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Lemma 1 (Change of Variables and Monte Carlo). Let P =V (t) NV (z;). If
P # 0, P lies in some hyperplane 11 = {x € R? : (x,n) = c}, where n is of
unit norm. Denote by S*~' the d — 1 dimensional unit sphere centered at the
origin and denote by f; the map which maps m € S to to the intersection
between the ray starting at t in direction m with P if this intersection exists.
Let I; = fv(t)mv(mj) w(z)dVol, then
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where dVolga—1 denotes the standard induced volume form of the sphere in Fu-
clidean space. Secondly, consider a sequence {m;}T of uniform samples on
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where V; denotes the volume of the set f; YV () NV (z;)) with respect to the
standard induced metric on the unit sphere in Fuclidean space.

Proof. Consider spherical coordinates (¢1,...,¢q_1) on S?"!. Define m =

(m1,...,mq) by mq = cos¢y, m, = cos¢pH§;isin¢j, forp=2,...,d -1

and mg = Hj;i sin ¢;. One can verify that
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forms an orthonormal basis of R? and we note that the induced metric on S¢-1

is given by g¢;; = (%Z:, %Zj_), which we note is a diagonal matrix in local ¢;




coordinates. We observe that f;(m) = I(m)m + t, where I(m) = —~. We
observe that the resulting induced metric is
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Using Sylvester’s formula, we obtain

det § = 12041 det g det(I + 172¢2 (V1) Vig~?)

= 1207 det g(1 + 12| g~ 2 VI||2)
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where we observe in the last step that 1+12[lg~2 VI||2 is just — times the

(m, n)
expression for 1 = ||n||? in the orthonormal basis B. The second part follows
from the standard local coordinate Monte-Carlo integration theorems, see e.g.
[1]. O

Lemma 2. Lett € R? and m € S*! and define

eyl —t?
b () = 2(m,x —t)
face(m) = arg mln {l (i) | 15 (z;) > 0}

If there is no i € {1,...,n} such that I}, (x;) > 0, then the ray R starting at t
and in direction m is fully contained in V (t) (and V (t) is unbounded in direction
m starting at t). Otherwise m lies in f;l(V(t) NV (Zface(m)))-

Proof. Solving for [ > 0, for an equidistant point between ¢ and = along the ray
{t + Im|t > 0}, we observe that ||t +Im — t||* = ||z —t — Im|? for | = I}, ().
The expression for face(m) above hence selects the neighboring Voronoi cell to
t along the direction m and I}, (Zface(m)) returns the distance to the Voronoi cell
boundary along the ray. O

Theorem 1. Consider a labeled dataset D = {(x1,¢1),...,(Tn,cn)} of data
points x; € R? and corresponding class labels ¢; € {1,2,...,k} and a test point
t € RY, where t # x; for alli € {1,...,n}. Assume that t only has a single
nearest neighbor among {x1,...,x,}. Consider a sequence of weight functions
{wn 3524, wy, : Ry — Ry which are each monotonically decreasing and where
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272 dz =0 forall 0<2z <2z (3)

Then, for sufficiently large n, the class VBC(t|D,w,) assigned by the Voronoi
Boundary Classifier of t is equal to the class INN(t|D) assigned by the nearest
neighbor classifier for t.



Proof. Let B,.(t) denote the ball of radius 7 around ¢ in R% and denote by II;
the unique hyperplane containing V' (¢) N V(x;) whenever this intersection is
non-empty and d — 1 dimensional. We observe that, for all r > 0,
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since w decreases with distance from ¢.

Denote Vol(V () NV (z;) N B,.(t)) as C,. Let x; be the nearest neighbor to
t, and pick 71 = 3|lz; —t|| + 6 for some & > 0 so that dist(IL;,¢) > ry for all
j # 1; such § exists due to the assumed uniqueness of the nearest neighbor to t.
Therefore, for any j # i such that V(t) NV (z;) # 0,
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Let ro = dist(II;, ¢) so that ro > r1. Pick polar coordinates on I1; = S¥2(p) x
R>q centered at the closest point p € II; to t. Then
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where the last term tends to zero. It follows that
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1m
=% [y v (e Walllz = t[)dvol —

We can replace the numerator with a finite sum over all z; of the same class
label as x;, and the result still tends to zero. Hence, the Voronoi Boundary
Rank for class label z; dominates the Voronoi Boundary Rank for all other
class labels for sufficiently large n and the result follows. O
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