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Abstract

We investigate how the final parameters found by
stochastic gradient descent are influenced by over-
parameterization. We generate families of models
by increasing the number of channels in a base net-
work, and then perform a large hyper-parameter
search to study how the test error depends on
learning rate, batch size, and network width. We
find that the optimal SGD hyper-parameters are
determined by a “normalized noise scale,” which
is a function of the batch size, learning rate, and
initialization conditions. In the absence of batch
normalization, the optimal normalized noise scale
is directly proportional to width. Wider networks,
with their higher optimal noise scale, also achieve
higher test accuracy. These observations hold for
MLPs, ConvNets, and ResNets, and for two dif-
ferent parameterization schemes (“Standard” and
“NTK”). We observe a similar trend with batch
normalization for ResNets. Surprisingly, since the
largest stable learning rate is bounded, the largest
batch size consistent with the optimal normalized
noise scale decreases as the width increases.

1. Introduction

Generalization is a fundamental concept in machine learn-
ing, but it remains poorly understood (Zhang et al., 2016).
Theoretical generalization bounds are usually too loose for
practical tasks (Harvey et al., 2017; Neyshabur et al., 2017;
Bartlett et al., 2017; Dziugaite & Roy, 2017; Zhou et al.,
2018; Nagarajan & Kolter, 2018), and practical approaches
to hyper-parameter optimization are often developed in an
ad-hoc fashion (Sculley et al., 2018). A number of authors
have observed that Stochastic Gradient Descent (SGD) can
be a surprisingly effective regularizer (Keskar et al., 2016;
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Wilson et al., 2017; Sagun et al., 2017; Mandt et al., 2017;
Smith & Le, 2017; Chaudhari & Soatto, 2017; Soudry et al.,
2018). In this paper, we provide a rigorous empirical study
of the relationship between generalization and SGD, which
focuses on how both the optimal SGD hyper-parameters and
the final test accuracy depend on the network width.

This is a broad topic, so we restrict the scope of our investi-
gation to ensure we can collect thorough and unambiguous
experimental results within a reasonable (though still sub-
stantial) compute budget. We consider training a variety of
neural networks on classification tasks using SGD without
learning rate decay (“constant SGD”), both with and with-
out batch normalization (Ioffe & Szegedy, 2015). We define
the performance of a network by its average test accuracy
at “late times” and over multiple training runs. The set of
optimal hyperparameters H,p denote the hyper-parameters
for which this average test accuracy was maximized. We
stress that optimality is defined purely in terms of the per-
formance of the trained network on the test set. This should
be distinguished from references to ideal learning rates in
the literature, which are often defined as the learning rate
which converges fastest during training (LeCun et al., 1996;
Karakida et al., 2017). Our use of optimality should also
not be confused with references to optimality or criticality
in some recent studies (Shallue et al., 2018; McCandlish
et al., 2018) where these terms are defined with respect to
efficiency of training, rather than final performance.

Given these definitions, we study the optimal hyper-
parameters and final test accuracy of networks in the same
class but with different widths. Two networks are in the
same class if one can be obtained from the other by adjust-
ing the numbers of channels. For example, all three-layer
perceptrons are in the same class, while a two-layer percep-
tron is in a different class to a three-layer perceptron. For
simplicity, we consider a “linear family” of networks,

{Nw17 7ka}7 (1)

each of which is obtained from a base network N7 by intro-
ducing a widening factor, much in the spirit of wide residual
networks (Zagoruyko & Komodakis, 2016). That is, net-
work Ny, can be obtained from N by widening every layer
by a constant factor of w. We aim to identify a predictive
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relationship between the optimal hyper-parameters Hp and
the widening factor w. We also seek to understand the
relationship between network width and final test accuracy.

