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Abstract
We study the problem of minimizing the average
of a very large number of smooth functions, which
is of key importance in training supervised learn-
ing models. One of the most celebrated methods
in this context is the SAGA algorithm of Defazio
et al. (2014). Despite years of research on the
topic, a general-purpose version of SAGA—one
that would include arbitrary importance sampling
and minibatching schemes—does not exist. We
remedy this situation and propose a general and
flexible variant of SAGA following the arbitrary
sampling paradigm. We perform an iteration com-
plexity analysis of the method, largely possible
due to the construction of new stochastic Lya-
punov functions. We establish linear convergence
rates in the smooth and strongly convex regime,
and under a quadratic functional growth condition
(i.e., in a regime not assuming strong convexity).
Our rates match those of the primal-dual method
Quartz (Qu et al., 2015) for which an arbitrary
sampling analysis is available, which makes a
significant step towards closing the gap in our
understanding of complexity of primal and dual
methods for finite sum problems.

1. Introduction
We consider a convex composite optimization problem

minx∈Rd P (x) :=

(
n∑
i=1

λifi(x)

)
+ ψ(x), (1)

where f :=
∑
i λifi is a conic combination (with coeffi-

cients λ1, . . . , λn > 0) of a very large number of smooth
convex functions fi : Rd → R, and ψ : Rd → R ∪ {+∞}
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is a proper closed convex function. We do not assume ψ to
be smooth. In particular, ψ can be the indicator function of
a nonempty closed convex set, turning problem (1) into a
constrained minimization of function f . We are interested
in the regime where n � d, although all our theoretical
results hold without this assumption.

In a typical setup in the literature, λi = 1/n for all
i ∈ [n] := {1, 2, . . . , n}, fi(x) corresponds to the loss
of a supervised machine learning model x on example i
from a training dataset of size n, and f represents the aver-
age loss (i.e., empirical risk). Problems of the form (1) are
often called “finite-sum” or regularized empirical risk mini-
mization (ERM) problems, and are of immense importance
in supervised learning, essentially forming the dominant
training paradigm (Shalev-Shwartz & Ben-David, 2014).

1.1. Variance-reduced methods

One of the most successful methods for solving ERM
problems is stochastic gradient descent (SGD) (Robbins
& Monro, 1951; Nemirovski et al., 2009) and its many vari-
ants, including those with minibatches (Takáč et al., 2013),
importance sampling (Needell et al., 2015; Zhao & Zhang,
2015) and momentum (Loizou & Richtárik, 2017a;b).

One of the most interesting developments in recent years
concerns variance-reduced variants of SGD. The first
method in this category is the celebrated1 stochastic average
gradient (SAG) method of Schmidt et al. (2017). Many ad-
ditional variance-reduced methods were proposed since, in-
cluding SDCA (Richtárik & Takáč, 2014; Shalev-Shwartz &
Zhang, 2013; Shalev-Shwartz, 2016), SAGA (Defazio et al.,
2014), SVRG (Johnson & Zhang, 2013; Xiao & Zhang,
2014b), S2GD (Konečný & Richtárik, 2017; Konečný et al.,
2016), MISO (Mairal, 2015), JacSketch (Gower et al., 2018)
and SAGD (Bibi et al., 2018).

1.2. SAGA: the known and the unknown

Since the SAG gradient estimator is not unbiased, SAG is
notoriously hard to analyze. Soon after SAG was proposed,
the SAGA method (Defazio et al., 2014) was developed,
obtained by replacing the biased SAG estimator by a simi-

1Schmidt et al. (2017) received the 2018 Lagrange Prize in
continuous optimization for their work on SAG.
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lar, but unbiased, SAGA estimator. This method admits a
simpler analysis, retaining the favourable convergence prop-
erties of SAG. SAGA is one of the early and most successful
variance-reduced methods for (1).

Better understanding of the behaviour of SAGA remains
one of the open challenges in the literature. Consider prob-
lem (1) with λi = 1/n for all i. Assume, for simplic-
ity, that each fi is Li-smooth and f is µ-strongly con-
vex. In this regime, the iteration complexity of SAGA
with uniform sampling probabilities isO((n+ Lmax

µ ) log 1
ε ),

where Lmax := maxi Li, which was established already
by Defazio et al. (2014). Schmidt et al. (2015) conjec-
tured that there exist nonuniform sampling probabilities
for which the complexity improves to O((n + L̄

µ ) log 1
ε ),

where L̄ :=
∑
i Li/n. However, the “correct” importance

sampling strategy leading to this result was not discovered
until recently in the work of Gower et al. (2018), where the
conjecture was resolved in the affirmative. One of the key
difficulties in the analysis was the construction of a suitable
stochastic Lyapunov function controlling the iterative pro-
cess. Likewise, until recently, very little was known about
the minibatch performance of SAGA, even for the simplest
uniform minibatch strategies. Notable advancements in this
area were made by Gower et al. (2018), who have the cur-
rently best rates for SAGA with standard uniform minibatch
strategies and the first importance sampling results for a
block variant of SAGA.

