Spectral Approximate Inference

Supplementary Material:

Spectral Approximate Inference

A. Proof of Claim 1

We first prove £(€2) C B. To this end we introduce the following inequalities for all x € {—1,1}"™:
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which directly leads us to |c - f;(x)| < |luj|li +¢- (n+1)/2 < ¢ bj, and therefore £(£2) C B. Here, the first inequality of
(17) is trivial. The second inequality of (17) is from the fact that the error between ¢ - f;(x) and (u;, x) arises from a series
of quantizations which is presented once in (8) and at most n times in (9). Since the quantization error is at most ¢/2 for
each quantization, the second inequality of (17) holds.

Now we prove the bound of | B|. From the definition of B and b;, one can easily observe that the following bound on |B]
holds:
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where the inequality is from ||v;||1 < /nl|v;|2 = v/n.
B. Proof of Claim 2

Claim 2 holds since
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In the above, g; : S; \ Si—1 — S;_1 is a bijection defined by g;(x) = x’ such that ), = z, except for ¢ = i. The second
equality of (18) is from replacing the summation over f~! (k) N (S; \ S;—1) by that over g; (f (k) N (S; \ S;—1)). The
third equality of (18) is based on (9) which implies that for all x € S; \ S;—1, X' = g;(x) satisfies

f(x) — [ilj=1 = £(xX). (19)
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Hence, (19) leads us to

g(f k) N(Si\Sim1) =gi({x €S\ Sim1 : f(x) = k})
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and the third equality of (18) follows. The fourth equality of (18) directly follows from the definition of g; that z} = —1
and (gi_l(x’))i =z, =1.

C. Proof of Theorem 3

We first prove the computational complexity of Algorithm 1. Since each t(k), (k) possesses a memory of O(|B]) and
B] < 2" [T;—, (\/IAjIn/c + n/2 + 1) from Claim 1, the space complexity of Algorithm 1 is O (2" [T_; (v/[A;[n/c +
n/2 + 1)). In addition, as the algorithm iterates n times while each iteration accesses to ¢(k) and ¢’ (k), Algorlthm 1 has
O(n2" H;:1 (v/IAj[n/c + n/2 4+ 1)) computational complexity.

Now we provide the bound on the partition function approximation. First, we refer the following error bound introduced in
the proof of Claim 1.
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Using (20), we provide a bound for |(u;, x)? — (c- f(x))?| as follows

[(wj,%)” = (e f5(x))° = [y, %) = ¢ (I, %) + - f5(x)]
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where the first inequality is from (20) and the second inequality is from |(u;, x}| < ||u;|l1 < /|A;|n. From (21), the error
bound can be derived as
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where the last inequality follows from (21). One can obtain a same bound for Z /Z and this completes the proof of Theorem
3.
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D. Proof of Claim 4

The result of Claim 4 directly follows from the following inequality:
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where the last inequality follows from the source coding theorem (Shannon, 1948).





