
Supplementary Material

A. Networks and Datasets
We consider MLPs with 1, 2 or 3 hidden layers. Each layer has the same number of hidden units, w. We denote the d-layered
perceptron with width w by the label dLPw. We do not consider batch normalization for these networks, and we consider
the range of widths,

w ∈ {128, 192, 256, 384, 512, 768, 1024}. (1)

We consider a family of convolutional networks CNNw, obtained from LeNet-5 (figure 2 of Lecun et al. (1998)) by scaling
all the channels, as well as the widths of the fully connected layers, by a widening factor of w/2 (the factor of 1

2 allows
integer w for all experiments). Thus, LeNet-5 is identified as CNN2. We also consider batch normalization, which takes
place after the dense or convolutional affine transformation, and before the activation function, as is standard. We do not use
biases when we use batch normalization. We consider the widening factors,

w ∈ {2, 3, 4, 6, 8, 12}. (2)

Finally, we consider a family of wide residual networks WRNw, where WRNw is equivalent to table 1 of Zagoruyko &
Komodakis (2016) if N = 2 and k = w. For consistency with Zagoruyko & Komodakis (2016) the first wide ResNet layer,
a 3 to 16 channel expansion, is not scaled with w. As for CNNs, we study WRNs both with and without batch normalization.
We consider the widening factors,

w ∈ {2, 3, 4, 6, 8}. (3)

The training sets of MNIST and Fashion-MNIST have been split into training-validation sets of size 55000-5000 while for
CIFAR-10, the split is given by 45000-5000. We have used the official test set of 10000 images for each dataset. For MNIST
and F-MNIST, we normalize the pixels of each image to range from -0.5 to 0.5. For CIFAR-10, we normalize the pixels to
have zero mean and unit variance. We do not use data augmentation for any of the experiments presented in the main text.

B. Training Time for Experiments
For experiments with fixed learning rate εfixed, we set the number of training steps T by setting both an epoch bound Emin
and a step bound Tmin. So for a given batch size B the number of training steps is set by,

T = max

(
Tmin , Emin ·

Ntrain

B

)
. (4)

After running the batch size search, we may choose a reasonable batch size Bfixed to hold fixed during learning search rate.
Experiments with fixed batch size and variable learning rate are always paired to such a “parent experiment.” When the
batch size is fixed and the learning rate varies, we must scale the number of training steps proportional to the learning rate.
We pick the reference learning rate ε0 to be the learning rate at which the original batch size search was run, and a reference
number of training steps T0, which is computed at the fixed batch size Bfixed using the epoch and step bound provided in
equation (4). Then for learning rate ε, the number of training steps T is given by

T = max
(
T0 , T0 ·

ε0
ε

)
. (5)

That is, for learning rates larger than ε0 we perform T0 updates, while for learning rates smaller than ε0, we scale the number
of updates inversely proportional to the learning rate.

C. Experiment Details and Configurations
In this section we detail the specific configurations of experiments run in this work.
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C.1. NTK without Batch Normalization

Table 1. Epoch and step bounds for dataset-network family pairs for various experimental settings.

Dataset Networks Emin Tmin εBS search BLR search ε0,LR search T0,LR search

MNIST 1LP 120 80k 10.0 8 10.0 825k
MNIST 2LP 120 80k 10.0 16 10.0 412.5k
MNIST 3LP 120 80k 10.0 16 10.0 412.5k
MNIST CNN 120 80k 10.0 24 10.0 275k
F-MNIST 1LP 240 160k 10.0 12 10.0 1100k
F-MNIST 2LP 240 160k 10.0 24 10.0 550k
F-MNIST 3LP 240 160k 10.0 48 10.0 275k
F-MNIST CNN 240 160k 10.0 96 10.0 160k
CIFAR-10 CNN 540 320k 5.0 256 10.0 160k
CIFAR-10 WRN 270 80k 1.0 8 1.0 1500k

We run both batch size search and learning rate search to determine the optimal normalized noise scale for networks trained
with NTK parameterization and without batch normalization. The relevant parameters used for the search experiments are
listed in table 1. The scalar εBS search denotes the fixed learning rate used for batch size search, while BLR search denotes the
fixed batch size used during learning rate search.