1.3. Contributions

SAGA with arbitrary sampling. We study the perfor-
mance of SAGA under fully general data sampling strategies
known in the literature as arbitrary sampling, generalizing
all previous results, and obtaining an array of new theoreti-
cally and practically useful samplings. We call our general
method SAGA-AS. Our theorems are expressed in terms of
new Lyapunov functions, the constructions of which was
essential to our success.

In the arbitrary sampling paradigm, first proposed by
Richtárik & Takáč (2016) in the context of randomized coor-
dinate descent methods, one considers all (proper) random
set valued mappings S (called “samplings”) with values
being subsets of [n]. A sampling is uniquely determined by
assigning a probability to all 2n subsets of [n]. A sampling
is called proper2 if probability of each i ∈ [n] being sampled
is positive; that is, if pi := P(i ∈ S) > 0 for all i. The term
“arbitrary sampling” refers to an arbitrary proper sampling.

Smooth case. We perform an iteration complexity analysis
in the smooth case (ψ ≡ 0), assuming f is µ-strongly con-

2It does not make sense to consider samplings S that are not
proper. Indeed, if pi = 0 for some i, a method based on S will
lose access to fi and, consequently, ability to solve (1).

vex. Our analysis generalizes the results of Defazio et al.
(2014) and Gower et al. (2018) to arbitrary sampling. The
JacSketch method Gower et al. (2018) and its analysis rely
on the notion of a bias-correcting random variable. Unfortu-
nately, such a random variable does not exist for SAGA-AS.
We overcome this obstacle by proposing a bias-correcting
random vector (BCRV) which, as we show, always exists.
While Gower et al. (2018); Bibi et al. (2018) consider partic-
ular suboptimal choices, we are able to find the BCRV which
minimizes the iteration complexity bound. Unlike all known
and new variants of SAGA considered in (Gower et al.,
2018), SAGA-AS does not arise as a special case of JacS-
ketch. Our linear rates for SAGA-AS are the same as those
for the primal-dual stochastic fixed point method Quartz (Qu
et al., 2015) (the first arbitrary sampling based method for
(1)) in the regime when Quartz is applicable, which is the
case when an explicit strongly convex regularizer is present.
In contrast, we do not need an explicit regularizer, which
means that SAGA-AS can utilize the strong convexity of f
fully, even if the strong convexity parameter µ is not known.
While the importance sampling results in (Gower et al.,
2018) require each fi to be strongly convex, we impose this
requirement on f only.

Nonsmooth case. We perform an iteration complexity anal-
ysis in the general nonsmooth case. When the regularizer ψ
is strongly convex, which is the same setting as that consid-
ered in (Qu et al., 2015), our iteration complexity bounds
are essentially the same as that of Quartz. However, we also
prove linear convergence results, with the same rates, under
a quadratic functional growth condition (which does not
imply strong convexity) (Necoara et al., 2018). These are
the first linear convergence result for any variant of SAGA
without strong convexity. Moreover, to the best of our knowl-
edge, SAGA-AS is the only variance-reduced method which
achieves linear convergence without any a priori knowledge
of the error bound condition number.

Our arbitrary sampling rates are summarized in Table 1.

1.4. Brief review of arbitrary sampling results

The arbitrary sampling paradigm was proposed by Richtárik
& Takáč (2016), where a randomized coordinate descent
method with arbitrary sampling of subsets of coordinates
was analyzed for unconstrained minimization of a strongly
convex function. Subsequently, the primal-dual method
Quartz with arbitrary sampling of dual variables was stud-
ied in Qu et al. (2015) for solving (1) in the case when ψ is
strongly convex (and λi = 1

n for all i). An accelerated ran-
domized coordinate descent method with arbitrary sampling
called ALPHA was proposed by Qu & Richtárik (2016a)
in the context of minimizing the sum of a smooth convex
function and a convex block-separable regularizer. A key
concept in the analysis of all known methods in the arbi-



SAGA with Arbitrary Sampling

Regime Arbitrary sampling Thm
Smooth
ψ ≡ 0

fi is Li-smooth, f is µ-strongly convex
max

{
max
1≤i≤n

{
1
pi

+ 4(1+B)LiAiλi
µ

}
, 2B(1+1/B)L

µ

}
log
(
1
ε

)
3.3

Nonsmooth
P satisfies µ-growth condition (19) and Assumption 4.3
fi(x) = φi(A

>
i x), φi is 1/γ-smooth, f is L-smooth

(
2 + max

{
6L
µ
, 3 max

1≤i≤n

{
1
pi

+ 4viλi
piµγ

}})
log
(
1
ε

)
4.4

Nonsmooth
ψ is µ-strongly convex

fi(x) = φi(A
>
i x), φi is 1/γ-smooth

max
1≤i≤n

{
1 + 1

pi
+ 3viλi

piµγ

}
log
(
1
ε

)
4.5

Table 1. Iteration complexity results for SAGA-AS. We have pi := P(i ∈ S), where S is a sampling of subsets of [n] utilized by
SAGA-AS. The key complexity parameters Ai, B, and vi are defined in the sections containing the theorems.

