
Collaborative Channel Pruning for Deep Networks

Hanyu Peng 1 Jiaxiang Wu 2 Shifeng Chen 1 Junzhou Huang 3

Abstract
Deep networks have achieved impressive perfor-
mance in various domains, but their applications
are largely limited by the prohibitive computa-
tional overhead. In this paper, we propose a novel
algorithm, namely collaborative channel pruning
(CCP), to reduce the computational overhead with
negligible performance degradation. The joint
impact of pruned/preserved channels on the loss
function is quantitatively analyzed, and such inter-
channel dependency is exploited to determine
which channels to be pruned. The channel selec-
tion problem is then reformulated as a constrained
0-1 quadratic optimization problem, and the Hes-
sian matrix, which is essential in constructing the
above optimization, can be efficiently approxi-
mated. Empirical evaluation on two benchmark
data sets indicates that our proposed CCP algo-
rithm achieves higher classification accuracy with
similar computational complexity than other state-
of-the-art channel pruning algorithms.

1. Introduction
In the past few years, deep learning models have been con-
tinuously boosting the state-of-the-art performance in vari-
ous domains, ranging from image classification (He et al.,
2016), segmentation (Chen et al., 2018), and object detec-
tion (Ren et al., 2015). However, such performance boost
often comes at the cost of increasing the computational com-
plexity and number of model parameters. This imposes a
great challenge to efficient inference with such complicated
models. Especially, for mobile devices and embedded sys-
tems, where the computation resources are rather limited, it
is often infeasible to directly deploy deep networks due to
the high latency and power consumption.
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There are a large collection of research papers focusing on
accelerating and compressing deep networks to improve the
inference efficiency. Among them, approaches based on
channel pruning are proved to be quite effective since they
have no extra requirements for the inference engine (He
et al., 2017; Luo et al., 2017; Zhuang et al., 2018) and can
be easily deployed. The basic idea is to reduce the num-
ber of input and/or output channels in convolutional layers
without degrading the performance. Most approaches con-
sider the contribution of each channel to the reconstruction
(or discrimination) loss independently to determine which
channels to be pruned, but the inter-channel relationship is
rarely exploited.

In this paper, we investigate how the inter-channel relation-
ship can be utilized to determine which channels should
be pruned/preserved to minimize the performance degrada-
tion. We propose the collaborative channel pruning (CCP)
algorithm to capture the dependency between channels in
convolutional layers. For each convolutional layer, we quan-
titatively analyze the joint impact of pruned/preserved chan-
nels to the final loss function, based the second-order Taylor
expansion. Afterwards, we reformulate the minimization of
loss function as a linearly constrained 0-1 quadratic prob-
lem.

The linearly constrained 0-1 quadratic problems involves the
Hessian matrix that is too huge to be efficiently computed or
stored. To tackle this issue, we present an efficient approxi-
mation scheme for the Hessian matrix which is applicable to
both regression and classification tasks. The approximated
Hessian matrix can help construct the linearly constrained
0-1 quadratic programming problem without explicitly com-
puting or storing the Hessian matrix. Since this optimization
problem is NP-hard due to binary variables, we relax the
binary constraint and obtain an approximate solution via
sequential quadratic programming (SQP) (Boggs & Tolle,
1995). Finally, we select the top-k entries as preserved chan-
nels and prune the remaining channels. We further fine-tune
the resulting compressed model to reduce its performance
degradation.

To the best of our knowledge, collaborative channel prun-
ing is the first to exploit the inter-channel dependency
to determine the optimal combination of preserved chan-
nels. We demonstrate that our CCP algorithm outperforms
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state-of-the-art channel pruning approaches on CIFAR-10
(Krizhevsky, 2009) and ImageNet (Russakovsky et al.,
2015) data sets. We summarize our contributions as fol-
lows:

• We quantitatively analyze the joint impact of
pruned/preserved channels on the final loss function,
and propose a novel channel pruning algorithm to
exploit such inter-channel dependency information,
which is rarely considered before.

