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Supplementary Material:
Spectral Approximate Inference

A. Proof of Claim 1
We first prove f(Ω) ⊂ B. To this end we introduce the following inequalities for all x ∈ {−1, 1}n:

|〈uj ,x〉| ≤ ‖uj‖1, |〈uj ,x〉 − c · fj(x)| ≤ c · n+ 1

2
(17)

which directly leads us to |c · fj(x)| ≤ ‖uj‖1 + c · (n+ 1)/2 ≤ c · bj , and therefore f(Ω) ⊂ B. Here, the first inequality of
(17) is trivial. The second inequality of (17) is from the fact that the error between c · fj(x) and 〈uj ,x〉 arises from a series
of quantizations which is presented once in (8) and at most n times in (9). Since the quantization error is at most c/2 for
each quantization, the second inequality of (17) holds.

Now we prove the bound of |B|. From the definition of B and bj , one can easily observe that the following bound on |B|
holds:
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where the inequality is from ‖vj‖1 ≤
√
n‖vj‖2 =

√
n.

B. Proof of Claim 2
Claim 2 holds since

ti(k) = ti−1(k) +
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exp
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In the above, gi : Si \ Si−1 → Si−1 is a bijection defined by gi(x) = x′ such that x′` = x` except for ` = i. The second
equality of (18) is from replacing the summation over f−1(k) ∩ (Si \ Si−1) by that over gi

(
f−1(k) ∩ (Si \ Si−1)

)
. The

third equality of (18) is based on (9) which implies that for all x ∈ Si \ Si−1, x′ = gi(x) satisfies

f(x)− [ûji]
r
j=1 = f(x′). (19)
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Hence, (19) leads us to

gi

(
f−1(k) ∩ (Si \ Si−1)

)
= gi

(
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)
= {x′ ∈ Si−1 : f(x′) = k− [ûji]
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= f−1(k− [ûji]
r
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and the third equality of (18) follows. The fourth equality of (18) directly follows from the definition of gi that x′i = −1
and

(
g−1
i (x′)

)
i

= xi = 1.

C. Proof of Theorem 3
We first prove the computational complexity of Algorithm 1. Since each t(k), t′(k) possesses a memory of O(|B|) and
|B| ≤ 2r

∏r
j=1(

√
|λj |n/c + n/2 + 1) from Claim 1, the space complexity of Algorithm 1 is O
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. In addition, as the algorithm iterates n times while each iteration accesses to t(k) and t′(k), Algorithm 1 has
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computational complexity.

Now we provide the bound on the partition function approximation. First, we refer the following error bound introduced in
the proof of Claim 1.

|〈uj ,x〉 − c · fj(x)| ≤ c · n+ 1

2
. (20)

Using (20), we provide a bound for |〈uj ,x〉2 − (c · fj(x))2| as follows
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where the first inequality is from (20) and the second inequality is from |〈uj ,x〉| ≤ ‖uj‖1 ≤
√
|λj |n. From (21), the error

bound can be derived as
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where the last inequality follows from (21). One can obtain a same bound for Ẑ/Z and this completes the proof of Theorem
3.
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D. Proof of Claim 4
The result of Claim 4 directly follows from the following inequality:

KL
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where the last inequality follows from the source coding theorem (Shannon, 1948).




