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1. Gap between optimal adaptive and
value-ordered strategies

The following example shows a gap between the optimal
adaptive strategy and the any value-ordered strategy in the
sequential setting.

(p1, v1) = (1, 1) (p2, v2) = (q, 1)

(p3, v3) = (q, 1) (p4, v4) = (q(1− q)/(v − q), v)

Here, we set q = 0.63667, and take the limit as v goes to
∞.

The optimal value-ordered strategy is make offers to 1, 2,
and possibly 3 if 2 rejects. This yields value 1 + 2q − q2.
The optimal strategy is shown in Figure 1 and yields value
1 + 2q − q2 + (1− q)q2(v − 1)/(v − q). As v → ∞, the
approximation ratio approaches

1 + 2q − q3

1 + 2q − q2
≈ 1.0788

Moreover, this example demonstrates that simple greedy
algorithms are suboptimal – in particular, making offers
greedily by decreasing pi, vi, and pivi all yield suboptimal
value.

2. Lower bound for LP-based stochastic
matching

Figure 1. Lower bound for integrality gap
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Consider the star graph as shown in Figure 1 with n + 1
vertices, with n leaves and 1 vertex in the middle. Each
edge has pe = 1

n and value 1. Let the number of probes be
t = n. The value of the LP (3) is 1, assigning xe = 1 to
all edges. Since all edges are identical, any strategy is an
optimal probing strategy, yielding expected value
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In the limit, this is 1− 1/e, so no probing strategy can be
better than an e

e−1 ≈ 1.581-approximation.

3. Deferred Proofs
Proof of Claim 3. For any set A of at most t items,
size2(A) =

∑
i∈A size2(i) = |A|/t ≤ 1. Further,

by Markov’s inequality, we have Pr[size1(A) ≥ 1] ≤
E [min{size1(A), 1}] ≤ E

[∑
i∈A min{si, 1}

]
= µ1(A).

Consequently, we have Pr(‖size(A)‖∞ < 1) ≥ 1 −
µ1(A).

Claim 1. E [vJ ] ≥
1

2
E [vI ]

Proof. Let W be the random set of elements on this seg-
ment, up to and including I , and let Wx ⊆W be the subset
of those elements with value at least x. For ease of notation,
we define qi = 1− pi. Then, we can write

E [vI ] =

∫ ∞
0

Pr[vI ≥ x] dx =

∫ ∞
0

∑
i∈Wx

pi
∏
j<i

qj dx.

(1)
Let A be the random set of “active” candidates who will
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accept an offer if they receive one. Then, we have

E [vJ ] =

∫ ∞
0

Pr[vJ ≥ x] dx

=

∫ ∞
0

Pr[A ∩Wx 6= ∅] dx

=

∫ ∞
0

∑
i∈Wx

pi · Pr[I ≥ i] · Pr

 ⋂
j<i,j∈Wx

j /∈ A

 dx

=
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0

∑
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qj
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qj
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=

∫ ∞
0

∑
i∈Wx

pi

 ∏
j<i,j∈Wx

q2j

 ∏
j<i,j /∈Wx

qj

 dx

(2)

We can write (1) as

E
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 , (3)

where the expectation is taken over the indicators 1qj for
j < i, j /∈Wx. Similarly, we write (2) as
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Conditioning on the realizations of these indicators, it is
sufficient to show that
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(5)
which is true by Claim 2.

Claim 2 ((Gupta et al., 2017), Claim 3.4). For any ordered
set A of probabilities {a1, a2, . . . , a|A|}, let bj denote 1−aj
for j ∈ [1, |A|]. Then,
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≥ 1
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3.1. Equivalence to Stochastic Knapsack

We must show that the the optimal solution remains un-
changed whether values are received stochastically or deter-
ministically.

It is easy to verify that the vector item sizes and knapsack
capacities capture the budget and deadline requirements of
the knapsack hiring problem. However, in the reduction,

item i deterministically yields a value of pivi instead of
value vi when i is active (happens with probability pi) and
value 0 otherwise.

To account for this, observe that the optimal item to probe
next depends only on the subset of remaining items, the
number of probes left, and the capacity of the knapsack – the
value accumulated thus far has no bearing on the next action.
Let opt(S, t, b) be the optimal value achievable with items
(candidates) S, number of probes t, and budget b remaining.
The optimal strategy is then given by an exponential sized
dynamic program, with the following recurrence

opt(S, t, b) = max
i∈S

{
pi(vi + opt(S\{i}, t− 1, b− si))

+(1− pi)opt(S\{i}, t− 1, b)
}
. (6)

Assuming inductively that opt(S′, t, b) is unchanged
whether i contributes value vi with probability pi or de-
terministic value pivi for all smaller sets S′, we see that (6)
is optimized by the same i in both cases. Thus, the optimal
strategy is unchanged in the deterministic and random cases
and our reduction is complete.
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