
On Variational Bounds of Mutual Information

A. Summary of mutual information lower bounds
In Table 1, we summarize the characteristics of lower bounds on MI. The parameters and objectives used for each of these
bounds is presented in Table 2.

Lower Bound L ∇L ⊥ BS Var. Norm.
IBA Barber & Agakov (2003) 7 3 3 3 7
IDV Donsker & Varadhan (1983) 7 7 – – –
INWJ Nguyen et al. (2010) 3 3 3 7 3
IMINE Belghazi et al. (2018) 7 3 3 7 3
INCE van den Oord et al. (2018) 3 3 7 3 3
IJS Appendix D 3 3 3 7 3
Iα Eq. 11 3 3 7 3 3

Table 1. Characterization of mutual information lower bounds. Estimators can have a tractable (3) or intractable (7) objective (L),
tractable (3) or intractable (7) gradients (∇L), be dependent (7) or independent (3) of batch size (⊥ BS), have high (7) or low (3)
variance (Var.), and requires a normalized (7) vs unnormalized (3) critic (Norm.).

Lower Bound Parameters Objective
IBA q(x|y) tractable decoder Ep(x,y) [log q(x|y)− log p(x)]
IDV f(x, y) critic Ep(x,y) [log f(x, y)]− log

(
Ep(x)p(y) [f(x, y)]

)
INWJ f(x, y) Ep(x,y) [log f(x, y)]− 1

eEp(x)p(y) [f(x, y)]
IMINE f(x, y), EMA(log f) IDV for evaluation, ITUBA(f,EMA(log f)) for gradient

INCE f(x, y) EpK(x,y)

[
1
K

∑K
i=1 log

f(yi,xi)
1
K

∑K
j=1 f(yi,xj)

]
IJS f(x, y) INWJ for evaluation, f -GAN JS for gradient

ITUBA f(x, y), a(y) > 0 Ep(x,y) [log f(x, y)]− Ep(y)
[
Ep(x)[f(x,y)]

a(y) + log(a(y))− 1
]

ITNCE e(y|x) tractable encocder INCE with f(x, y) = e(y|x)
Iα f(x, y), α, q(y) 1 + Ep(x1:K ,y)

[
log ef(x1,y)

αm(y;x1:K)+(1−α)q(y)

]
−Ep(x1:K)p(y)

[
ef(x1,y)

αm(y;x1:K)+(1−α)q(y)

]
Table 2. Parameters and objectives for mutual information estimators.

B. Experimental details
Dataset. For each dimension, we sampled (xi, yi) from a correlated Gaussian with mean 0 and correlation of ρ. We used
a dimensionality of 20, i.e. x ∈ R20, y ∈ R20. Given the correlation coefficient ρ, and dimensionality d = 20, we can
compute the true mutual information: I(x, y) = −d2 log(1 − ρ

2). For Fig. 2, we increase ρ over time to show how the
estimator behavior depends on the true mutual information.

Architectures. We experimented with two forms of architecture: separable and joint. Separable architectures independently
mapped x and y to an embedding space and then took the inner product, i.e. f(x, y) = h(x)T g(y) as in (van den Oord et al.,
2018). Joint critics concatenate each x, y pair before feeding it into the network, i.e. f(x, y) = h([x, y]) as in (Belghazi
et al., 2018). In practice, separable critics are much more efficient as we only have to perform 2N forward passes through
neural networks for a batch size of N vs. N2 for joint critics. All networks were fully-connected networks with ReLU
activations.
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Mutual Information
2.0 4.0 6.0 8.0 10.0

Gaussian, unstructured
Iα 1.9 3.8 5.7 7.4 8.9

INCE 1.9 3.6 4.9 5.7 6.0
IJS 1.2 3.0 4.8 6.5 8.1

INWJ 1.6 3.5 5.2 6.7 8.0

Cubic, unstructured
Iα 1.7 3.6 5.4 6.9 8.2

INCE 1.7 3.2 4.1 4.6 4.8
IJS 1.0 2.8 4.5 6.1 7.6

INWJ 1.5 3.2 4.7 5.9 6.9

Gaussian, known p(y|x)
INCE (Eq. 12) 1.9 3.3 4.2 4.6 4.8
INWJ (Eq. 14) 2.0 4.0 6.0 8.0 10.0

Table 3. Hyperparameter-optimizes results on the toy Gaussian and Cubic problem of Fig. 2.

C. Additional experiments
C.1. Exhaustive hyperparameter sweep.

To better evaluate the tradeoffs between different bounds, we performed more extensive experiments on the toy problems in
Fig. 2. For each bound, we optimized over learning rate, architecture (separable vs. joint critic, number of hidden layers
(1-3), hidden units per layer (256, 512, 1024, 2048), nonlinearity (ReLU or Tanh), and batch size (64, 128, 256, 512). In
Table 3, we present the estimate of the best-performing hyperparameters for each technique. For both the Gaussian and
Cubic problem, Iα outperforms all approaches at all levels of mutual information between X and Y . While the absolute
estimates are improved after this hyperparameter sweep, the ordering of the approaches is qualitatively the same as in Fig. 2.
We also experimented with the bounds that leverage known conditional distribution, and found that Eq. 14 that leverages a
known p(y|x) is highly accurate as it only has to learn the marginal q(y).