trary sampling paradigm is the notion of expected separable
overapproximation (ESO), introduced by Richtárik & Takáč
(2016), and in the context of arbitrary sampling studied in
depth by Qu & Richtárik (2016b). A stochastic primal-dual
hybrid gradient algorithm (aka Chambolle-Pock) with arbi-
trary sampling of dual variables was studied by Chambolle
et al. (2017). Recently, an accelerated coordinate descent
method with arbitrary sampling for minimizing a smooth
and strongly convex function was studied by Hanzely &
Richtárik (2018). Finally, the first arbitrary sampling anal-
ysis in a nonconvex setting was performed by Horváth &
Richtárik (2018), which is also the first work in which the
optimal sampling out of class of all samplings of a given
minibatch size was identified.

2. The Algorithm
Let F : Rd → Rn and G : Rd → Rd×n be
defined by F (x) := (f1(x), · · · , fn(x))> ∈ Rn and
G(x) := [∇f1(x), · · · ,∇fn(x)] ∈ Rd×n. We refer to
G(x) as the Jacobian of F at x.

2.1. JacSketch

Gower et al. (2018) propose a new family of variance re-
duced SGD methods—called JacSketch—which progres-
sively build a variance-reduced estimator of the gradient
via the utilization of a new technique they call Jacobian
sketching. As shown in (Gower et al., 2018), state-of-the-
art variants SAGA can be obtained as a special case of
JacSketch. However, SAGA-AS does not arise as a special
case of JacSketch. In fact, the generic analysis provided
in (Gower et al., 2018) (Thm 3.6) is too coarse and does
not lead to good bounds for any variants of SAGA with
importance sampling. On the other hand, the analysis of
Gower et al. (2018) which does do well for importance sam-
pling does not generalize to arbitrary sampling, regularized
objectives or regimes without strong convexity.

In this section we provide a brief review of the JacSketch
method, establishing some useful notation along the way,

with the goal of pointing out the moment of departure from
JacSketch construction which leads to SAGA-AS. The itera-
tions of JacSketch have the form

xk+1 = xk − αgk, (2)

where α > 0 is a fixed step size, and gk is an variance-
reduced unbiased estimator of the gradient ∇f(xk) built
iteratively through a process involving Jacobian sketching,
sketch-and-project and bias-correction.

Starting from an arbitrary matrix J0 ∈ Rd×n, at each k ≥ 0
of JacSketch an estimator Jk ∈ Rd×n of the true Jacobian
G(xk) is constructed using a sketch-and-project iteration:

Jk+1 = arg min
J∈Rd×n

‖J− Jk‖

subject to JSk = G(xk)Sk.
(3)

Above, ‖X‖ :=
√

Tr(XX>) is the Frobenius norm3, and
Sk ∈ Rn×τ is a random matrix drawn from some ensamble
of matrices D in an i.i.d. fashion in each iteration. The
solution to (3) is the closest matrix to Jk consistent with
true Jacobian in its action onto Sk. Intuitively, the higher
τ is, the more accurate Jk+1 will be as an estimator of the
true Jacobian G(xk). However, in order to control the cost
of computing Jk+1, in practical applications one chooses
τ � n. In the case of standard SAGA, for instance, Sk is a
random standard unit basis vector in Rn chosen uniformly
at random (and hence τ = 1).

The projection subproblem (3) has the explicit solution (see
Lemma B.1 in (Gower et al., 2018)):

Jk+1 = Jk + (G(xk)− Jk)ΠSk ,

where ΠS := S(S>S)†S> is an orthogonal projection ma-
trix (onto the column space of S), and † denotes the Moore-
Penrose pseudoinverse. Since Jk+1 is constructed to be an
approximation of G(xk), and since ∇f(xk) = G(xk)λ,
where λ := (λ1, . . . , λn)>, it makes sense to estimate the

3Gower et al. (2018) consider a weighted Frobenius norm, but
this is not useful for our purposes.
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gradient via ∇f(xk) ≈ Jk+1λ. However, this gradient esti-
mator is not unbiased, which poses dramatic challenges for
complexity analysis. Indeed, the celebrated SAG method,
with its infamously technical analysis, uses precisely this
estimator in the special case when Sk is chosen to be a
standard basis vector in Rn sampled uniformly at random.
Fortunately, as show in (Gower et al., 2018), an unbiased
estimator can be constructed by taking a random linear com-
bination of Jk+1λ and Jkλ:

gk = (1− θSk)Jkλ+ θSkJ
k+1λ

= Jkλ+ θSk(G(xk)− Jk)ΠSkλ, (4)

where θ = θS ∈ R is a bias-correcting random variable
(dependent on S), defined as any random variable for which
E[θSΠSλ] = λ. Under this condition, gk becomes an un-
biased estimator of ∇f(xk). The JacSketch method is ob-
tained by alternating optimization steps (2) (producing iter-
ates xk) with sketch-and-project steps (producing Jk).

