Supplementary Material

We define here some notation in addition to that of Section 3
in the main text. We denote by ¢; the per-instance loss,

LY(w) = % > li(wTxs), (35)
i=1
ti(u) = —yilogo(u) — (1 —y;)log(1 — o (u)) — £,
(36)

where ¢} are constants chosen such that the minimum of ¢;
is 0, namely ¢; = —y; logy; — (1 — y;) log(1 — v;).

Slightly abusing notation, we write L(7) = L*(w(1)) =
L(Wy(7),..., Wx(7)) for the objective value at time 7.

Finally, for a full-rank matrix A € R¥™™ (m > 1), we
denote by P4 € R%*? the matrix of projection onto the
span of A,

I, m >d,

Pa= { A(ATA) AT, m <d. 37

A. Properties of the Cross-Entropy Loss

Theorem A.1 (Gradient). The gradient of the cross-entropy
loss (35) takes the form

n

VLY (w) = % > (o(wTxi) —yi) - xi.  (38)

=1

It always lies in the data span, V L' (w) € span(X).

Proof. Straightforward calculation. O

Theorem A.2 (Global minima). The global minimum of the
cross-entropy loss (35) is 0 and the set of global minimisers
is

{weR": XTw =XTw,}. (39)

Proof. We know that L' > 0 and L'(w,) = 0, so 0 is
the optimal objective value, and the set of global optima
consists of all w such that L*(w) = 0. The last condition
is equivalent to V; : £;(w) = 0, which in turn is equivalent
toV; : o(wTx;) = o(wlx;). By monotonicity of o, this
is further equivalent to V; : wTx; = wlx;, which is a
restatement of (39). O]

Theorem A.3 (Restricted strong convexity). Assume X is
full-rank. For any sublevel set W = {w cLi(w) < l},

there exists (1 > 0 such that

L'(v) > L' (w) + VL (W)T(v = w) + Z|lv - w]*
(40)

Sforallw,v € W such that v — w € span(X).

Proof. Consider the 2nd-order Taylor expansion of L'
around w,

L'(v) = LY(w) + VLY (wW)T(v — w)

LWL - W), @D

where V2L (W) is the Hessian of L! evaluated at w, a
point lying between v and w. A straightforward calculation
shows that the Hessian takes the form

V2L (W) = XDy XT, (42)
where

Dy = diaglo(wTx1)(1 — o(WTx1)),
ey 0(WTx,) (1 — o(WTxy,))]. (43)

‘We will now show that there is a constant w > 0 such that
o(Wix))(1 —o(WTx;)) > w (44)

forallw € Wand i € {1,...,n}, so that we can claim
Dy = wI, or consequently V2L (W) = wXXT.

Let w € W. The bound on L!(w) implies a bound on
£;(wTx;) for all 4,

Li(wTx;) < nL'(w) < nl. (45)

Because ¢; is convex and ¢;(u) — oo as u — oo, we
know that ¢; ! ((—o0,nl]) is a bounded interval, and the
finite union U?_, ;' ((—o0, nl]) is also a bounded interval,
whose size depends only on nl and the data. Hence, there
exists K > 0 such that wTx; € [—K, K] forallw € W
andi € {1,...,n}. The existence of w > 0 satisfying (44)
follows.

Now, let us apply V2L (w) = wXXT to lower-bound (41):
L'(v) > LY(w) + VLY (W)T(v — w)

w

+ 5 (v—w)TXXT(v—w). (46)
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Consider two cases. If n > d, XXT is full-rank and
XXT > Aninl holds, where Ain > 0 is the smallest
eigenvalue of XXT. Combined with (46), this proves the
claim for n > d and 4 = wWAnmin.

If n < d, XTX is full rank. We can use the assumption
v —w € span(X) to deduce

2 2
v —w|” = [[Px(v—-w)]

=(v-w)TXXTX)'XT(v-w) (&7)
< Amax(v = w)TXXT (v — w),

where Apax > 0 is the largest eigenvalue of (XTX)™ 1.

Combined with (46), this proves the claim for n < d and
n= w/)\max' O

Corollary A.1 (Restricted Polyak-Lojasiewicz). Assume X
is full-rank. For any sublevel set W = {w : L'(w) < I},
there exists ¢ > 0 such that

cL'(w) < %HVLl(w)H2 (48)
forallw € 'W.

