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In this supplementary material we will provide proofs for
the two theorems that we presented in the main paper. We
also provide more visualization of the models trained with
G-MM and compare them with CCCP and EM, which we
had to omit from the main paper due to space limitations.

1. Proof of Convergence
Proof of Theorem 1. First, we observe that the following
inequality follows from the bound construction assump-
tions:

bt(wt) ≤ bt(wt−1) ≤ vt−1, (14)

where vt = bt(wt)− ηdt. In particular, the first inequality
holds because wt minimizes bt and the second inequality
follows from (3). Summing (14) over t = 1, ..., T and sub-
stituting the definition of vt gives

T∑
t=1

bt(wt) ≤
T∑
t=1

vt−1 = v0 +

T−1∑
t=1

(
bt(wt)− ηdt

)
which implies

η

T∑
t=1

dt ≤ v0 − bT (wT ). (15)

Recall that we set v0 = F (w0), and let F∗ ∈ R denote a
finite global lower bound for F , and hence bT (wT ) ≥ F∗.
The bound (15) then implies

η

∞∑
t=1

dt ≤ F (w0)− F∗ <∞,

which gives limt→∞ dt = 0.

Next, recall that for every m-strongly convex function f ,
every x, y in the domain of f , and every subgradient g ∈
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∂f(x), we have

f(y) ≥ f(x) + gT (y − x) + m

2
||x− y||2. (16)

Substituting f = bt, x = wt, and y = wt−1 in (16), and
noting that the zero vector is a subgradient of bt at wt (be-
cause wt is a minimizer of bt), we obtain

||wt − wt−1||2 ≤
2

m
(bt(wt−1)− bt(wt))

≤ 2

m
(bt−1(wt−1)− bt(wt)) , (17)

where (3) is used in the second inequality. Summing (17)
over t = 2, .., T , we obtain

T∑
t=1

||wt − wt−1||2 ≤ b1(w1)− bT (wT )

≤ F (w1)− F∗, (18)

which implies

lim
t→∞

‖wt − wt−1‖ = 0 (19)

On the other hand, since F (wt) ≤ bt(wt) ≤ F (w0)
by (2), the sequence {wt}t lies in the sublevel set {w ∈
Rn|F (w) ≤ F (w0)}, which is assumed to be a compact
set. To show that a sequence that is contained in a compact
set converges, one needs to prove that all its converging
subsequences have the same limit. For {wt}t, this follows
from (19), and therefore {wt}t converges to a limitw†.

Proof of Theorem 2. We prove this theorem by contradic-
tion. Suppose ∇F (w†) 6= 0. This implies that there exists
a unit vector u ∈ Rd such that the directional derivative of
F along u is positive at w†, i.e. ∇F (w†) · u > 2c for some
c > 0. Since F is continuously differentiable, ∇F · u is
continuous at w†, and hence

∇F (w) · u > c, ∀w ∈ B2δ(w
†), (20)

for all small enough δ > 0, where Br(x) denotes an open
ball around x with radius r. We fix a δ > 0 that satisfies
(20), as well as the bound

δ <
2c

M
. (21)
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We also fix an ε > 0 that satisfies

ε < cδ − M

2
δ2, (22)

which is possible because of (21). The reason for this will
be clear shortly.

Now recall by Theorem 1 that wt → w† and dt → 0, as
t→∞, so we can pick T > 0 large enough such that

|wT − w†| < δ (23)

and
dT = b(wT )− F (wt) < ε (24)

Now define the function g to be the restriction of F on a
line parallel to u that passes through wT (see Figure 1),
that is

g(z) = F (wT + zu), z ∈ R.
It is easy to see that g is continuously differentiable with

g′(z) = ∇F (wT + zu) · u.

In particular, the bound (20) implies

g′(z) > c, z ∈ (0, δ). (25)

This is because for every z ∈ (0, δ),

wT + zu ∈ Bδ(wT ) ⊂ B2δ(w
†).

An application of Taylor Expansion Theorem of order n =
0 on g around z = 0 shows that there exits a z∗ ∈ (0, δ)
such that

g(δ) = g(0) + g′(z∗)δ > g(0) + cδ,

where we used g′(z∗) > c by (25). Substituting definitions
of g(0) and g′(0) in the display above, we obtain the bound

F (w∗) > F (wT ) + cδ, w∗ = wT + δu. (26)

On the other hand, since bT is a smooth function with its
minimum at wT and its Hessian ∇2bT bounded by MI ,
second order Taylor expansion of bT around wT gives

bT (w) ≤ bT (wT )+∇bT (wT ) ·(w−wT )+
M

2
‖w−wT ‖2,

and in particular, for w = w∗ = wT + δu,

bT (w∗) ≤ bT (wT ) +
M

2
δ2. (27)

Combining the bounds (24)-(27) and the choice (22) of ε,
we have

bT (w∗)− F (w∗) ≤ [bT (wT )− F (wT )] +
M

2
δ2 − cδ

≤ ε+ M

2
δ2 − cδ

< 0,

which contradicts the fact that bT is an upper bound for F .
This completes the proof.

Figure 1. An illustration of quantities defined in the proof of The-
orem 2

2. k-means Clustering
Figure 2 visualizes the result of k-means and G-MM (with
random bounds) on the D-31 dataset (Veenman et al.,
2002), from the same initialization. G-MM finds a near
perfect solution, while in standard k-means, many clusters
get merged incorrectly or die off. Dead clusters are those
which do not get any points assigned to them. The up-
date rule (M-step of k-means algorithm) collapses the dead
clusters on to the origin.

3. LS-SVM for Mammal Image Classification
We provide additional experimental results on the mam-
mals dataset. Figure 3 shows example training images
and the final imputed latent object locations by three al-
gorithms: CCCP (red), G-MM random (blue), and G-MM
biased (green). The initialization is top-left.

In most cases CCCP fails to update the latent locations
given by initialization. The two G-MM variants, however,
are able to update them significantly and often localize the
objects in training images correctly. This is achieved only
with image-level object category annotations, and with a
very bad (even adversarial) initialization.
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(a) ground truth (b) k-means (c) generalized-MM

Figure 2. Visualization of clustering solutions on the D31 dataset (Veenman et al., 2002) from identical initializations. Random partition
initialization scheme is used. (a) color-coded ground-truth clusters. (b) solution of k-means. (c) solution of G-MM. The white crosses
indicate location of the cluster centers. Color codes match up to a permutation.

Figure 3. Example training images from the mammals dataset, shown with final imputed latent object locations by three algorithms:
CCCP (red), G-MM random (blue), G-MM biased (green). Initialization: top-left.