2.2. Bias-correcting random vector

In order to construct SAGA-AS, we take a depar-
ture here and consider a bias-correcting random vector
(θ1

S, · · · , θnS)> ∈ Rn instead. From now on it will be useful
to think of θS as an n × n diagonal matrix, with the vec-
tor (θ1

S, · · · , θnS) embedded in its diagonal. In contrast to
(4), we propose to construct gk via gk = Jkλ+ (G(xk)−
Jk)θSkΠSkλ. It is easy to see that under the following as-
sumption, gk will be an unbiased estimator of∇f(xk).

Assumption 2.1 (Bias-correcting random vector). We
say that the diagonal random matrix θS ∈ Rn×n is a
bias-correcting random vector if

E[θSΠSλ] = λ. (5)

2.3. Choosing distribution D

In order to complete the description of SAGA-AS, we need
to specify the distribution D. We choose D to be a distribu-
tion over random column submatrices of the n× n identity
matrix I. Such a distribution is uniquely characterized by a
random subset of the columns of I ∈ Rn×n, i.e., a random
subset of [n]. This leads us to the notion of a sampling,
already outlined in the introduction.

Definition 2.2 (Sampling). A sampling S is a random
set-valued mapping with values being the subsets of [n].
It is uniquely characterized by the choice of probabilities
pC := P[S = C] associated with every subset C of [n].
Given a sampling S, we let pi := P[i ∈ S] =

∑
C:i∈C pC .

We say that a sampling S is i) proper if pi > 0 for all
i, ii) serial if |S| = 1 with probability 1, iii) τ -nice if it
selects from all subsets of [n] of cardinality τ uniformly

at random, and iv) independenta if it is formed as follows:
for each i ∈ [n] we flip a biased coin, independently, with
probability of success pi > 0; if we are successful, we
include i in S.

aIndependent samplings were also considered for nonconvex
ERM problems in (Horváth & Richtárik, 2018) and for acceler-
ated coordinate descent in (Hanzely & Richtárik, 2018).

Given a proper sampling S, we sample matrices S ∼ D
as follows: i) Draw a random set S, ii) Define S = I:S ∈
Rn×|S| (random column submatrix of I corresponding to
columns i ∈ S). For h = (h1, · · · , hn)> ∈ Rn and sam-
pling S define vector hS ∈ Rn as follows:

(hS)i := hi1(i∈S), where 1(i∈S) :=

{
1, if i ∈ S
0, otherwise.

It is easy to observe (see Lemma 4.7 in (Gower et al., 2018))
that for S = I:S we have the identity

ΠS = ΠI:S = IS := Diag(eS). (6)

To simplify notation, we will write θS instead of θS = θI:S .

Lemma 2.3. Let S be a proper sampling and define D by
setting S = I:S . Then condition (5) is equivalent to

E[θiS1(i∈S)] ≡
∑
C⊆[n]:i∈C pCθ

i
C = 1, ∀i ∈ [n]. (7)

This condition is satisfied by the default vector θiS ≡ 1
pi

.

In general, there is an infinity of bias-correcting random
vectors characterized by (7). In SAGA-AS we reserve the
freedom to choose any of these vectors.

2.4. SAGA-AS

By putting all of the development above together, we have
arrived at SAGA-AS (Algorithm 1). Note that since we
consider problem (1) with a regularizer ψ, the optimization
step involves a proximal operator, defined as

proxψα(x) := arg min
{

1
2α‖x− y‖

2 + ψ(y)
}
, α > 0.

To shed more light onto the key steps of SAGA-AS, note
that an alternative way of writing the Jacobian update is
Jk+1

:i = ∇fi(xk) for i ∈ Sk and Jk+1
:i = Jk:i for i /∈ Sk.

The gradient estimate can be alternatively written as

gk =
∑n
i=1 λiJ

k
:i +

∑
i∈Sk λiθ

i
Sk

[
∇fi(xk)− Jk:i

]
=
∑
i/∈Sk λiJ

k
:i +

∑
i∈Sk λi

[
θiSk∇fi(x

k) + (1− θiSk)Jk:i
]
.

3. Analysis in the Smooth Case
In this section we consider problem (1) in the smooth case;
i.e., we let ψ ≡ 0. We make the following assumption on S.



SAGA with Arbitrary Sampling

Algorithm 1 SAGA with Arbitrary Sampling (SAGA-AS)
Parameters: Arbitrary proper sampling S; bias-
correcting random vector θS ; stepsize α > 0
Initialization: Choose x0 ∈ Rd, J0 ∈ Rd×n
for k = 0, 1, 2, ... do

Sample a fresh set Sk ∼ S ⊆ [n]
Jk+1 = Jk + (G(xk)− Jk)ISk
gk = Jkλ+ (G(xk)− Jk)θSkISkλ
xk+1 = proxψα

(
xk − αgk

)
end for

Assumption 3.1. There exists constants Ai ≥ 0 for 1 ≤
i ≤ n and 0 ≤ B ≤ 1 such that for any matrix M ∈ Rd×n,

E[‖MθSΠISλ‖2] ≤
∑
i

Aiλ2
i ‖M:i‖2 +B‖Mλ‖2. (8)

3.1. Main result

Given an arbitrary proper sampling S, and bias-correcting
random vector θS , for each i ∈ [n] define

βi :=
∑
C⊆[n]:i∈C pC |C|(θiC)2, i ∈ [n], (9)

where |C| is the cardinality of the set C. As we shall see,
these quantities play a key importance in our complexity
result, presented next.