• We formulate the channel selection process as a lin-
early constrained 0-1 quadratic optimization problem,
and propose an efficient approach to tackle it.

• The proposed CCP algorithm can reduce FLOPs of
ResNet-50 by 54.1% while the top-1 and top-5 accu-
racy on ImageNet is merely decreased by 0.83% and
0.33%, which outperforms all the state-of-the-art meth-
ods.

2. Related Work
Model compression has gained much attention in recent
years. Various methods have been proposed to reduce the
model size via network quantization (Rastegari et al., 2016)
(Courbariaux et al., 2015) (Han et al., 2016), channel prun-
ing (Ye et al., 2018), low-rank approximation (Denton et al.,
2014). Network quantization methods quantize weights or
activations by low-bit variables (Rastegari et al., 2016) or
hash tables (Wu et al., 2016). Channel Pruning aims to
remove channels with negligible performance degradation.
(Han et al., 2015) proposed to remove small weights of
pre-trained network and fine-tuned the compressed network
by back propagation with regularization. Such a technique
can significantly reduce the model size and guarantee com-
petitive performance, but the unstructured sparsity may not
enable efficient inference. (He et al., 2017) (Luo et al., 2017)
proposed to preserve channels that approximate the outputs
of pre-trained models. However, minimizing the construct-
ing errors neglects the effect on loss function and may result
in performance degradation. Low-rank approximation ap-
plies matrix (tensor) decomposition, such as Singular Value
Decomposition (SVD) (Denton et al., 2014) to reduce pa-
rameters.

Many approaches to some criterion have been proposed
for channel pruning, such as l1-norm (Li et al., 2016) and
l2-norm (He et al., 2018a) of the filters. (Anwar et al.,
2017) introduced structure pruning at various levels to save
computational cost. (Alvarez & Salzmann, 2016) (Lebedev
& Lempitsky, 2016) applied group sparsity regularizer to
reduce redundant parameters. (Hu et al., 2016) proposed
to remove unimportant filters based on their activations
without affecting performance. (He et al., 2017) proposed

a channel pruning scheme that approximately preserved
the outputs of pre-trained network and reformulated the
channel pruning problem as a LASSO problem. (Zhuang
et al., 2018) proposed to use the discrimination-aware loss
to detect filters that really contribute to the classification
accuracy. (Luo et al., 2017) selected a subset of channels
based on the statistic information computed from the next
layer. (Yu et al., 2018) identified and detected important
filter based on neural importance score. (Zhang et al., 2018)
used parameter sharing approach based on the similarity
between filters to dramatically reduce the model size with a
slight loss of accuracy. (He et al., 2018b) proposed AutoML
to determine the optimal pruning ratio of each layer, our
work can act as the backbone channel pruning algorithm to
produce a more accurate compressed model under the given
pruning ratio. There is some theoretical analysis guarantees
the error bound on the compressed network. (Arora et al.,
2018) provided a generalization bound and analysed the
compression is dependent to the noise stability properties of
pre-trained networks.

(Molchanov et al., 2017) introduced a pruning method based
on first-order Taylor expansion that interleaved greedy prun-
ing with standard fine-tuning. However, the Hessian ma-
trix was neglected for efficiency. (LeCun et al., 1990) and
(Hassibi & Stork, 1993) both used second-order Taylor ex-
pansion to prune channels. The pruning criterion in (LeCun
et al., 1990) assumed that the Hessian matrix was diago-
nal and the interaction between two different channels was
omitted. In (Hassibi & Stork, 1993), the full Hessian matrix
was used but weights were pruned in a one-by-one manner,
instead of directly finding the optimal combination for prun-
ing as in our method. Fisher pruning (Theis et al., 2018) also
utilized the second-order Taylor expansion to approximate
the cross entropy loss function and demonstrated superior
performance combined with knowledge distillation. All
previous works considered the channels independent regard-
less of the dependency between channels. In contrast, we
formulate the inter-channel dependency with the Hessian
matrix, of which each non-diagonal element corresponds
to the interaction between two different channels. Our pro-
posed method captures the inter-channel dependency among
channels which is rarely exploited before.