Proof. Letw € W. (If W is empty, the claim is trivially
true.) Theorem A.3 applied to W implies that for some
>0,

L'(v) > LMw)+ VL (w)T(v=w)+ 5 v = w[* (49)

forallv.e WN YV where V = {v:v—w € span(X)}.

Taking min, cwnv on both sides, then relaxing part of the
constraint on the right-hand side yields

min L' (v)
vewnv

> min LY(w)+ VL' (w)T(v—w)+ %Hv —wl?

veEWwnNv
> mi{;Ll(w) + VL' (wW)T(v —w) + %Hv —wl.
ve
(50

Now, the minimum on the left-hand side is equal to 0 and
is attained at v = w + Px (w, — w), as can be seen from
Theorem A.2. For the right-hand side, we can substitute v =
w + Xa for a € R™ and find the unconstrained minimum
with respect to a. We get

1

0> LY(w)— ﬂVL1(W)TX(XTX)*XTVU(w)

> L' (w) — A%"le(w)nz,
(51)

where Apmax > 0 is the largest eigenvalue of X (XTX)~1XT.

This yields the result with ¢ = g/ Amax- O

B. Proof of Theorem 1

We will prove a supporting lemma, and then the theorem.

Lemma B.1. Assume the student is a directly parameterised
linear classifier (N = 1) initialised at zero, w(0) = O.
Then, w(T) € span(X) for T € [0, 00).

Proof. Let q € R% be any vector orthogonal to the span of
X. It suffices to show that qTw(7) = 0. For that, notice
that Tw(0) = 0 and

L(amw(r) = —aTVL (w(r) =0, (52)

where the last equality follows from the fact that
VLY(w(r)) € span(X) (Theorem A.1). The claim fol-
lows. O

Theorem 1. Assume the student is a directly parameterised
linear classifier (N = 1) with weight vector initialised at
zero, w(0) = 0. Then, the student’s weight vector fulfills
almost surely

wi(t) = W, 5)

fort — oo, with

L W, n>d, ©)
YT X(XTX)"XTw,, n<d.
Proof. Recall the time-derivative of L,
2
L'(r) = —||vL (w(r))|". (53)
The data matrix X is almost surely (wrt. X ~ P7)

full-rank, we can therefore apply Corollary A.1 to W =
{w:LYw) < L'(0)} and w(7) to lower-bound the gra-
dient norm on the right-hand side of (53). We obtain
L'(t) < —cL(r) for some ¢ > 0 and all 7 € [0, 00), or
equivalently,

(log L(7))" < —c. (54)

Integrating over [0,¢] yields L(¢t) < L(0) - e~“, which
proves global convergence in the objective: L(t) — 0 as
t — oo.

Now invoke Theorem A.3 with W as above, v = w(t) and
w = w (we know that both w(7),w € W N span(X),
partly by Lemma B.1):

o o112

L(t) = Sllw(t) = w|". (55)

Since L(t) — 0 as t — oo, the theorem follows. O
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C. Proof of Theorem 2

Theorem 2. Let W be defined as in Theorem 1. Assume the
student is a deep linear network, initialized such that for
some € > (),

. N T A n2—2\"
Iw(O) | < min {|I¥ll, ¥ (W]~ + > %) 7 L,

L*(w(0)) < L(0), (12)
W;11(0)T"W;11(0) = W;(0)W;(0)7 (13)

forj =1,...,N — 1. Then, for n > d, student’s weight
vector fulfills almost surely

w(t) = w, (14)
and for n < d,
[w(t) — W] <e, (15)
for all t large enough.
For the proof, we will need a result by (Arora et al., 2018),

which characterises the induced flow on w(7) when running
gradient descent on the component matrices W .

Lemma C.1 ((Arora et al., 2018, Claim 2)). Ifthe balanced-
ness condition (13) holds, then

ow(T) 2(N-1)

2wl

(VLl (w(r))+
(N = 1) - Py VL (w(7))). (56)

Proof of Theorem 2. Similarly to the case N = 1, we start
by looking at the time-derivative of L,

v'n) =z iy ( 550
2

(HVLl(W(T))H (57)
HN = 1) [P VE ()

2(N—1)
|

2(N-1)

=—[w()ll

<~ |w(m)] VL (w(n))|.