Lemma 3.2. (i) For an arbitrary proper sampling S, the
Assumption 3.1 is satisfied by Ai = βi and B = 0. (ii)
For τ -nice sampling S with θiS = 1

pi
, Assumption 3.1 is

satisfied by Ai = n
τ ·

n−τ
n−1 and B = n(τ−1)

τ(n−1) . (iii) For
independent sampling S with θiS = 1

pi
, Assumption 3.1

is satisfied by Ai = ( 1
pi
− 1) and B = 1.

Theorem 3.3. Let S be an arbitrary proper sampling, and
let θS be a bias-correcting random vector satisfying (7).
Let f be µ-strongly convex and L-smooth, fi be convex
and Li-smooth. Let {xk,Jk} be the iterates produced by
Algorithm 1. Consider the stochastic Lyapunov function

Ψk := ‖xk−x∗‖2 +2α
∑n
i=1 σiAiλ2

i ‖Jk:i−∇fi(x∗)‖2,

where σi = 1
4(1+B)LiAipiλi for all i. If stepsize α satisfies

α ≤ min

{
min

1≤i≤n
pi

µ+4(1+B)LiAiλipi ,
B−1

2(1+1/B)L

}
(10)

then E[Ψk] ≤ (1 − µα)kE[Ψ0]. This implies
that if we choose α equal to the upper bound in
(10), then E[Ψk] ≤ ε · E[Ψ0] as long as k ≥
max

{
maxi

{
1
pi

+ 4(1+B)LiAiλi
µ

}
, 2B(1+1/B)L

µ

}
log
(

1
ε

)
.

If µ is unknown and we choose

α ≤ min

{
min

1≤i≤n
pi

8(1+B)LiAiλipi ,
B−1

2(1+1/B)L

}
, (11)

then E[Ψk] ≤ (1 − min{µα, pi2 })
kE[Ψ0]. This implies

that if we choose α equal to the upper bound in (11),
then we can get E[Ψk] ≤ ε · E[Ψ0] as long as k ≥
max

{
maxi

{
2
pi
, 8(1+B)LiAiλi

µ

}
, 2B(1+1/B)L

µ

}
log
(

1
ε

)
.

Our result involves a novel stochastic Lyapunov function
Ψk, different from that in (Gower et al., 2018).

3.2. Optimal bias-correcting random vector

Note that for an arbitrary proper sampling the complexity
bound gets better as βi get smaller. Having said that, even
for a fixed sampling S, the choice of βi is not unique, Indeed,
this is because βi depends on the choice of θS . In view of
Lemma 2.3, we have many choices for this random vector.
Let Θ(S) be the collection of all bias-correcting random
vectors associated with sampling S. In our next result we
will compute the bias-correcting random vector θS which
leads to the minimal complexity parameters βi. In the rest
of the paper, let Ei[·] := E[· | i ∈ S].

Lemma 3.4. Let S be a proper sampling. Then
(i) minθ∈Θ(S) βi = 1∑

C:i∈C pC/|C|
= 1

piEi[1/|S|] for all i,

and the minimum is obtained at θ ∈ Θ(S) given by θiC =
1

|C|
∑
C:i∈C pC/|C|

= 1
pi|C|Ei[1/|S|] for all C : i ∈ C;

(ii) 1
Ei[1/|S|] ≤ Ei[|S|], for all i.

3.3. Importance Sampling for Minibatches

In this part we construct an importance sampling for mini-
batches. This is in general a daunting task, and only a
handful of papers exist on this topic. In particular, Csiba &
Richtárik (2018) and Hanzely & Richtárik (2019) focused
on coordinate descent methods, and Gower et al. (2018) con-
sidered minibatch SAGA with importance sampling over
subsets of [n] forming a partition.

Let τ := E[|S|] be the expected minibatch size, and L̄ :=∑
i∈[n] Liλi. We consider the independent sampling with

θiS = 1
pi

. From Lemma 3.2 and Thm 3.3, the iteration
complexity becomes

max

{
max

1≤i≤n

{
1
pi

+ 8LiAiλi
µ

}
, 4L
µ

}
log
(

1
ε

)
,

where Ai = 1
pi
− 1. Hence

1
pi

+ 8LiAiλi
µ = µ+8Liλi(1−pi)

µpi
. (12)

Let qi = (µ+8Liλi)τ∑
i∈[n](µ+8Liλi)

, and T = {i | qi > 1}. Next, we
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discuss two cases:

Case 1. Suppose T = ∅. In this case, we choose pi = qi.
From (12), we have

1
pi

+ 8LiAiλi
µ ≤ µ+8Liλi

µpi
=

∑
i∈[n](µ+8Liλi)

µτ = n
τ + 8L̄

µτ .