C.2. Effective bias-variance tradeoffs with Iα

To better understand the effectiveness of Iα at trading off bias for variance, we plotted bias vs. variance for 3 levels of
mutual information on the toy 20-dimensional Gaussian problem across a range of architecture settings. In Fig. 6, we see
that Iα is able to effectively interpolate between the high-bias low-variance INCE, and the low-bias high-variance INWJ. We
also find that IJS is competitive at high rates, but exhibits higher bias and variance than Iα at lower rates.

Figure 6. Iα effectively interpolates between INCE and INWJ, trading off bias for variance.

In addition to Iα, we compared to two alternative interpolation procedures, neither of which showed the improvements of
Iα:

1. Iα interpolation: multisample bound that uses a critic with linear interpolation between the batch mixture m(y;x1:K
and the learned marginal q(y) in the denominator (Eqn. 11).
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Figure 7. Comparing Iα to other interpolations schemes.

2. Linear interpolation: αINCE + (1− α)INWJ

3. Product interpolation: same as Iα, but uses the product m(y;x1:K)αq(y)(1−α) in the denominator.

We compared these approaches in the same setting as Fig. 6, evaluating the bias and variance for various hyperparameter
settings at three different levels of mutual information. In Fig. 7, we can see that neither the product or linear interpolation
approaches reduce the bias or variance as well as Iα.

D. IJS derivation
Given the high-variance of INWJ, optimizing the critic with this objective can be challenging. Instead, we can optimize the
critic using the lower bound on Jensen-Shannon (JS) divergence as in GANs and Hjelm et al. (2018), and use the density
ratio estimate from the JS critic to construct a critic for the KL lower bound.

The optimal critic for INWJ/f -GAN KL that saturates the lower bound on KL(p‖q) is given by (Nowozin et al., 2016):

T ∗(x) = 1 + log
p(x)

q(x)
.

If we use the f -GAN formulation for parameterizing the critic with a softplus activation, then we can read out the density
ratio from the real-valued logits V (x):

p(x)

q(x)
≈ exp (V (x))

In Poole et al. (2016); Mescheder et al. (2017), they plug in this estimate of the density ratio into a Monte-Carlo approximation
of the f -divergence. However, this is no longer a bound on the f -divergence, it is just an approximation. Instead, we can
construct a critic for the KL divergence, TKL(x) = 1 + V (x), and use that to get a lower bound using the INWJ objective:

KL(p‖q) ≥ Ex∼p [TKL(x)]− Ex∼q [exp(TKL(x)− 1)] (16)
= 1 + Ex∼p [V (x)]− Ex∼q [exp(V (x))] (17)

Note that if the log density ratio estimate V (x) is exact, i.e. V (x) = log p(x)
q(x) , then the last term, Ex∼q [exp(V (x))] will be

one, and the first term is exactly KL(p‖q).

For the special case of mutual information estimation, p is the joint p(x, y) and q is the product of marginals p(x)p(y),
yielding:

I(X;Y ) ≥ 1 + Ep(x,y) [V (x, y)]− Ep(x)p(y) [exp(V (x, y))] , IJS. (18)

E. Alternative derivation of ITNCE

In the main text, we derive INCE (and ITNCE) from a multi-sample variational lower bound. Here we present a simpler and
more direct derivation of ITNCE. Let p(x) be the data distribution, and p(x1:K) denote K samples drawn iid from p(x). Let
p(y|x) be a stochastic encoder, and p(y) be the intractable marginal p(y) =

∫
dx p(x)p(y|x). First, we can write the mutual
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information as a sum over K terms each of whose expectation is the mutual information:

I(X; y) = Ex1:K

[
1

K

K∑
i=1

KL(p(y|xi)‖p(y))

]
= Ex1:K

[
1

K

K∑
i=1

∫
dy p(y|xi) log

p(y|xi)
p(y)

]
(19)

(20)

Let m(y;x1:K) = 1
K

∑K
i=1 p(y|xi) be the minibatch estimate of the intractable marginal p(y). We multiply and divide by

m and then simplify:

I(X; y) = Ex1:K

[
1

K

K∑
i=1

∫
dy p(y|xi) log

p(y|xi)m(y;x1:K)

m(y;x1:K)p(y)

]
(21)

= Ex1:K

[
1

K

K∑
i=1

[∫
dy p(y|xi) log

p(y|xi)
m(y;x1:K)

+

∫
dy p(y|xi) log

m(y;x1:K)

p(y)

]]
(22)

= Ex1:K

[
1

K

K∑
i=1

KL(p(y|xi)‖m(y;x1:K)) +

∫
dy

1

K

K∑
i=1

p(y|xi) log
m(y;x1:K)

p(y)

]
(23)

= Ex1:K

[(
1

K

K∑
i=1

KL(p(y|xi)‖m(y;x1:K))

)
+ KL(m(y;x1:K)‖p(y))

]
(24)

≥ Ex1:K

[
1

K

K∑
i=1

KL(p(y|xi)‖m(y;x1:K))

]
(25)


