Eu-
clidean norm (|v|,, = 1) and train only over W. Starting
from arbitrary Wy, run gradient descent on the loss 4.5)

; 1 : Tmin(X)? 4
with 1 < s mm(lv P T 2 < T 7O )= y\uz)
Then, all GD iterates obey

1 FOW2) = ylley < (1= 172020 (X)) [ F(Wo) - yles.

This theorem demonstrates that the nice properties discussed
in this paper also holds for one-hidden-layer networks in
the regime where n < d from arbitrary initialization and the
result is independent of number of hidden nodes k. This
result holds for strictly increasing activations where ¢’ is
bounded away from zero. While this might seem restrictive,
we can obtain such a function by adding a small linear
component to any non-decreasing function i.e. (z) = (1 -
~v)é(x) +~ya. For instance, the commonly used leaky ReLU
is obtained from ReLU in this way. We focus on such
activations so as to ensure the result holds from arbitrary
initialization. As we discuss below it is possible to relax this
assumption when the algorithms are initialized at random.

We would like to emphasize that neural networks seem to
work with much less over-parameterization e.g. for one hid-
den networks like the above kd 2 n seems to be sufficient.
As such there is a huge gap between the n < d result above
and practical use. That said, our main theoretical guarantees
from Theorems 2.1 and 3.1 when combined with more intri-
cate techniques from random matrix theory and stochastic
processes continue to apply in this setting. In particular, in
a companion paper (Oymak & Soltanolkotabi, 2019) we
demonstrate that starting from a random initialization the
result above continues to hold without the need for strictly
increasing activations (including ReLLU and softplus) and
with much more modest amounts of over-parameterization.
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Figure 2. The normalized misfit-distance trajectory for MNIST
training for different layers of the network and different sample
sizes. The layers from input to output are Convl, Conv2, FCI1, and
FC2. Each curve represents the average normalized distance (for
each layer of the network) corresponding to a fixed normalized
misfit value over 20 independent realizations. The two standard
deviation around the mean is highlighted via the shaded region.

5. Numerical Experiments

To verify our theoretical claims, we conducted experiments
on MNIST classification and low-rank matrix regression.
To illustrate the tradeoffs between the loss function and the
distance to the initial point, we define normalized misfit and
normalized distance as follows.

misfit = 7‘@ ~f(O)le, , distance = L’ ~Ole, .
ly = f(60)l e 160l ¢,
5.1. MNIST Experiments

We consider MNIST digit classification task and use a stan-
dard LeNet model (LeCun et al., 1998) from Tensorflow
(Abadi et al., 2016). This model has two convolutional lay-
ers followed by two fully-connected layers. Instead of cross-
entropy loss, we use least-squares loss, without softmax
layer, which falls within our nonlinear least-squares frame-
work. We conducted two set of experiments with n = 500
and n = 5000. Both experiments use Adam with learning
rate 0.001 and batch size 100 for 1000 iterations. At each
iteration, we record the normalized misfit and distance to
obtain a misfit-distance trajectory similar to Figure 1. We
repeat the training 20 times (with independent initialization
and dataset selection) to obtain the typical behavior.

Since layers have distinct goals (feature extraction vs classi-
fication), we kept track of the behavior of individual layers.
Specifically, denote the weights of the /th layer of the neu-

ral network by W, we consider the per-layer normalized

. wt-wt .. .
distances W where layer £ is either convolutional
0

(Convl, Conv2) or fully-connected (FC1, FC2). In Figure 2,
we depict the normalized misfit-distance tradeoff for differ-
ent layers and sample sizes. Figure 2a illustrates the heavily
overparameterized regime which has fewer samples. During
the initial phase of the training (i.e. misfit < 0.2) all layers
follow a straight loss-distance line which is consistent with
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Figure 3. Figures 3a and 3b represent the test, training errors and
normalized misfit corresponding to Figure 2. The x-axis is the
number of iterations. Figure 3c highlights the loss-distance trajec-
tory for low-rank matrix regression with d = 100 and r = 4.

our theory (e.g. Figure 1). Towards the end of the training,
the lines slightly level off which is most visible for the out-
put layer FC2. This is likely due to the degradation of the
Jacobian condition number as the model overfits to the data.
Figure 3a plots the training and test errors together with
normalized misfit to illustrate this. While misfit is around
0.05 at iteration 1000, the in-sample (classification) error
hits O very quickly at iteration 200.

In Figure 2b and 3b we increase the sample size to n = 5000.
Similar to the first case, during the initial phase (misfit < 0.4)
the loss-distance curve is a straight line and levels off later
on. Compared to n = 500, leveling off occurs earlier and
is more visible. For instance, at misfit = 0.2, output layer
FC2 has distance of 0.5 for n = 5000 and 0.25 for n = 500.
This is consistent with Theorem 2.1 which predicts (i) more
samples imply a Jacobian with worse condition number
and (ii) the global minimizer lies further away from the
initialization and it is less-likely that the Jacobian will be
well-behaved over this larger neighborhood.