We will find that a crucial factor governing both relation-
ships is the “normalized noise scale”. As observed in (Mandt
et al., 2017; Chaudhari & Soatto, 2017; Jastrzebski et al.,
2017; Smith & Le, 2017), and reviewed in section 2.2, when
the learning rate is sufficiently small, the behaviour of SGD
is determined by the noise scale g, where for SGD,
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Here, ¢ is the learning rate, B is the batch size, m is the
momentum coefficient, and Ny, is the size of the training
set. Smith & Le (2017) showed that there is an optimal
noise scale gopi, and that any setting of the hyper-parameters
satisfying g = gopt Will achieve optimal performance at
late times, so long as the effective learning rate ¢/(1 —
m) is sufficiently small. We provide additional empirical
evidence for this claim in section 4. However in this work
we argue that to properly define the noise introduced by
SGD, g should be divided by the square of a weight scale. A
quick way to motivate this is through dimensional analysis.
In a single SGD step, the parameter update is proportional
to the learning rate multiplied by the gradient. Assigning the
parameters units of [weight], and the loss units of [loss], the
gradient has units of [loss]/[weight]. This implies that the
learning rate has dimensions of [weight]?/[loss]. The scale
of the loss is controlled by the choice of cost function and
the dataset. However the weight scale can vary substantially
over different models in the same class. We hypothesize that
this weight scale is controlled by the scale of the weights
at initialization, and it will therefore depend on the choice
of parameterization scheme (Jacot et al., 2018). Since the
noise scale is proportional to the learning rate, we should
therefore divide it by the square of this weight scale.

In this work we will consider two parameterization schemes,
both defined in section 2.1. In the “standard” scheme most
commonly used in deep learning, the weights are initialized
from an isotropic Gaussian distribution whose standard de-
viation is inversely proportional to the square root of the
network width. As detailed above, this work will consider
families of networks obtained by multiplying the width of
every hidden layer in some base network A by a multi-
plicative factor w. Thus the normalized noise scale,
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The standard deviation o defines the weight scale of the
base network, which for our purposes is just a constant. An

for standard scheme. (4)

alternative parameterization was recently proposed, com-
monly referred to as “Neural Tangent Kernel” parameteriza-
tion, or “NTK” (van Laarhoven, 2017; Karras et al., 2017,
Jacot et al., 2018; Karras et al., 2018). In this scheme, the
weights are initialized from a Gaussian distribution whose
standard deviation is constant, while the pre-activations are
multiplied by the initialization factor (Glorot & Bengio,
2010; He et al., 2015) after applying the weights to the acti-
vations in the previous layer. Since the weight scale in this
scheme is independent of the widening factor,

g=g/os for NTK scheme. )

By finding the optimal normalized noise scale for families
of wide residual networks (WRNs), convolutional networks
(CNNs) and multi-layer perceptrons (MLPs) for image clas-
sification tasks on CIFAR-10 (Krizhevsky, 2009), Fashion-
MNIST (F-MNIST) (Xiao et al., 2017) and MNIST (LeCun
etal., 2010), we are able to make the following observations:

1. Without batch normalization, the optimal normalized
noise is proportional to the widening factor. That is,

gopt(Nw) X w. (6)

See section 4 for plots. This result implies,

e For the standard scheme, the optimal value of ¢/ B
stays constant with respect to the widening factor.

e For the NTK scheme, the optimal value of ¢/ B is
proportional to the widening factor.

2. The definition of the noise scale does not apply to
networks with batch normalization, since the gradients
of individual examples depend on the rest of the batch.
However we have observed that the trend expressed in
equation 6 still holds in a weaker sense. Considering
networks parameterized using the NTK scheme,

e When the batch size is fixed, the optimal learning
rate increases with the widening factor.

e When the learning rate is fixed, the optimal batch
size decreases with the widening factor.

Residual networks (He et al., 2016) obey the trend implied
by equation 6 both with and without batch normalization.
In all cases, both with and without batch normalization,
wider networks consistently perform better on the test set
(Neyshabur et al., 2018; Lee et al., 2018; Novak et al., 2018).

The largest stable learning rate is proportional to 1/w in the
standard scheme, while it is constant for the NTK scheme
(discussed further in section 2.1). This implies that the
largest batch size consistent with equation 6 decreases as
the network width rises. Since the batch size cannot be
smaller than one, these bounds imply that there is a critical
network width above which equation 6 cannot be satisfied.
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The paper is structured as follows. In section 2, we review
the background material and introduce our notation. In
section 3 we describe how the experiments were performed,
while the empirical results are presented in section 4. In
section 5 we discuss our findings and their implications.