The epoch bound Emin and the training step bound Tmin are defined in section B of the supplementary material. Also as we
explained in section B, the training time is scaled with respect to a reference training time and a reference learning rate for
the learning rate search experiments. These are denoted T0,LR search and ε0,LR search in the table respectively.

C.2. Standard without Batch Normalization

Table 2. Epoch and step bounds for dataset-network family pairs for various experimental settings.

Dataset Networks w Emin Tmin εBS search

MNIST MLP All 120 80k 0.02
F-MNIST CNN All 480 320k 0.03
CIFAR-10 WRN 2, 3, 4 540 160k 0.0025
CIFAR-10 WRN 6, 8 1080 320k 0.00125

For standard networks without batch normalization, we only carry out batch size search experiments at a fixed learning rate
εBS search. For CIFAR-10 experiments on wide residual networks, we chose to use two different learning rates depending on
the width of the networks (narrower networks can be trained faster with a bigger learning rate, while wider networks require
a smaller learning rate for numerical stability). The experiment configurations are listed in table 2.

C.3. NTK with Batch Normalization

Table 3. Epoch and step bounds for dataset-network family pairs for various experimental settings.

Dataset Networks Emin Tmin εBS search BLR search ε0,LR search T0,LR search

MNIST CNN 120 80k 10.0 128 10.0 80k
F-MNIST CNN 480 320k 10.0 192 10.0 320k
CIFAR-10 CNN 540 320k 10.0 192 10.0 320k
CIFAR-10 WRN 270 80k 30.0 192 30.0 80k

The experiment configurations for networks parameterized using the NTK scheme with batch normalization are listed in
table 3. Both batch size search and learning rate search have been carried out. The parameters defined are equivalent to
those used for NTK networks without batch normalization in section C.1.
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D. Plots from Batch Search and Learning Rate Search
In this section, we present plots of the average test set accuracy vs. batch size/learning rate for batch size/learning rate
search experiments with fixed learning rate/batch size respectively. All the learning rate search experiments are paired with
batch size search experiments, and share the same color-code and legend describing the network widening factors.

Figure 1. The test accuracy plotted against batch size/learning rate for experiments at fixed learning rate/batch size respectively. These
plots are from the experiments performed on NTK-parameterized networks without batch normalization. The legend indicates the
widening factor of the plotted networks, and the x-axis is plotted in log scale. The values for the fixed parameters are indicated in the title.

Figure 1 plots the results of batch size/learning rate search experiments run with NTK-parameterized networks without batch
normalization. Here, the x-axis is plotted in log-scale. Since ḡ ∝ ε/B, if the performance of the network is determined by
the noise scale, then the figures for batch size search and learning rate search experiments on the same dataset-network pair
should be symmetric to one another. This symmetry is nicely on display in figure 1.

Figure 2 plots batch size search experiments run with standard parameterization and without batch normalization. Standard-
parameterized WRN6 and WRN8 were run with a reduced learning rate due to numerical stability issues, and the results of
their batch size search experiments have been plotted separately. In contrast to NTK-parameterized networks, the normalized
noise is width-dependent for networks parameterized using the standard scheme. Also, we have batch searches conducted
over varying learning rates in one instance. Thus it is more informative to put everything together and plot the performance
of the network against (wε)/B ∝ ḡ. This has been done in figure 3. This plot reproduces the qualitative features of figure 1,
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which is strong evidence for ḡ being the correct indicator of the performance of networks within a linear family.

Figure 4 plots the results of batch size/learning rate search run with NTK-parameterized networks with batch normalization.

When both batch size and learning rate search have been carried out, the y-axes of the plots, along which the network
performance is plotted, are aligned so that the maximal performance obtained from the search can be compared.