3. Preliminaries
Given a training set {(xn,yn)}Nn=1, where xn denotes the n-
th training sample’s input features and yn is the correspond-
ing outputs. We aim to train a L-layer neural network to
minimize the difference between desired and actual outputs
under certain loss metrics. For the l-th convolutional layer,
we denote its convolutional kernel as W(l) ∈ Rk×k×ci×co ,
where k is the kernel size, ci and co is the number of input
and output channels, respectively. More specifically, we
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use W
(l)
i ∈ Rk×k×ci to denote the convolutional kernel

associated with the i-th output channel.

Channel pruning seeks to minimize the loss function’s value
under sparsity constraints on convolutional kernels, which
can be formulated as:

min
θ

1

N

N∑
n=1

L [f (θ; xn) ,yn]

s.t.
∥∥β(l)

∥∥
0

= pl,∀l = 1, . . . , L

(1)

where the model parameter θ consists of all the convo-
lutional kernels {W(l)} and binary-valued mask vectors
{β(l)}. Each entry in the binary mask β(l) ∈ {0, 1}co indi-
cates whether the corresponding output channel should be
pruned (0) or not (1), and pl is the total number of preserved
output channels. f (θ; xn) is the network’s outputs for the
n-th training sample xn, and the choice of loss function
L (·) depends on the specific learning task. For instance, it
can be cross-entropy loss for classification or least-square
loss for regression.

4. Methods
In this section, we firstly analyze the impact of all the pruned
(or preserved) channels on the final loss function with the
second-order Taylor expansion. The resulting minimiza-
tion problem involves the computation of Hessian matrix;
therefore, we propose an efficient approximation of it. Fi-
nally, we transform the optimization into a constrained 0-1
quadratic programming problem, and demonstrate how it
can be solved efficiently.

4.1. Impact of Pruned Channels

Let us consider channel pruning of a single convolutional
layer, while keeping all the other layers fixed. For the i-th
output channel, we reshape the corresponding convolutional
kernel into a vector, denoted as wi ∈ Rk2ci , where the super-
script (l) is dropped for simplicity. All the convolutional ker-
nels can be either stacked into a 2-D matrix W ∈ Rco×k2ci

or concatenated into a 1-D vector w ∈ Rcok
2ci . The binary

mask βi indicates whether the i-th output channel should be
pruned (βi = 0) or not (βi = 1).

With other layers’ parameters treated as constants, the loss
function can be written as a joint function of all the output
channels’ convolutional kernels and masks:

L (β,W) ≈ L (W) + gTv +
1

2
vTHv (2)

where v = vec (β �W −W) is the flatten vector of
β �W −W and � denotes multiplication with broadcast-
ing. We use g and H to denote the first and second-order

derivatives:

g = ∇L (w) , H = ∇2L (w) (3)

We can further divide g and H into sub-vectors (one per
output channel) and sub-matrices (one per output channel
pair):

g =

 g1

...
gco

 , H =

 H1,1 · · · H1,co
...

. . .
...

Hco,1 · · · Hco,co

 (4)

and thus the loss function can be rewritten as:

L (β,W) ≈ L (W) +

co∑
i=1

gT
i (βiwi −wi)

+
1

2

co∑
i,j=1

(βiwi −wi)
T

Hij (βiwi −wi)

(5)

Assume a pre-trained model is provided in advance and
its convolutional kernels {w̄i} are kept unchanged during
channel pruning. Since all the channels are not yet pruned,
we have βi = 1,∀i. The task of channel pruning is find
the optimal combination of {βi} that minimizes the loss
function under the sparsity constraint:

L
(
β,W̄

)
≈ L

(
W̄
)

+

co∑
i=1

(βi − 1) ḡT
i w̄i

+
1

2

co∑
i,j=1

(βi − 1) (βj − 1) w̄T
i H̄ijw̄j

(6)

where both the first and second-order derivatives are com-
puted based on the pre-trained model parameters. With
the pre-trained model given, we can compute the following
items in advance:

ui = ḡT
i w̄i , ∀i

sij =
1

2
w̄T

i H̄ijw̄j , ∀i, j
(7)

which are independent to the choice of binary masks.