2. Background

2.1. Standard vs. NTK Parameterization Schemes

In the standard scheme, the pre-activations zf“ of layer

(I 4+ 1) are related to the activations yé of layer [ by

ny
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and weights and biases are initialized according to
o2
Wi ~N (0, 0) , bt =o. (8)
n

The scalar n; denotes the input dimension of the weight
matrix, and 0(2) is a common weight scale shared across
all models in the same class. For fully connected layers
ny is the dimension of the input, while for convolutional
layers n; is the filter size multiplied by the number of input
channels. By inspecting equation 8, we can see that the
weight scale is inversely proportional to the square root
of the widening factor w. Following the discussion in the
introduction, we arrive at equation 4 by normalizing the
learning rate accordingly:

(0o/Vw)? ~ of

Meanwhile in the NTK scheme (van Laarhoven, 2017; Ja-
cot et al., 2018), the pre-activations zﬁ“ are related to the

activations yé of the previous layer by,

ENy) =

for standard scheme. (9)
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and weights and biases are initialized according to
W ~N(0,03), b =0. (11)

Notice that the scaling factor \/%Tz is introduced after apply-
ing the weights, while the parameter (3; controls the effect
of bias. We set 5; = 1/,/n; in all experiments. The weight
scale is independent of the widening factor w, leading to a
normalized learning rate which also does not depend on w,

€ =¢/o2 for NTK scheme. (12)

We therefore arrive at the normalized noise scale of equation
5. The test set performance of NTK and standard networks
are compared in section I of the supplemental material.

The learning rate has an upper-bound defined by conver-
gence criteria and numerical stability. This upper-bound
will also be on the order of the square of the weight scale,
which implies that the upper-bound for € is approximately
constant with respect to the widening factor. It follows that
the stability bound for the bare learning rate € scales like
1/w for the standard scheme (Karakida et al., 2017), while
it remains constant for the NTK scheme. We provide em-
pirical evidence supporting these stability bounds in section
H of the supplementary material. A major advantage of the
NTK parameterization is that we can fix a single learning
rate and use it to train an entire family of networks { N, }
without encountering numerical instabilities. We therefore
run the bulk of our experiments using the NTK scheme.

2.2. Noise in SGD

Smith & Le (2017) showed that for SGD and SGD with
momentum, if the effective learning rate is sufficiently small
the dynamics of SGD are controlled solely by the noise scale
(equations 2 and 3). This implies that the set of hyperparam-
eters for which the network achieves maximal performance
at “late times” is well approximated by a level set of g (i.e.,
the set of hyperparameters for which g = gop). We define
“late times” to mean sufficiently long for the validation accu-
racy to equilibrate. To verify this claim, in our experiments
we will make two independent measurements of g,p.. One
is obtained by holding the learning rate fixed and sweeping
over the batch size, while the other is obtained by holding
the batch size fixed and sweeping over the learning rate.
We find that these two measures of gop; agree closely, and
they obtain the same optimal test performance. We refer the
reader to section 3.2 for further discussion of training time,
and section G of the supplementary material for experiments
comparing the test set performance of an MLP across a two
dimensional grid of learning rates and batch sizes.

This analysis breaks down when the learning rate is too large
(Yaida, 2018). However empirically for typical batch sizes
(e.g., B < 1000 on ImageNet), the optimal learning rate
which maximizes the test set accuracy is within the range
where the noise scale holds' (Goyal et al., 2017; Smith et al.,
2017; McCandlish et al., 2018; Shallue et al., 2018). Our
experiments will demonstrate that this does not contradict
the common observation that, at fixed batch size, the test set
accuracy drops rapidly above the optimal learning rate.

When a network is trained with batch normalization, the
gradients for individual samples depend on the rest of the
batch, breaking the analysis of Smith & Le (2017). Batch
normalization also changes the gradient scale. We therefore
do not expect equation 6 to hold when batch normalization
is introduced. However we note that at fixed batch size, the
SGD noise scale is still proportional to the learning rate.