Theorefore, the iteration complexity has the following upper
bound: max

{
n
τ + 8L̄

µτ ,
4L
µ

}
log
(

1
ε

)
.

Case 2. Suppose T 6= ∅. In this case, we choose pi = 1 for
i ∈ T and qi ≤ pi ≤ 1 for i /∈ T such that

∑
i∈[n] pi = τ .

Notice that pi = 1 means Ai = 0 . Hence, for i ∈ T ,
from (12), we have 1

pi
+ 8LiAiλi

µ = µ+8Liλi(1−pi)
µpi

= 1.

For i /∈ T , from (12), we have

1
pi

+ 8LiAiλi
µ ≤ µ+8Liλi

µpi
≤

∑
i∈[n](µ+8Liλi)

µτ = n
τ + 8L̄

µτ .

Theorefore, the iteration complexity also has the following
upper bound: max

{
n
τ + 8L̄

µτ ,
4L
µ

}
log
(

1
ε

)
. To summarize

the above two cases, by choosing min{qi, 1} ≤ pi ≤ 1
such that

∑
i∈[n] pi = τ , the iteration complexity admits

the following upper bound:

max
{
n
τ + 8L̄

µτ ,
4L
µ

}
log
(

1
ε

)
. (13)

It should be noticed that in practice, we can just choose
pi = min{qi, 1} for convenience, and then (13) also holds,
but with E[|S|] =

∑
i∈[n] pi ≤ τ .

Linear speedup. When τ ≤ nµ+8L̄
4L , (13) becomes(

n
τ + 8L̄

µτ

)
log
(

1
ε

)
, which yields linear speedup with re-

spect to τ . When τ ≥ nµ+8L̄
4L , (13) becomes 4L

µ log
(

1
ε

)
.

3.4. SAGA-AS vs Quartz

In this section, we compare our results for SAGA-AS with
known complexity results for the primal-dual method Quartz
of Qu et al. (2015). We do this because this was the first
and (with the exception of the dfSDCA method of Csiba
& Richtárik (2015)) remains the only SGD-type method
for solving (1) which was analyzed in the arbitrary sam-
pling paradigm. Prior to this work we have conjectured that
SAGA-AS would attain the same complexity as Quartz. As
we shall show, this is indeed the case.

The problem studied in (Qu et al., 2015) is

minx∈Rd
1
n

∑n
i=1 φi(A

>
i x) + ψ(x), (14)

where Ai ∈ Rd×m, φi : Rm → R is 1/γ-smooth and
convex, ψ : Rd → R is a µ-strongly convex function. When
ψ is also smooth, problem (14) can be written in the form
of problem (1) with λi = 1/n, and

fi(x) = φi(A
>
i x) + ψ(x), (15)

Quartz guarantees the duality gap to be less than ε in expec-
tation using at most

O
{

maxi

(
1
pi

+ vi
piµγn

)
log
(

1
ε

)}
(16)

iterations, where the parameters v1, ..., vn are assumed to
satisfy the following expected separable overapproximation
(ESO) inequality, which needs to hold for all hi ∈ Rm:

ES
[∥∥∑

i∈S Aihi
∥∥2
]
≤
∑n
i=1 pivi‖hi‖2. (17)

If in addition ψ is Lψ-smooth, then fi in (15) is smooth

with Li ≤ λmax(A>i Ai)
γ + Lψ. We now consider several

particular samplings:

Serial samplings. By Lemma 5 in (Qu et al., 2015), vi =
λmax(A>i Ai). Hence, the bound (16) becomes

O
{

maxi

(
1
pi

+
λmax(A>i Ai)

piµγn

)
log
(

1
ε

)}
.

By choosing θiS = 1/pi (this is both the default choice
mentioned in Lemma 2.3 and the optimal choice in view
of Lemma 3.4), Ai = βi = 1/pi, B = 0, and our iteration
complexity bound in Thm 3.3 becomes

max
{

maxi

{
1
pi

+
4Lψ
nµpi

+
4λmax(A>i Ai)

piµγn

}
, 2L
µ

}
log
(

1
ε

)
.

We can see that as long as Lψ/µ = O(n), the two bounds
are essentially the same.

Parallel (τ -nice) sampling. By Lemma 6 in (Qu et al.,
2015), vi = λmax

(∑d
j=1

(
1 +

(ωj−1)(τ−1)
n−1

)
A>jiAji

)
,

where Aji is the j-th row of Ai, and for each 1 ≤ j ≤ d,
ωj is the number of nonzero blocks in the j-th row of A,
i.e., ωj := |{i ∈ [n] : Aji 6= 0}|. In the dense case (i.e.,
ωj = n), vi = τλmax(A>i Ai). Hence, (16) becomes

O
{

max
i

(
n
τ +

λmax(A>i Ai)
µγ

)
log
(

1
ε

)}
.