By removing constant items in (6), we arrive at the following
sparsity-constrained optimization problem:

min

co∑
i=1

ui (βi − 1) +

co∑
i,j=1

sij (βi − 1) (βj − 1)

s.t. ‖β‖0 = p, βi ∈ {0, 1} , ∀i

(8)

where p is the desired number of preserved output channels.
In other words, for any pre-trained models, we can deter-
mine which channels to be pruned and which channels to
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be preserved by solving the above optimization, so that the
loss function can be approximately minimized.

However, although the gradient ḡ can be computed in the
linear time, the Hessian matrix H̄ is much harder to compute.
Each Hessian sub-matrix is of size k2co × k2co, which
is quadratic to the number of parameters for one output
channel. Furthermore, even if these Hessian matrices can
be computed, how to store them is still challenging. Hence,
we need to find an efficient approach to compute and store
these Hessian matrices.

4.2. Approximated Hessian Matrix

4.2.1. LEAST-SQUARE LOSS FOR REGRESSION

Here, we firstly consider the least-square loss function for
regression tasks. Formally, the loss function is defined as:

L (w) =
1

N

N∑
n=1

Ln (w) =
1

2N

N∑
n=1

‖fn (w)− yn‖22 (9)

where fn (w) = f (w; xn) is the network’s q-dimensional
output vector for the n-th training sample xn, and yn de-
notes the corresponding ground-truth label vector.

It is easy to see that the first-order derivative of least-square
loss function is given by:

∇L (w) =
1

N

N∑
n=1

∇T fn (w) [fn (w)− yn] (10)

where ∇fn (w) is a p × d matrix and d = cok
2ci is the

dimension of w. Each row in ∇fn (w) consists of first-
order derivatives related to a single output node.

The second-order derivative is given by:

∇2L (w) =
1

N

N∑
n=1

∇T fn (w)∇fn (w)

+
1

N

N∑
n=1

p∑
p′=1

∇2fn,p′ (w) [fn,p′ (w)− yn,p′ ]

(11)

where fn,p′ (w) denotes the p′-th entry in the output vector.
For a pre-trained model, the difference between fn,p′ (θ)
and yn,p′ should be quite small. Therefore, we omit the
second term and the Hessian matrix can be approximated
via:

∇2L (w) ≈ 1

N

N∑
n=1

∇T fn (w)∇fn (w) (12)

which only involves the first-order derivative. To simplify
the upcoming description, we split the first-order derivative

matrix into co sub-matrices, one per output channel:

∇fn (w) =

 ∇1fn (w)
...

∇cofn (w)

 (13)

where each sub-matrix is of size p× k2ci. The approxima-
tion of Hessian matrix can thus be rewritten as:

∇2L (w) ≈ 1

N

N∑
n=1

 ∇
T
n,1∇n,1 · · · ∇T

n,1∇n,co
...

. . .
...

∇T
n,co∇n,1 · · · ∇T

n,co∇n,co


(14)

where∇n,i is the short-hand for∇ifn (w).

Consider its (i, j)-th sub-matrix∇2
ijL (w), which accounts

for the correlation between the i-th and j-th output chan-
nels’ parameters. We discover that sij , which is needed in
the optimization problem (8), can be efficiently obtained
without explicitly computing this Hessian sub-matrix. More
specifically, with model parameters w̄ given, we have:

sij =
1

2
w̄T

i · ∇2
ijL (w̄) · w̄j

≈ 1

2
w̄T

i ·
1

N

N∑
n=1

∇T
i fn (w̄)∇jfn (w̄) · w̄j

=
1

2N

N∑
n=1

[∇ifn (w̄) w̄i]
T ∇jfn (w̄) w̄j

=
1

2N

N∑
n=1

vT
n,i (w̄) vn,j (w̄)

(15)

where vn,i (w̄) = ∇ifn (w̄) w̄i ∈ Rp can be computed
with a time complexity ofO

(
pk2ci

)
. Therefore, the overall

time complexity for sij is merely O
(
np+ npk2ci

)
, which

is no longer quadratic to the number of model parameters.

