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1. Image Samples
Figure 1 and 2 illustrates examples of reconstruction and
generation samples made by the VLAE on MNIST (LeCun
et al., 1998), Fashion MNIST (Xiao et al., 2017), Omniglot
(Lake et al., 2013), SVHN (Wang et al., 2011) and CIFAR 10
(Krizhevsky & Hinton, 2009). Overall, the reconstructions
are sharp but generated samples tend to be blurry, especially
when the data is complex (e.g. CIFAR10). We expect
using convolutional architectures to be helpful for improving
image generation qualities.

2. Experimental Details
We optimize using ADAM (Kingma & Ba, 2015) with learn-
ing rate 0.0005. Other parameters of the optimizer is set to
default values. We experiment with T = 1, 2, 4, 8 where T
is the number of iterative updates for VLAE and SA-VAE,
or the number of flow transformations for VAE+HF. We set
the batch size to 128. All models are trained up to 2000
epochs at maximum and evaluated using the checkpoint that
gives the best validation performance.

We set αt = 0.5/(t+1) as decay for the VLAE update. For
SA-VAE, the variational parameter λt is updated T times
using SGD: λt+1 = λt + α ∂

∂φLθ(x;λt) with α = 0.0005.
The value of α is determined using a grid search among
{1.0, 0.1, 0.001, 0.0005, 0.0001} on the small network. We
estimate the gradient using a single sample of z and apply
the gradient norm clipping to avoid divergence of SA-VAE.

In our experiments, we find that the bigger models are sus-
ceptible to the parameter initialization, and their latent vari-
ables are prone to collapse if not properly initialized. We
also observe VLAE and VAE+IAF are relatively robust to
hyperparameter settings compared to other models. In order
to prevent latent variable collapse, we use He’s initialization
(He et al., 2015) to preserve variance of backward propaga-
tion with gain of 21/3 to account for the network structure
that consists of two ReLU layer and one linear layer. In
this way, the variance of gradients is preserved in initial
phase of training. Furthermore, the data is mean-normalized
and scaled so that the reconstruction loss at initial state
is approximately 1. These changes successfully prevent
latent variable collapse and significantly improve overall

performance of the models.

This finding hints that it is crucial to preserve gradient vari-
ance throughout the networks. Note that the gradient sig-
nal to the encoder comes from two sources: (1) KL diver-
gence term DKL(qφ(z|x)||p(z)) (2) Reconstruction term
Eqφ(z|x)[ln pθ(x|z)]. While the gradient from the KL diver-
gence term is directly fed into the encoder, the gradient from
the reconstruction term - which is essential for preventing
the latent variable collapse - have to propagate backwards
through the decoder to reach the encoder. We hypothesize
that if the networks are not initialized properly, the recon-
struction gradient is overwhelmed by the KL divergence
gradient which drives the approximate posterior qφ(z|x) to
collapse to the prior p(z) in the initial stage of training.

3. Conjugate Gradient Method
To measure the performance of the Conjugate Gradient (CG)
method as an alternative to the update equations of the main
draft, we implement the VLAE+CG model where the mode
update equation is replaced with the CG ascent step. We
use nonlinear Conjugate Gradient of Polak-Ribiére method.
For more details on nonlinear Conjugate Gradient methods,
we refer readers to (Shewchuk, 1994; Dai, 2010). With
T = 4, we find that VLAE+CG yields about 25% speed-up
compared to the VLAE with minor performance loss (∼
1%) on MNIST.
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(a) MNIST (Bernoulli) (b) MNIST (c) Omniglot

(d) Fashion MNIST (e) SVHN (f) CIFAR10

Figure 1. Examples of sample reconstructions by VLAE. Gaussian output distribution is used unless otherwise stated.

(a) MNIST (Bernoulli) (b) MNIST (c) Omniglot

(d) Fashion MNIST (e) SVHN (f) CIFAR10

Figure 2. Examples of output samples generated by VLAE. Gaussian output distribution is used unless otherwise stated.
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