By choosing θiS = 1/pi = n/τ , from Lemma 3.2 and
Thm 3.3, the iteration complexity becomes

max
{
n
τ + n−τ

n−1
4(1+B) maxi nLiλi

µτ , 2(1+B)L
µ

}
log
(

1
ε

)
,

where B = n(τ−1)
τ(n−1) ≈ 1 and Li ≤ λmax(A>i Ai)

γ + Lψ. We
can see the bounds would be better than Quartz. However,
if ωj � n, then Quartz may enjoy a tighter bound.

The parameters v1, · · · , vn used in (Qu et al., 2015) al-
low one to exploit the sparsity of the data matrix A =
(A1, · · · ,An) and achieve almost linear speedup when A
is sparse or has favourable spectral properties. In the next
section, we study further SAGA-AS in the case when the
objective function is of the form (14), and obtain results
which, like Quartz, are able to improve with data sparsity.
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4. Analysis in the Composite Case
We now consider the general problem (1) with ψ 6= 0. In or-
der to be able to take advantage of data sparsity, we assume
that functions fi take the form

fi(x) ≡ φi(A>i x). (18)

Then clearly ∇fi(x) = Ai∇φi(A>i x). Thus if SAGA-
AS starts with J0 =

(
A1α

0
1 A2α

0
2 · · · Anα

0
n

)
,

for some α0
i ∈ Rm, i ∈ [n], then we always have

Jk =
(
A1α

k
1 A2α

k
2 · · · Anα

k
n

)
, for some αki ∈

Rm, i ∈ [n]. We assume that the set of minimizers
X ∗ := arg min{P (x) : x ∈ Rd}, is nonempty, and
let P ∗ = P (x∗) for x∗ ∈ X ∗. Further, denote [x]∗ =
arg min{‖x − y‖ : y ∈ X ∗}; the closest optimal solution
from x. Further, for any M > 0 define X (M) to be the
set of points with objective value bounded by P ∗ +M , i.e.,
X (M) := {x ∈ dom(ψ) : P (x) ≤ P ∗ + M)}. We make
several further assumptions:

Assumption 4.1 (Smoothness). Each φi : Rm → R is
1/γ-smooth and convex, i.e., 0 ≤ 〈∇φi(a)−∇φi(b), a−
b〉 ≤ ‖a− b‖2/γ, ∀a, b ∈ Rm.

Assumption 4.2 (Quadratic functional growth condition;
see (Necoara et al., 2018)). For any M > 0, there is
µ > 0 such that for any x ∈ X (M)

P (x)− P ∗ ≥ µ
2 ‖x− [x]∗‖2. (19)

Assumption 4.3 (Nullspace consistency). For any
x∗, y∗ ∈ X ∗ we have A>i x

∗ = A>i y
∗, ∀i ∈ [n].

We shall need a slightly stronger condition than Assump-
tion 4.2: there is a constant µ > 0 such that

P (xk)− P ∗ ≥ µ
2 ‖x

k − [xk]∗‖2, w.p.1, ∀k ≥ 1, (20)

for the sequence {xk} produced by Algorithm 1. For (20)
to be true, we only need (19) to hold for any x ∈ dom(ψ).
This can be done by adding sufficiently large box constraint
to problem (1) to make dom(ψ) compact without changing
the optimal solution set.

4.1. Linear convergence under quadratic functional
growth condition

Our first complexity result states a linear convergence rate
of SAGA-AS under the quadratic functional growth condi-
tion. Note that the Lyapunov function is not stochastic (i.e.,
E[Ψk] | xk, αki ] is not random).

Theorem 4.4. Assume f is L-smooth. Let v ∈ Rn+ be
a positive vector satisfying (17) for a proper sampling
S. Let {xk,Jk} be the iterates produced by Algorithm
1 with θiS = 1/pi for all i and S. Let any x∗ ∈ X ∗.

Consider the Lyapunov function Ψk := ‖xk − [xk]∗‖2 +
α
∑n
i=1 σip

−1
i viλ

2
i ‖αki − ∇φi(A>i x∗)‖2, where σi =

γ
2viλi

for all i. Then there is a constant µ > 0 such
that the following is true. If stepsize α satisfies

α ≤ min

{
2
3 min

1≤i≤n
pi

µ+4viλi/γ
, 1

3L

}
, (21)

then E[Ψk] ≤
(

1+αµ/2
1+αµ

)k
E[Ψ0]. This implies that if we

choose α equal to the upper bound in (21), then E[Ψk] ≤
ε · E[Ψ0] when

k ≥
(

2 + max
{

6L
µ , 3 max

i

(
1
pi

+ 4viλi
piµγ

)})
log
(

1
ε

)
.

If µ is unknow and we choose

α ≤ min

{
min

1≤i≤n
pi

12viλi/γ
, 1

3L

}
, (22)

then E[Ψk] ≤ (1 −min{ αµ
2(1+αµ) ,

pi
2 })

kE[Ψ0]. This im-
plies that if we choose α equal to the upper bound in (22),
then E[Ψk] ≤ ε · E[Ψ0] when

k ≥
(

2 + max
{

6L
µ ,max

i

{
24viλi
µpiγ

, 2
pi

}})
log
(

1
ε

)
.