4.2.2. CROSS-ENTROPY LOSS FOR CLASSIFICATION

For the cross-entropy loss function, which is commonly
used in classification problems, we can also approximately
compute its Hessian matrix. The cross-entropy loss function
is defined as:

L (w) = − 1

N

N∑
n=1

p∑
p′=1

yn,p′ log fn,p′ (w) (16)
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Similarly, we derive its first and second-order derivatives:

∇L (w) = − 1

N

N∑
n=1

p∑
p′=1

yn,p′

fn,p′ (w)
· ∇fn,p′ (w)

∇2L (w) = − 1

N

N∑
n=1

p∑
p′=1

[ yn,p′

fn,p′ (w)
· ∇2fn,p′ (w)

− yn,p′

f2n,p′ (w)
∇fn,p′ (w)∇T fn,p′ (w)

]
(17)

To simplify the above equations, we introduce zn ∈ Rp

where zn,p′ = yn,p′/fn,p′ (w) and diagonal matrix Σn ∈
Rp×p where Σn,p′,p′ = yn,p′/f2n,p′ (w). Then, we can
rewrite (17) as:

∇L (w) = − 1

N

N∑
n=1

∇T fn (w) zn

∇2L (w) =
1

N

N∑
n=1

∇T fn (w) Σn∇fn (w)

− 1

N

N∑
n=1

p∑
p′=1

yn,p′

fn,p′ (w)
· ∇2fn,p′ (w)

(18)

where ∇fn (w) ∈ Rp×d. Here, we omit the second-order
term∇2fn,p′ (w) and approximate the Hessian matrix via:

∇2L (w) ≈ 1

N

N∑
n=1

∇T fn (w) Σn∇fn (w) (19)

It can be easily verified that with the above approximation,
the pairwise correlation term sij in the optimization (8)
can be efficiently computed. The time complexity is also
O
(
np+ npk2ci

)
, same as that for the least-square loss.

4.3. Constrained 0-1 Quadratic Programming

Recall that to determine which channels to be pruned, we
need to solve the optimization problem:

min

co∑
i=1

ui (βi − 1) +

co∑
i,j=1

sij (βi − 1) (βj − 1)

s.t. ‖β‖0 = p, βi ∈ {0, 1} , ∀i

(20)

By exploiting the 0-1 constraint imposed on β, we can
discard linear terms in the objective function by introducing
the extended pairwise correlation matrix Ŝ = [ŝij ] where:

ŝij =

{
sij , if i 6= j

sij + ui − 2
∑co

j′=1 sij′ , otherwise
(21)

where the last term is based on the symmetric property of
approximated Hessian matrix. Therefore, the optimization
can be re-formulated as:

min βT Ŝβ

s.t. 1Tβ = p, β ∈ {0, 1}co
(22)

where 1 is a p-dimensional vector with all-one entries. This
linearly-constrained 0-1 quadratic programming problem is
NP-hard and intractable to solve. To obtain an approximate
solution, we firstly drop the 0-1 constraint and only require
that each entry of β lies in the interval [0, 1]. The relaxed
optimization is given by:

min βT Ŝβ

s.t. 1Tβ = p, β ∈ [0, 1]
co

(23)

and can be solved by any linearly-constrained quadratic
optimization algorithms. Here, we adopt the sequential
quadratic programming (SQP) method proposed in (Boggs
& Tolle, 1995) to tackle this problem. Since β is merely
a co-dimensional vector where co is the number of output
channels, the optimization process of SQP can be carried
out very efficiently.

After obtaining a real-valued solution via SQP, we need to
convert it into its 0-1 valued counterpart. We simply select
the top-p entries with largest values and set them to ones
and all the remaining ones are set to zeros.