.., linear scaling of € and B does not degrade performance.
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3. Experiments
3.1. Overview

We run experiments by taking a linear family of networks,
and finding the optimal normalized noise scale for each
network on a given task. We measure the optimal noise
scale in two independent ways—we either fix the learning
rate and vary the batch size, or fix the batch size and vary the
learning rate. We use fixed Nesterov momentum m = 0.9.

We first describe our experiments at fixed learning rate. We
train 20 randomly initialized networks for each model in
the family at a range of batch sizes, and compute the test
accuracy after training “sufficiently long” (section 3.2). We
then compute the average trained network performance and
find the batch size B with the best average performance
wp. The “trained performance” refers to the average test
accuracy of “trained runs” (runs whose final test accuracy
exceeds 0.2). We compute the standard deviation o g of the
trained accuracy at this batch size and find all contiguous
batch sizes to B whose average accuracy is above yup —
205/ \/nB, where n g is the number of trained runs at batch
size B. This procedure selects all batch sizes whose average
accuracy is within two standard error deviations of up,
and it defines the “best batch size interval” [By, B1], from
which we compute the “best normalized noise scale interval”
[g1, go]. We estimate the optimal normalized noise scale
by Gopt = (go + g1)/2. When By # By, we include an
error bar to indicate the range. The procedure for computing
the optimal normalized noise scale in experiments with
fixed batch size B is analogous to the procedure above; we
train all networks 20 times for a range of learning rates and
compute the best learning rate interval [eg, €1].

Our main result is obtained by plotting the optimal normal-
ized noise scale Gopt (M) against the widening factor w (in
the absence of batch normalization). When batch normal-
ization is introduced, the definition of the noise scale is not
valid. In this case, we simply report the optimal inverse
batch size (learning rate) observed when fixing the learning
rate (batch size), respectively. To make the plots compa-
rable, we rerun the estimation procedure used for finding
the optimal value of g when estimating the optimal value of
1/ B (batch size search) and ¢ (learning rate search).

3.2. Training Time

To probe the asymptotic “late time” behaviour of SGD,
we run our experiments with a very large compute budget,
where we enforce a lower bound on the training time both
in terms of the number of training epochs and the number
of parameter updates. When we run learning rate searches
with fixed batch size, we take a reference learning rate,
for which the training steps are computed based on the
epoch/step constraints, and then scale this reference training

time accordingly for different learning rates. Although we
find consistent relationships between the batch size, learning
rate, and test error, it is still possible that our experiments
are not probing asymptotic behavior (Shallue et al., 2018).

We terminate early any training run whose test accuracy falls
below 0.2 at any time ¢ beyond 20% of the total training
time 7. We verified that at least 15 training runs completed
successfully for each experiment (learning rate/batch size
pair). See sections B and C of the supplementary mate-
rial for a detailed description of the procedure used to set
training steps and impose lower bounds on training time.

3.3. Networks and Datasets

We consider three classes of networks; multi-layer percep-
trons, convolutional neural networks and residual networks.
We use ReLU nonlinearities in all networks, with soft-
max readout. The weights are initialized at criticality with
03 = 2 (He et al., 2015; Schoenholz et al., 2016).

We perform experiments on MLPs, CNNs and ResNets. We
consider MLPs with 1, 2 or 3 hidden layers and denote the d-
layered perceptron with uniform width w by the label dLP,,,.
Our family of convolutional networks CNN,, is obtained
from the celebrated LeNet-5 (figure 2 of Lecun et al. (1998))
by scaling all the channels, as well as the fully connected
layers, by a widening factor of w/2. Our family of residual
networks WRN,, is obtained from table 1 of Zagoruyko &
Komodakis (2016) by taking N = 2 and £ = w. Batch
normalization is only explored for CNNs and WRNSs.

‘We train these networks for classification tasks on MNIST,
Fashion-MNIST (F-MNIST), and CIFAR-10. More details
about the networks and datasets used in the experiments can
be found in section A of the supplementary material.

We train with a constant learning rate, and do not consider
data augmentation, weight decay or other regularizers in
the main text. Learning rate schedules and regularizers
introduce additional hyper-parameters which would need
to be tuned for every network width, minibatch size, and
learning rate. This would have been impractical given our
computational resources. However we selected a subset of
common regularizers (label smoothing, data augmentation
and dropout) and ran batch size search experiments for train-
ing WRNs on CIFAR-10 in the standard parameterization
with commonly used hyper-parameter values. We found that
equation 6 still held in these experiments, and increasing
network width improved the test accuracy. These results
can be found in section F of the supplementary material.