5.2. Low-rank regression

We consider a synthetic low-rank regression setup to test
the predictions of Theorem 4.2. We generate input ma-
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trices with i.i.d. standard normal entries and labels with
i.i.d. Rademacher entries. We set r = 4 and d = 100 and
initialize ® according to Theorem 4.2. We vary the sam-
ple size n € {25,50, 100,200} = {dr/16,dr/8,dr[4,dr/2}
and run gradient descent for 200 iterations with a constant
learning rate per Theorem 4.2. We observe a linear tradeoff
in terms of misfit-distance to initialization with a narrow
confidence interval consistent with our theoretical predic-
tions in Figure 1. In the large sample size (n = dr/2), the
problem is less over-parameterized and the confidence in-
tervals become notably wider especially when the misfit is
close to zero (i.e. by the time we reach a global minima). As
predicted by our main theorem, the distance to initialization
® increases gracefully as the number of labels n increases.

6. Prior Art

Here, we briefly discuss some closely related literature. See
the supplementary material for a more in depth discussion.

Implicit regularization: There is a growing interest in
understanding properties of overparameterized problems.
An interesting body of work investigate the implicit regu-
larization capabilities of (stochastic) gradient descent for
separable classification problems including (Azizan & Has-
sibi, 2018; Gunasekar et al., 2017; Nacson et al., 2018;
Neyshabur et al., 2014; 2017; Soudry et al., 2017; Wilson
et al., 2017). These results show that gradient descent does
not converge to an arbitrary solution, for instance, it has a
tendency to converge to the solution with the max margin or
minimal norm. Some of this literature apply to regression
problems as well (such as low-rank regression (Bhojanapalli
et al., 2016; Boumal et al., 2016; Burer & Monteiro, 2003;
Li et al., 2018)). However, for regression problems based
on a least-squares formulation the implicit bias/minimal
norm property is proven under the assumption that gradient
descent converges to a globally optimal solution which is
not rigorously proven in most of these papers.

Overparameterized neural networks: A few recent pa-
pers (Arora et al., 2018a; Brutzkus & Globerson, 2018;
Brutzkus et al., 2017b; Chizat & Bach, 2018; Ji & Telgarsky,
2018; Soltanolkotabi et al., 2018; Soudry & Carmon, 2016;
Venturi et al., 2018; Zhang et al., 2016; Zhu et al., 2018)
study the benefits of overparameterization for training neu-
ral networks and related optimization problems. Very recent
works (Allen-Zhu et al., 2018a;b; Du et al., 2018a;b; Li &
Liang, 2018; Zou et al., 2018) show that overparameterized
neural networks can fit the data with random initialization if
the number of hidden nodes are polynomially large in the
size of the dataset. Our results are not directly comparable
to each other. We assume n < d and use an arbitrary initial-
ization where as these papers assume poly(n) < k and start
from random initialization. The results further defer in terms
of other assumptions and conclusions. In contrast to these
papers on neural nets, we focus on general nonlinearities and

also on the gradient descent trajectory showing that among
all the global optima, gradient descent converges to one with
near minimal distance to the initialization. We would also
like to note that the importance of the Jacobian for over-
parameterized neural network analysis has also been noted
by other papers including (Du et al., 2018b; Soltanolkotabi
et al., 2018) and also (Chaudhari et al., 2016; Keskar et al.,
2016; Sagun et al., 2017) which investigate the optimization
landscape and properties of SGD for training neural net-
works. An equally important question to understanding the
convergence behavior of optimization algorithms for over-
parameterized models is understanding their generalization
capabilities this is the subject of a few interesting recent pa-
pers (Arora et al., 2018b; Bartlett et al., 2017; Belkin et al.,
2018a;b; Brutzkus et al., 2017a; Golowich et al., 2017; Li
et al., 2019; Liang & Rakhlin, 2018; Oymak, 2018; Song
et al., 2018). While our results do not directly address gen-
eralization, by characterizing the properties of the global
optima that (stochastic) gradient descent converges to it
may help demystify the generalization capabilities of over-
parametrized models.

7. Discussion and future directions

This work provides new insights and theory for overparame-
terized learning with nonlinear models. We first provided a
general convergence result for gradient descent and match-
ing upper and lower bounds showing that if the Jacobian of
the nonlinear mapping is well-behaved in a minimally small
neighborhood, gradient descent finds a global minimizer
which has a nearly minimal distance to the initialization.
Second, we extend the results to SGD to show that SGD
exhibits the same behavior and converges linearly without
ever leaving a minimally small neighborhood of initializtion.
Finally, we specialize our general theory to provide new re-
sults for overparameterized learning with generalized linear
models, low-rank regression and shallow neural network
training. A key tool in our results is that we introduce a po-
tential function that captures the tradeoff between the model
misfit and the distance to the initial point: the decrease in
loss is proportional to the distance from the initialization.
Our numerical experiments on real and synthetic data further
corroborate this intuition on the loss-distance tradeofft.

In this work we address important challenges surrounding
the optimization of nonlinear over-parametrized learning
via GD and SGD and some of its key features. The fact
that gradient descent finds a nearby solution is a desirable
property that hints as to why generalization to new data
instances may be possible. However, we emphasize that
this is only suggestive of the generalization capabilities of
such algorithms to new data. Indeed, developing a clear
understanding of the generalization capabilities of first or-
der methods when solving over-parameterized nonlinear
problems is an important future direction.
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