It is non-positive, so w(7) stays within the L(0)-sublevel
set throughout optimisation,

w(r) € W= {w:L'(w) < L(0)}. (58)

Also, W is convex and by Assumption (12) it does not
contain 0. We can therefore take 6 > 0 to be the distance
between W and 0, and it follows that ||w(7)|| > § for
T € [0, 00).

Now, noting that X is almost surely full-rank, apply Corol-
lary A.1 to W and w(7) to upper-bound the right-hand side
of (57),

2(N—1)

L'(t) < —c6~ & L(1). (59)

Letting ¢ = 625, we get (log L(7))’ < —¢ and conse-
quently L(t) < L(0) - e=¢. This proves convergence in the
objective, L(t) — 0 as t — oo.

To prove convergence in parameters, we decompose the

‘error’ w(7) — W into orthogonal components and bound
each of them separately,

2 12
[w(r) = W[" = |[Px(w(r) — W)

+[[Pq(w(r) = W)[%, (60)

where the columns of Q € R%*(4=") orthogonally comple-

ment those of X. If n > d, we simply bound the first term
and disregard the second one.

To bound the first term, invoke Theorem A.3 with W, v =
Pxw(7) and w = PxW. One can check that L} (Pxu) =
L!(u) for all u € R%, so Pxw(7) € W and our use of the
theorem is legal. We obtain

L(r) = Z|Px(w(r) — )|, (61)
Since L(7) — 0, it follows that
Px (w(r) —W)[|* =0 (62)

as 7 — OoQ.

For the second term, notice that w € span(X), so Pqw
vanishes and we are left with ||PQW(T)||2. Denote this
quantity ¢(7). Its time derivative is

i (7) = 2Paw(r))" (757 )

2(N—1)

==2w(n)|" ¥

(w<T>TPQVL1<w<r>>+

7(N_1) -w(T)TPow(7) - w(T)TVLY (w(T
WP () WYL (w(7))
= —2q(7)(N — 1)||w(r)[| >N w(r)TVL (w(r)),
(63)

where we have used the fact that VL!(w(7)) € span(X)
(Theorem A.1) and Q is orthogonal to X. Rearranging, we
obtain

d [ logq(r) \ -2/ T
i (avegy) = o e

It turns out that the right-hand side expression is integrable
in yet another way, namely

— w ()TN w(r)TVL (w(r)). (65
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Equating the two and integrating over [0, ¢] yields

at) _N-1  w®)
log =% = -1 , 66
a0 TN Ewop
which implies
a(t) <(w<o>>w 6
lw()l* ~ \Iw®l/) ©7

because ¢(0) < |[w(0)]|.

We now bound the norm of w(¢). Starting from an orthog-
onal decomposition similar to (60) and applying (62) with
(67), we get

2 2 2
[w(®)I” =[Pxw(®)]” + [[Pqw(?)]

2 _2

limsup [[w(t)[|* <|[W|* + [w(0)[| ¥ limsup [[w(t)|*

t—o0 t—o0

(68)

Denote v := limsup,_ . ||w(t)[|. By the same or-

thogonal decomposition, we also know that vz o>

limsup,_, . [[Pxw(t)]|”> = ||w]> > 0, so we can divide
both sides above by /2,

~ N
Iw]® |, [lw(0)]*
= 2 v2/N

=: f(v). (69)

On the right-hand side, we now have a decreasing function
of v that goes to zero as ¥ — co. However, evaluated at our
specific v, it is lower-bounded by 1, implying an implicit
upper bound for v.

How do we find this bound? Suppose we find some constant
K such that f(K) < 1. Then, because f is decreasing, it
must be the case that v < K. One such candidate for K is

2/N VD
K=|vv-<1—w(0)) . o)

el
(Here we have used condition (11): ||w(0)|| < ||W].) To

check that indeed f(K) < 1, start from the inequality
L WP
(el /E) ™ v =1
Il

[wO ¥\
§<l_ TIRE =

Taking the leftmost and rightmost expression and multiply-
ing by (||w||/K)*/" yields

I/K)~%. (71)

A2 2/N
[l WP o,

f(K) = K2 K2/N -

Hence,

t—o0

2/N e
[w(0)] ) |

~112/N
[ |*

lim sup ||w(t)] < ||w]| - (1 -
73)

Finally, let us turn back to our original goal of bounding

lw(r) — \?V||2 With (60), (62), (67) and (73), we now know
that
liin sup |[w(r) — w]? (74)
—00
2
Py 2(N—1)
< Iw(O)]) ] 2 (1 [0 )J) as)
[~
- 12+2/N
w .
%] ~ W 76)