4. Experiment Results

Most of our experiments are run with networks parameter-
ized in the NTK scheme without batch normalization. These
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Figure 1. Optimal normalized noise scale vs. widening factor for NTK parameterized networks trained without batch normalization. The
optimal normalized noise scale (y-axis) has units of 1000/[loss] while the widening factor (x-axis) is unitless. The proportionality constant
a for each plot has the same units as the optimal normalized noise scale. This optimal normalized noise scale is obtained via batch size
search for the blue plots, and via learning rate search for the orange plots. The fixed learning rate or batch size used to generate each plot
is indicated in the title. Every dataset-network-experiment tuple exhibits a clear linear relationship as predicted by equation 6.

experiments, described in section 4.1, provide the strongest
evidence for our main result, Gop (My) o w (equation 6).
We independently optimize both the batch size at constant
learning rate and the learning rate at constant batch size,
and confirm that both procedures predict the same optimal
normalized noise scale and achieve the same test accuracy.

We have conducted experiments on select dataset-network
pairs with standard parameterization and without batch nor-
malization in section 4.2. In this section we only perform
batch size search at fixed learning rate. Finally we run ex-
periments on NTK parameterized WRN and CNN networks

with batch normalization in section 4.3, for which we per-
form both batch size search and learning rate search. Some
additional batch size search experiments for WRNs parame-
terized in the standard scheme with batch normalization can
be found in section E of the supplementary material, while
we provide an empirical comparison of the test performance
of standard and NTK parameterized networks in section
I. We provide a limited set of experiments with additional
regularization in section F of the supplementary material.

In section 4.4, we study how the final test accuracy depends
on the network width and the normalized noise scale.
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Figure 2. The optimal normalized noise scale obtained via learning
rate search plotted against that obtained via batch size search for
all experiments with NTK parameterized networks without batch
normalization. The optimal normalized noise scale is given in
units of 103/[loss]. The green line is the line y = .

4.1. NTK without Batch Normalization

In figure 1, we plot the optimal normalized noise scale
against the widening factor for a wide range of network fam-
ilies. The blue plots were obtained by batch size search with
fixed learning rate, while the orange plots were obtained by
learning rate search with fixed batch size. The fixed batch
size or learning rate is given in the title of each plot along-
side the dataset and network family. As explained in section
3.1, the error bars indicate the range of normalized noise
scales that yield average test accuracy within the 95% con-
fidence interval of the best average test accuracy. For each
plot we fit the proportionality constant a to the equation
Jopt (NMw) = aw, and provide both a and the R? value. We
observe a good fit in each plot. The proportionality constant
a is computed independently for each dataset-network fam-
ily pair by both batch size search and learning rate search,
and these two constants consistently agree well.

We can verify the validity of our assumption that the set of
hyper-parameters yielding optimal performance is given by
a level set of g, by comparing both the optimal normalized
noise scale gopc and the maximum test set accuracy obtained
by batch size search and learning rate search. The obtained
values for both search methods for all experiments have
been plotted against each other in figures 2 and 3. Further
evidence for our assumption can be found in section G
of the supplementary material. Finally, for each triplet of
dataset-network-experiment type, we have plotted the test
set accuracy against the scanned parameter (either batch
size or learning rate) in figure 1 of section D.

4.2. Standard without Batch Normalization

Due to resource constraints, we have only conducted experi-
ments for select dataset-network pairs when using the stan-
dard parameterization scheme, shown in figure 4. The opti-
mal normalized noise scale is found using batch size search
only. For CIFAR-10 on WRN, networks with w = 2,3,4
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= -_ = R
G Lo B o 0.80 - 4
& 4 & o
g 09L " %075 | Vi g
; 6
= =
Sosf Goro} - A
é 0.7 g é 0.65 |- o
; ®
X062 éo_ﬁo,,/ ]
= N S = TR S R S
0.6 07 0.8 09 1.0 0.60 0.65 0.700.75 0.80
Max. Test Acc. (BS Srch) Max. Test Acc. (BS Srch)
F-MNIST MNIST
_ 093 — . 0.995 .
S S ; "l"
5 [
N 0.92 / 4 n )
3 ¥4 2 0,090 ;
= - 2 0990 . el
g 0o1f g yé
< ral < :
g ooor Eo.gas-../..'
%089} A %
= s

i L
0.985 0.990 0.995
Max. Test Acc. (BS Srch)