Figure 2. The test accuracy plotted against batch size for experiments at fixed learning rate. The plots are from networks parameterized in
the standard scheme without batch normalization. The legend indicates the widening factor of the plotted networks.

Figure 3. The test accuracy plotted against w · ε/B ∝ ḡ for networks parameterized in the standard scheme without batch-normalization.
The x-axis is log-scaled. The legend indicates the widening factor.

Figure 4. The test accuracy plotted against (learning rate) for experiments at fixed learning rate/batch size respectively. The networks are
NTK-parameterized and use batch normalization. The x-axis is log-scaled. The legend indicates the widening factor.

E. Networks with Standard Parameterization and Batch Normalization
In this section, we present results of batch search experiments with WRNs with batch normalization that are parameterized
using the standard scheme. We train with a constant schedule with epoch bound Emin = 270 and step bound Tmin = 80k.

As was with the case with NTK parameterized WRNs, the scaling rule for the optimum batch size coincides with that of the
case when batch normalization is absent, i.e., the optimal batch size Bopt is constant with respect to the widening factor.
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Figure 5. Three plots summarizing the results of the batch search experiments with standard WRNs with batch normalization trained on
CIFAR-10. The test accuracy of the networks are plotted against the batch sizes in the first figure, and the value of w · ε/B in the second
figure. The x-axis is log-scaled in the second figure. The optimal value of w/B is plotted against the network widths in the third figure.

F. Batch Search Experiments with Regularization
In this section, we present the results of training WRNs on CIFAR-10 with regularization. We use dropout with probability
0.3 and label smoothing with uncertainty 0.9. Data augmentation is also applied by first taking a random crop of the image
padded by 4 pixels and then applying a random flip. Note that we have chosen these regularization schemes because we do
not anticipate that the associated hyper-parameters will depend strongly on the network width or the noise scale.

We carry out batch search experiments for WRNs parameterized in the standard scheme on CIFAR-10, with epoch bound
Emin = 270 and step bound Tmin = 80k. The results are given in figure 6. We have used the fixed learning rate ε = 0.03.

Figure 6. Three plots summarizing the results of the batch search experiments with regularized WRNs trained on CIFAR-10. The test
accuracy of the various networks are plotted against the scanned batch sizes in the first figure. In the second figure, the test accuracy is
plotted against w · ε/B ∝ ḡ where the x-axis is log-scaled. The legend indicates the widening factor in the first two figures. The optimal
normalized noise scale in units of 103/[loss] is plotted against the network widths in the third figure.

The scaling rule ḡopt ∝ w still holds in the presence of these three regularizers. The use of regularization schemes
significantly increases the final test accuracies, however these test accuracies still depend strongly on the SGD noise scale.

G. The Performance of 3LP on a 2D Grid of Learning Rates and Batch Sizes
Our main result (equation 6) is based on the theory of small learning rate SGD, which claims that the final performance of
models trained using SGD is controlled solely by the noise scale g ∝ ε/B. To provide further evidence for this claim, here we
consider 3LP512 and measure its performance on MNIST across a 2D grid of batch sizes {12, 16, 24, 32, 48, 64, 96, 128, 192}
and a range of learning rates as indicated in figure 7. We run 20 experiments for each learning rate/batch size pair and
compute the mean test set accuracy. We set the epoch bound Emin to 120 and the training set bound Tmin = T0 · (ε0/ε) with
T0 = 412.5k and ε0 = 10.0. The results are shown in figure 7, where we plot the performance curves as a function of the
batch size and the noise scale. As expected, the final test accuracy is governed solely by the noise scale.

Figure 7. The test set accuracy of a 3-layer perceptron (width 512) for a 2D grid of learning rates and batch sizes. We provide the learning
rate in the legend and plot the test accuracy against the batch size (left) and the normalized noise scale (right).
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H. Numerical Stability and the Normalized Learning Rate
In this section, we present experiments to verify the claim that (in the absence of batch normalization), numerical instabilities
affect training when ε & εunstable, where εunstable is constant with respect to the width for NTK parameterization while
εunstable ∝ 1/w as w →∞ for networks parameterized using the standard scheme. This is equivalent to saying that the scale
ε̄unstable at which the normalized learning rate becomes unstable is constant with respect to the width of the network.