A Graph Perspective. The above constrained 0-1 quadratic
programming problem (22) can be interpreted from a graph
perspective. In Figure 1, we visualize such a problem that
p = 4 channels need to be preserved from co = 6 candidate
channels. Each node represents a candidate output channel,
and the edge connecting two nodes (including the self-to-
self connection) is assigned with the corresponding weight
ŝij . Therefore, solving the optimization is equivalent to
finding out a sub-graph of p = 4 nodes, so that the sum of
edge weights in the sub-graph is minimized.

4.4. Summary

So far, we have presented our collaborative channel pruning
algorithm. We briefly summarize the major workflow of
proposed approach in Algorithm 1.

To start with, we initialize L groups of statistics ({ui} and
{sij}), one per convolutional layer. Then, we traverse all
the training samples, compute each sample’s outputs and
corresponding gradients, and incrementally update statis-
tics for each layer. Afterwards, we take a layer-by-layer
approach, from shallow layers to deeper ones, to determine
which channels to be pruned. For each layer, we construct
the pairwise correlation matrix from previously collected
statistics, and obtain the binary mask by solving the cor-
responding optimization problem. Finally, after all layers
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Figure 1. The visualization of a constrained 0-1 quadratic program-
ming problem. Nodes with dashed outlines (#1 and #5) are pruned,
and their corresponding edges are also removed and marked with
dashed lines. Note that since the pairwise correlation matrix Ŝ is
symmetric, we only annotate one weight for each edge (e.g. for the
edge annotated with ŝ2,3, there is another weight ŝ3,2 associated
with it but not shown in the figure.

Algorithm 1 Collaborative Channel Pruning

Input: Training set {(xn,yn)}Nn=1

Input: Pre-trained network θ0 = {W(l)
0 }Ll=1

Output: Channel pruned network θ = {(β(l),W(l))}Ll=1

1: initialize {ui} and {sij} for all layers
2: for n = 1, . . . , N do
3: compute outputs and gradients for (xn,yn)
4: update {ui} and {sij} for all layers
5: end for
6: for l = 1, . . . , L do
7: compute pairwise correlation matrix Ŝ
8: solve (22) to obtain binary mask β(l)

9: end for
10: fine-tune the model with binary masks {β(l)}

have been pruned, we fine-tune the model with preserved
channels only to boost its prediction accuracy.

5. Experiments
In this section, we first evaluate our proposed collabo-
rative channel pruning approach on two benchmark data
sets, CIFAR-10 (Krizhevsky, 2009) and ILSVRC-12 (Rus-
sakovsky et al., 2015), and demonstrate its advantage over
other channel pruning algorithms. Afterwards, we analyze
the impact of different hyper-parameter settings on classifi-
cation accuracy of the compressed model. Finally, we visu-
alize the convergence behavior of solving the constrained
0-1 quadratic optimization problem via the SQP algorithm.

Specifically, we compare our approach against the following
channel pruning algorithms:

• Channel Pruning (He et al., 2017)
• Pruning Filters (Li et al., 2016)
• ThiNet (Luo et al., 2017)
• Soft Pruning (He et al., 2018a)
• DCP - Discrimination-aware Channel Pruning (Zhuang

et al., 2018)
• Neural Importance (Yu et al., 2018)
• AMC (He et al., 2018b)

5.1. Implementation Details

We implement our collaborative channel pruning method
using PyTorch. Here, we attempt to prune ResNet (He et al.,
2016) models since they are more accurate and efficient
than the traditional AlexNet (Krizhevsky et al., 2012) and
VGG (Simonyan & Zisserman, 2014) models. Therefore,
it is more challenging and meaningful to compress such
models. For the ILSVRC-12 data set, we prune ResNet-50
and use the pre-trained model provided by PyTorch as the
uncompressed baseline model1. For the CIFAR-10 data set,
we prune ResNet-56 and directly train an uncompressed
baseline model from scratch. We adopt the standard data ar-
gumentation strategy as used in PyTorch’s official examples.
The extra computational cost for channel pruning before

fine tuning is relatively small. For ResNet-56 on CIFAR-10,
the time consuming is about 6 minutes, for ResNet-50 on
ILSVRC-12, the computational time is about 26 minutes.
These results are obtained on a Nvidia P40 GPU.