,8.%59 O.éO O.él 0.é2 0.93

Max. Test Acc. (BS Srch)
Figure 3. The maximum performance of networks obtained via
learning rate search plotted against that obtained via batch size
search for all experiments with NTK parameterized networks with-
out batch normalization. The green line is the line y = .

were trained with the learning rate 0.0025, while networks
with w = 6, 8 were trained with a smaller learning rate of
0.00125 due to numerical instabilities (causing high failure
rates for wide models when € = 0.0025). Once again, we
observe a clear linear relationship between the optimal nor-
malized noise scale and the widening factor. We provide
additional experiments incorporating data augmentation,
dropout and label smoothing in section F of the supplemen-
tary material, which also show the same linear relationship.

4.3. NTK with Batch Normalization

We have only conducted experiments with batch normal-
ization for families of wide residual networks and CNNss.
We perform both batch size search and learning rate search.
The results of these experiments are summarized in figure 5.
Unlike the previous sets of experiments, we do not report
an optimal normalized noise scale, as this term is poorly
defined when batch normalization is used. Rather, we report
the optimal inverse batch size (learning rate) for the given
fixed learning rate (batch size) respectively. However as
discussed previously, when the batch size is fixed, the SGD
noise is still proportional to the learning rate. A clear linear
trend is still present for wide residual networks, however this
trend is much weaker in the case of convolutional networks.

4.4. Generalization and Network Width

We showed in section 4.1 that in the absence of batch nor-
malization, the test accuracy of a network of a given width
is determined by its normalized noise scale. Therefore in
figure 6, we plot the test accuracy as a function of noise
scale for a range of widths. We include a variety of networks
trained without batch normalization with both standard and
NTK parameterizations. In all cases the best observed test
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Figure 4. The optimal normalized noise scale vs. widening factor for networks parameterized using the standard scheme without batch
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normalized noise scale is obtained via batch size search. All five plots exhibit a clear linear relationship.
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Figure 5. The optimal inverse batch size/learning rate vs. widening
factor for NTK parameterized networks with batch normalization.

accuracy increases with width. This is consistent with pre-
vious work showing that test accuracy improves with in-
creasing over-parameterization (Neyshabur et al., 2018; Lee
et al., 2018; Novak et al., 2018). See section D of the sup-
plementary material for plots of test accuracy in terms of
the raw learning rate and batch size instead of noise scale.

More surprisingly, the dominant factor in the improvement
of test accuracy with width is usually the increased optimal
normalized noise scale of wider networks. To see this, we
note that for a given width the test accuracy often improves
slowly below the optimum noise scale and then falls rapidly
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Figure 6. The test set accuracy plotted against normalized noise
scale (in units of [loss]™ ) from experiments with fixed learning
rate without batch normalization. The datasets, networks, param-
eterization schemes, and learning rates are indicated in the plot
titles, except for the second plot where separate learning rates were
used for different networks (see section 4.2). The legend indicates
the widening factor, and the x-axis is in log-scale.

above it. Wider networks have larger optimal noise scales,
and this enables their test accuracies to rise higher before
they drop. Crucially, when trained at a fixed noise scale
below the optimum, the test accuracy is very similar across
networks of different widths, and wider networks do not
consistently outperform narrower ones. This suggests the
empirical performance of wide over-parameterized networks
is closely associated with the implicit regularization of SGD.

In figure 7 we examine the relationship between generaliza-
tion and network width for experiments with batch normal-
ization. Since the normalized noise scale is not well-defined,
we plot the test accuracy for a range of widths as a function
of both the batch size at fixed learning rate, and the learning
rate at fixed batch size. We provide plots for WRNs on
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Figure 7. The test accuracy plotted against batch size/learning rate
for experiments with fixed learning rate/batch size respectively.
The networks are NTK-parameterized and use batch normalization.
The x-axis is log-scaled, and the legend indicates the widening
factor of the plotted networks. The dataset, network architecture
and values for the fixed parameters are indicated in the title.