To do so, we take families of NTK and standard parameterized networks, and compute the failure rate after 20 epochs
of training with a fixed batch size (64) at a range of learning rates. For each network, we run 20 experiments, and
compute the failure rate, which is defined to be the portion of experiments terminated by a numerical error. We run
the experiments for CIFAR-10 on WRNw (w = 2, 3, 4, 6, 8), F-MNIST on CNNw (w = 6, 8, 12, 16, 24) and MNIST on
2LP512·w (w = 1, 2, 4, 8, 16, 32).

For CNNs and 2-layer perceptrons, we consider much wider networks than are studied in the main text. This is because we
are ultimately interested in observing numerical instabilities which occur when w is large. For the purpose of studying this
break-down of numerical stability, we can afford to use much wider networks. The width dependence of εunstable becomes
more evident by focusing on these wide networks, as the behaviour of narrow networks is less predictable.

Figure 8 depicts 3 figures for each dataset-network combination. The first figure shows the failure rate plotted against the
learning rate for networks using the standard parameterization. The second is the failure rate plotted against the product
of the learning rate and the widening factor—i.e., twice the normalized learning rate—for the same networks (trained
using the standard parameterization). The third figure shows the failure rate plotted against the learning rate for networks
parameterized using the NTK scheme. Here, the normalized learning rate is simply half the learning rate.

It is clear from these plots that ε̄unstable is independent of the widening factor for WRNs and CNNs, while the definition of
ε̄unstable for the 2LP seems more subtle. Nevertheless for all three network families, we see similar stability curves as width
increases for both parameterization schemes, when measured as a function of the normalized learning rate.

Figure 8. Failure rate plotted against the learning rate or the normalized learning rate for various dataset-network pairs.
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I. Performance Comparison between NTK Networks and Standard Networks
Here we provide a brief comparison of the performance of both parameterization schemes on the test set. In figure 9, the peak
test accuracy of a network parameterized with the standard scheme is plotted against the peak test accuracy obtained when
the same network is parameterized with the NTK scheme. The dataset-network pairs are indicated in the title—CIFAR-10
on WRNw, F-MNIST on CNNw and MNIST on MLPs. We see that standard parameterization consistently out-performs
NTK parameterization on WRNs and CNNs, although the performance is comparable for MNIST on MLPs.

Figure 9. Performance of networks with standard parameterization plotted against performance of networks with NTK parameterization.
The green line is the line y = x.

The reason that performance agrees well for the particular MLPs investigated in the main text of the paper, is because all the
hidden layers have equal width. In this limit, NTK parameterization and standard parameterization are essentially identical.
However by varying the network architecture, we can observe a discrepancy between the performance of MLPs as well. As
an example, we consider the following bottom-heavy (BH) and top-heavy (TH) 3LPs with hidden layer widths,

BHw : [4w, 2w, w] , THw : [w, 4w, 4w]. (6)

We consider the widening factors w ∈ {128, 256, 512}. In figure 10, we display the discrepancy between the performance
between both bottom-heavy and top-heavy networks parameterized in the NTK and standard schemes.

Figure 10. Performance of networks with standard parameterization plotted against performance of networks with NTK parameterization
for 3LP networks BHw and THw. The green line is the line y = x.

In the bottom heavy case, MLPs parameterized in the standard scheme appear to outperform MLPs parameterized in the
NTK scheme. However in the top heavy case, MLPs parameterized in the NTK scheme appear to outperform MLPs
parameterized in the standard scheme. These results suggest that neither scheme is superior to the other, but that the final
performance will depend on the combination of parameterization scheme, initialization conditions and network architecture.
We note that we initialize all our networks at critical initialization (σ2

0 = 2), and that this overall weight scale was not tuned.
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