In the discrimination-aware channel pruning (Zhuang et al.,
2018) algorithm, an extra group of classification losses are
inserted into intermediate layers to improve their discrim-
inative power. According to their results, this leads to the
consistent improvement in the classification accuracy. In
order to provide a fair comparison, we introduce a variant of
our CCP algorithm, where an auxiliary classifier is inserted
into the intermediate layer2. When fine-tuning the channel-
pruned network, we use both the final classification loss and
the newly added auxiliary classifier loss as supervision. The
joint loss function is given by:

L (θ) = Lfinal (θ) + λLaux (θ) (24)

where Lfinal (·) and Laux (·) are the final and auxiliary
classifiers’ losses, respectively. λ is the trade-off coefficient,
and we set λ = 10−4 on CIFAR-10 and λ = 10−6 on
ILSVRC-12. We denote this variant as “CCP-AC”, where
“AC” stands for “auxiliary classifier”. More details about
auxiliary classifier can be found in supplementary material.

1https://pytorch.org/docs/stable/
torchvision/models.html

2For ResNet-56 on CIFAR-10, we add the auxiliary classifier
on the top of layer “group1 block8 sum” (https://bit.ly/
2B9zGx1); for ResNet-50 on ILSVRC-12, we add it on the top
of layer “res4f” (https://bit.ly/2RHOAov).

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://bit.ly/2B9zGx1
https://bit.ly/2B9zGx1
https://bit.ly/2RHOAov
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Table 1. Comparison on the classification accuracy drop (compared against the uncompressed baseline model) and reduction in FLOPs of
various channels pruning algorithms on the CIFAR-10 data set.

Method Baseline Pruned
Acc. Acc. ↓ FLOPs

Channel Pruning (He et al., 2017) 92.80% 1.00% 50.0%
AMC (He et al., 2018b) 92.80% 0.90% 50.0%

Pruning Filters (Li et al., 2016) 93.04% -0.02% 27.6%
Soft Pruning (He et al., 2018a) 93.59% 0.24% 52.6%

DCP (Zhuang et al., 2018) 93.80% 0.31% 50.0%
DCP-Adapt (Zhuang et al., 2018) 93.80% -0.01% 47.0%

CCP
93.50%

0.04% 47.0%
CCP 0.08% 52.6%

CCP-AC -0.19% 47.0%

Table 2. Comparison on the top-1/5 classification accuracy drop (compared against the uncompressed baseline model) and reduction in
FLOPs of various channels pruning algorithms on the ILSVRC-12 data set. “-” means the corresponding result is not reported.

Method Baseline Pruned
Top-1 Acc. Top-5 Acc. Top-1 Acc. ↓ Top-5 Acc. ↓ FLOPs

Channel Pruning (He et al., 2017) - 92.20% - 1.40% 50.0%
ThiNet (Luo et al., 2017) 72.88% 91.14% 1.87% 1.12% 55.6%

Soft Pruning (He et al., 2018a) 76.15% 92.87% 1.54% 0.81% 41.8%
DCP (Zhuang et al., 2018) 76.01% 92.93% 1.06% 0.61% 55.6%

Neural Importance (Yu et al., 2018) - - 0.89% - 44.0%
CCP

76.15% 92.87%
0.65% 0.25% 48.8%

CCP 0.94% 0.45% 54.1%
CCP-AC 0.83% 0.33% 54.1%

5.2. Comparison on CIFAR-10

The CIFAR-10 data set consists of 50k training samples and
10k test samples, drawn from 10 categories. We utilize all
the training samples to compute the pairwise correlation
matrix Ŝ. The channel-pruned network is fine-tuned for 200
epochs using SGD with batch size of 128; we set weight
decay to 0.0005 and momentum to 0.8. The learning rate
starts from 0.1 and is divided by 10 at 60-th, 120-th, and
160-th epochs.