CIFAR-10 and CNNs on F-MNIST, both in the NTK param-
eterization. Once again, we find that the best observed test
accuracy consistently increases with width. However the
qualitative structure of the data differs substantially for the
two architectures. In the case of WRNSs, we observe similar
trends both with and without batch normalization. In the
NTK parameterization, wider networks have larger optimal
learning rates (smaller optimal batch sizes), and this is the
dominant factor behind their improved performance on the
test set. For comparison, see figure 1 in section D of the
supplementary material for equivalent plots without batch
normalization. However in the case of CNNs the behaviour
is markedly different, wider networks perform better across
a wide range of learning rates and batch sizes. This is consis-
tent with our earlier observation that WRNs obey equation
6 with batch normalization, while CNNs do not.

5. Discussion

Speculations on main result: The proportionality relation
(equation 6) between the optimal normalized noise scale
and network width holds remarkably robustly in all of our
experiments without batch normalization. This relationship
provides a simple prescription which predicts how to tune
SGD hyper-parameters as width increases. We do not have
a theoretical explanation for this phenomenon. However
intuitively it appears that noise enhances the final test perfor-
mance, while the amount of noise a network can tolerate is
proportional to the network width. Wider networks tolerate
more noise, and thus achieve higher test accuracies. Why
SGD noise enhances final performance remains a mystery
(Keskar et al., 2016; Sagun et al., 2017; Mandt et al., 2017;
Chaudhari & Soatto, 2017; Smith & Le, 2017).

Implications for very wide networks: As noted in the in-
troduction, the largest batch size consistent with equation
6 decreases with width (when training with SGD + mo-
mentum without regularization or batch normalization). To
clarify this point, we consider NTK networks and standard
networks separately. For NTK networks, the learning rate
can stay constant with respect to the width without intro-
ducing numerical instabilities. As the network gets wider
equation 6 requires B o €/w, which forces the batch size
of wide networks to have a small value to achieve optimality.
For standard networks, B o e. However in this case the
learning rate € o< 1/w must decay as the width increases in
order for the SGD to remain stable (Karakida et al., 2017).
We provide empirical evidence for these stability bounds
in section H of the supplementary material. In both cases
the batch size must eventually be reduced if we wish to
maintain optimal performance as width increases.

Unfortunately we have not yet been able to perform addi-
tional experiments at larger widths. However if the trends
above hold for arbitrary widths, then there would be a sur-
prising implication. Since the batch size is bounded from
below by one, and the normalized learning rate is bounded
above by some value éy,x due to numerical stability, there
is a maximum noise scale we can achieve experimentally.
Meanwhile the optimal noise scale increases proportional
to the network width. This suggests there may be a critical
width for each network family, at which the optimal noise
scale exceeds the maximum noise scale, and beyond which
the test accuracy does not improve as the width increases,
unless additional regularization methods are introduced.

Comments on batch normalization: The analysis of small
learning rate SGD proposed by Smith & Le (2017) does
not hold with batch normalization, and we therefore antici-
pated that networks trained using batch normalization might
show a different trend. Surprisingly, we found in practice
that residual networks trained using batch normalization do
follow the trend implied by equation 6, while convolutional
networks trained with batch normalization do not.

Conclusion: We introduce the normalized noise scale,
which extends the analysis of small learning rate SGD pro-
posed by Smith & Le (2017) to account for the choice of
parameterization scheme. We provide convincing empirical
evidence that, in the absence of batch normalization, the nor-
malized noise scale which maximizes the test set accuracy
is proportional to the network width. We also find that wider
networks perform better on the test set. A similar trend
holds with batch normalization for residual networks, but
not for convolutional networks. We consider two parameter-
ization schemes and three model families including MLPs,
ConvNets and ResNets. Since the largest stable learning
rate is bounded, the largest batch size consistent with the
optimal noise scale decreases as the width increases.
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