2N w0y

[l

Hence, if we initialise close enough to zero, as specified by
condition (11), we can ensure that

limsup ||w(7) — w||* < 2. (77)
t—o0
This concludes the proof. O

D. Theorem 3 for Approximate Distillation

We extend Theorem 3 to the setting where the student learns
the solution w = X (XTX)~1XTw, only e-approximately,
as is the case for deep linear networks initialised as in Theo-
rem 2. Whenn > d, the teacher’s weight vector is recovered
exactly and the transfer risk is zero, even when the student
is deep. The following theorem therefore only covers the
case n < d.

Theorem D.1 (Risk bound for approximate distillation).
Let n < d. For any training set X € R¥", let hx (x) =
1{wIx > 0} be a linear classifier whose weight vector is
e-close to the distillation solution w, i.e. |W,. — w| < ¢,
where € is a positive constant such that € < 1|W||. Define

Then, it holds for any 8 € [0,7/2 — ¢ that

§ =/ fae.
Twll

E_ [R(ix|Pow.)] <(8) +p(r/2 -6 - B)"
X~ P
(78)

The result is very similar to Theorem 3 in the main text, the
only difference is the constant 4 which compensates for the
imprecision in learning W by pushing the bound up (recall
that p is decreasing). However, as € goes to zero, so does
and we recover the original bound.

For the proof, we start with a tool for controlling the angle
between w and w.. Recall that the angle is defined as

WTV) (79)

[wil - [lvll

a(w,v) = cos™! (
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forw,v € R?\ {0}.
Lemma D.1. Let w,v € R? be such that |w — v| < ¢,

2me
[lwil

where € < 1||\w||. Then a(w,v) <

Proof of Lemma D. 1. The first step is to lower-bound the
inner product wTv. To that end, we expand and rearrange
[w — v||* < €2 to obtain

owTv > ||w|* + ||v]® — €. (80)

Now use the triangle relation ||v|| > ||w|| — € squared to
lower-bound the right-hand side of (80) and get

2wTv > 2||wl|® — 2¢|lw]], (81)
which implies
wiv_fwl—e | wl—e 2 o
[wil - [Iv]l [[v]] [wll + € [[w]]
Thus,
2 T
1 € wv cos(a(w,v)). (83)

- <
Iwil = [[wll - Iv]

The left-hand side is by assumption non-negative, so we
have a(w, v) € [—m/2,7/2]. On this domain,
2
cosz <1— 2 (84)
™

which lets us deduce

2 <1- a(w,v)? (85)
[[wl] ™
Rearranging yields the result. O

Proof of Theorem D.1. We decompose the expected risk as
follows:

[wix - wlix < 0] =

E, |[R(ix|Pew.)| = P
X~Pp X~ PP
x~ Py

= / X]P’P [wlix Wwlx < 0]x]dPx
x:a(wy,x)>8 X~ B

+/ P [wix < 0fx] dPx
x: & (W, X) <3, wlIx>0 X~ P2

+/ P [wlIx > 0|x]dPx.
x:a(w,,X) <3, wlx<0 X~Pg
(86)

Let us fix some x for which &(w.,x) <  and wlx > 0;
for this x we have a(w,,x) = @(w,,x). Consider the

situation where &/(w.,x;) < m/2 — 3 — 0 for some i. Then
by the triangle inequality, Lemma D.1 and Lemma 1,

Oé(VAVE,X) S O((WE,W) + Oé(W*,W) + Oé(W*,X) (87)
<04 (Wi, X;) + a(Wy, X) (88)
<7/2, (89)

which implies wlx > 0, i.e. a correct prediction (same
as the teacher’s). Conversely, an error can occur only if
a(wy,x;) > m/2—§ — 3 for all i. Because x; are indepen-
dent, we have

X]P’Pn[valx <0|x:a(wy,x) < f, wix > 0]

< A ) > _ 5=
_XlP’P;[Vl.a(w*,xZ)_w/Z ]

=p(r/2—-0-p6)"
(90)

By a symmetric argument, one can show that

XIF’Pn[x?vgx >0|x: a(w,,x) <, wix < 0]

x

<p(m/2—0-p)". O

Combining (86), (90) and (91) yields the result. ]