In Table 1, we compare the classification accuracy of com-
pressed models trained with our algorithm and baseline
methods. We evaluate on two different pruning ratios: 1)
r = 0.35 which prunes 35% channels per layer and the
overall FLOPs is reduced by 47.0% and 2) r = 0.40 which
prunes 40% channels per layer and the overall FLOPs is
reduced by 52.6%. We discover that with similar reduc-
tion in FLOPs, our approach suffers smaller accuracy drop
than all the other baseline methods. Furthermore, with
the auxiliary classifier inserted, the classification accuracy
is even increased by 0.19% with nearly 2 times speed-up
than the original uncompressed model. This indicates that
with the inter-channel dependency information exploited,
our approach can better identify which channels are more
important and should be preserved.

5.3. Comparison on ILSVRC-12

The ILSVRC-12 data set consists of over 1.2M training sam-
ples and 50k validation samples from 1000 categories. Here,
we only use a subset of 25k training samples to compute the
pairwise correlation matrix Ŝ and determine which channels
to be pruned for speed-up. The compressed model is then
fine-tuned for 100 epochs with an initial learning rate of
10−3 and divided by 10 every 30 epochs. We use a batch
size of 128 and set weight decay to 0.0001 and momentum
to 0.9.

In Table 2, we report the top-1/5 accuracy drop and re-
duction in FLOPs of various channel pruning algorithms.
Similarly, we present results for pruning ratios r = 0.35
and r = 0.40, which leads to 48.8% and 54.1% reduction in
FLOPs. It is observed that with similar reduction in FLOPs
(54.1% vs. 55.6%), our CCP approach outperforms the state-
of-the-art DCP algorithm by 0.16% in the top-5 accuracy.
With the auxiliary classifier enabled, the performance im-
provement is further increased to 0.28%. This also verifies
that exploiting the inter-channel dependency is beneficial
for selecting which channels to be pruned.
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5.4. Parameter Study

Auxiliary Classifier’s Coefficient. We vary the auxil-
iary classifier’s coefficient λ to understand its effect on
the compressed model’s accuracy. We choose its value
from

{
0, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7

}
and

attempt to prune the ResNet-56 model on the CIFAR-10
data set with a pruning ratio of r = 0.35. In Figure 2,
we plot the accuracy drop under different values of λ. We
discover that the accuracy drop is consistently negative,
meaning that the compressed model is even more accurate
than the original uncompressed one. This also validates that
the introduction of auxiliary classifier can indeed boost the
classification accuracy of compressed models.
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Figure 2. Comparison on the classification accuracy drop for
ResNet-56 on the CIFAR-10 data set with varying auxiliary classi-
fier’s coefficient λ.

Pruning Ratio. We evaluate our approach for compressing
the ResNet-56 model on the CIFAR-10 data set under differ-
ent pruning ratios drawn from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
In Figure 3, we report the accuracy drop under different
pruning ratios. It is observed that with a relatively small
pruning ratio, the compressed model even outperforms the
uncompressed one, possibly due to the regularization effect
introduced by channel pruning. As the pruning ratio in-
creases, the accuracy drop becomes more significant, since
with fewer channels in convolutional layers, the model’s
capacity is increasingly limited.

Convergence Behavior of SQP. Finally, we would like to
verify whether the SQP algorithm we adopt can indeed solve
the optimization problem (22) efficiently. We visualize a
few convolutional layers’ optimization process in Figure
4. We discover that the loss function converges within 10
iterations or even fewer, indicating that the SQP algorithm
is indeed efficient in solving this optimization problem.
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Figure 3. Comparison on the classification accuracy drop for
ResNet-56 on the CIFAR-10 data set with varying pruning ratio.
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Figure 4. Comparison on the loss curve (loss function’s value vs.
# of iterations) of different convolutional layers.

6. Conclusion
In this paper, we present a novel collaborative channel prun-
ing algorithm by exploiting the inter-channel dependency
information, which is rarely considered before. The chan-
nel pruning process is then formulated as a constrained 0-1
quadratic optimization problem, and can be efficiently tack-
led with the sequential quadratic programming (SQP) solver.
Extensive experiments validate the effectiveness of our pro-
posed approach and demonstrate its advantage over other
state-of-the-art channel pruning algorithms.
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