Non-strongly convex problems in the form of (1) and (18)
which satisfy Assumptions 4.1, 4.2 and 4.3 include the
case when each φi is strongly convex and ψ is polyhe-
dral (Necoara et al., 2018). In particular, Thm 4.4 applies to
the following logistic regression problem that we use in the
experiments (λ1 ≥ 0 and λ2 ≥ 0)

min
x∈Rd

n∑
i=1

log(1 + ebiA
>
i x) + λ1‖x‖1 + λ2

2 ‖x‖
2. (23)

4.2. Linear convergence for strongly convex regularizer

For the problem studied in (Qu et al., 2015) where the regu-
larizer ψ is µ-strongly convex (and hence Assumption (4.2)
holds and the minimizer is unique), we obtain the following
refinement of Thm 4.4.
Theorem 4.5. Let ψ be µ-strongly convex. Let v ∈ Rn+
be a positive vector satisfying (17) for a proper sampling
S. Let {xk,Jk} be the iterates produced by Algorithm
1 with θiS = 1/pi for all i and S. Consider the same
Lyapunov function as in Thm 4.4, but set σi = 2γ

3viλi
for

all i. If stepsize α satisfies

α ≤ min1≤i≤n
pi

µ+3viλi/γ
, (24)

then E[Ψk] ≤ (1 + αµ)
−k E[Ψ0]. So, if we choose

α equal to the upper bound in (24), then E[Ψk] ≤
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ε · E[Ψ0] when k ≥ maxi

{
1 + 1

pi
+ 3viλi

piµγ

}
log
(

1
ε

)
.

If µ is unknown and we choose σi = γ
(1+αµ)viλi

for all i and α ≤ min1≤i≤n
piγ

4viλi
, then E[Ψk] ≤(

1−min{ αµ
1+αµ ,

pi
2 }
)k

E[Ψ0]. So, if we choose α equal

to the upper bound, then E[Ψk] ≤ ε · E[Ψ0] when
k ≥ maxi

{
1 + 4viλi

piµγ
, 2
pi

}
log
(

1
ε

)
.

Note that up to some small constants, the rate provided by
Thm 4.5 is the same as that of Quartz. Hence, the analysis
for special samplings provided in Section 3.4 applies, and
we conclude that SAGA-AS is also able to accelerate on
sparse data.

5. Experiments
We tested SAGA-AS to solve the logistic regression prob-
lem (23) on 3 different datasets: w8a, a9a and ijcnn14. The
experiments presented in Section 5.1 and 5.2 are tested for
λ1 = 0 and λ2 = 1e− 5, which is of the same order as the
number of samples in the three datasets. In Section 5.3 we
test on the unregularized problem with λ1 = λ2 = 0. In
all the plots, the x-axis records the number of pass of the
dataset. More experiments can be found in the Suppl.

5.1. Batch sampling

Here we compare SAGA-AS with SDCA for τ -nice sam-
pling S with τ ∈ {1, 10, 50}. Note that SDCA with τ -nice
sampling works the same both in theory and in practice as
Quartz with τ -nice sampling. We report in Figure 1 the
results obtained for the dataset ijcnn1. When we increase τ
by 50, the number of epochs of SAGA-AS only increased by
less than 6. This indicates a considerable speedup if parallel
computation is used in the implementation.
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Figure 1. mini-batch SAGA V.S. mini-batch SDCA

4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

5.2. Importance sampling

We compare uniform sampling SAGA (SAGA-UNI) with
importance sampling SAGA (SAGA-IP), as described in
Section 3.3 , on three values of τ ∈ {1, 10, 50}. The results
for the datasets w8a and ijcnn1 are shown in Figure 2. For
the dataset ijcnn1, mini-batch with importance sampling
almost achieves linear speedup as the number of epochs
does not increase with τ . For the dataset w8a, mini-batch
with importance sampling can even need less number of
epochs than serial uniform sampling. Note that we adopt
the importance sampling strategy described in (Hanzely &
Richtárik, 2019) and the actual running time is the same as
uniform sampling.
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Figure 2. importance sampling V.S. uniform sampling

5.3. Comparison with coordinate descent

We consider the un-regularized logistic regression prob-
lem (23) with λ1 = λ2 = 0. In this case, Thm 4.4 applies
and we expect to have linear convergence of SAGA with-
out any knowledge on the constant µ satsifying Assump-
tion (4.2). This makes SAGA comparable with descent
methods such as gradient method and coordinate descent
(CD) method. However, comparing with their deterministic
counterparts, the speedup provided by CD can be at most
of order d while the speedup by SAGA can be of order n.
Thus SAGA is much preferable than CD when n is larger
than d. We provide numerical evidence in Figure 3.
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Figure 3. SAGA V.S. CD
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Hanzely, F. and Richtárik, P. Accelerated coordinate descent
with arbitrary sampling and best rates for minibatches. In
The 22nd International Conference on Artificial Intelli-
gence and Statistics, 2019.
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