
AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss

Appendix: Proving Thm 1
In this appendix, we will prove Thm 1. We will start with a
few lemmas:
Lemma 1.1. Given assumptions 1 and 2 in Thm. 1, S1 is a

deterministic one-to-one mapping of U1; so is S2 to U2.

The proof is obvious and omitted.
Lemma 1.2. Given all the assumptions in Thm. 1. Then

exist a asymptotic global minimizer of Eq. (5) that statisfies:

1.

lim
T!1

1

T
I(C1;U1) = 0 (13)

where I(·; ·) denotes mutual information.

2.

plim
T!1

X̂1!1 = X1 (14)

3.

lim
T!1

E[(X̂1!1 �X1)
2] + �E[(Ec(X̂1!1)� C1)

2] = 0

(15)

Proof. Define the following set

X = {x1 : log pX1(x1|U1)  n� 1 = n
⇤ � 1 + T

2/3}
(16)

X characterizes the set of instances where the optimal code
length is guaranteed to be smaller than n.

Denote C1 = E
⇤
c (X1;T ) as the the following coding

scheme. When X1 2 X , C1 is the optimal lossless code
for pX1(·|u1) (whose code length is smaller than n by Shan-
non’s Coding Theorem) padded with 0 to length n. When
X1 /2 X , C1 is any random number of dimension n.

Denote an auxiliary random variable

A1 = [X1 2 X ] (17)

where [·] denotes the indicator function.

When A1 = 1, there is a one-to-one mapping from C1 to
X1, so we have

H(C1|U1, A1 = 1) = H(X1|U1, A1 = 1) (18)

On the other hand, define hm as the capacity of each dimen-
sion of C1, i.e.

hm = max
pC1i (·)

H(C1i) (19)

Then, the information C1 contains is limited by the number
of dimensions it has, i.e.

H(C1) 
X

i

H(C1i)  nhm

 n
⇤
hm + T

2/3
hm

 H(X1|U1) + 1 + T
2/3

hm

(20)

where the second line is from assumption 3 of Thm. 1. The
third line is from the Shannon’s coding theorem.

Notice that A1 is a function of X1, and thus we have

H(X1|U1) = H(X1, A1|U1)

= H(X1|U1, A1) +H(A1|U1)

 H(X1|U1, A1) +H(A1)

= H(X1|U1, A1 = 1)pA1(1)

+H(X1|U1, A1 = 0)pA1(0) +H(A1)

= H(C1|U1, A1 = 1)pA1(1)

+H(X1|U1, A1 = 0)pA1(0) +H(A1)

 H(C1|U1, A1 = 1)pA1(1)

+H(C1|U1, A1 = 0)pA1(0)

+H(X1|U1, A1 = 0)pA1(0) +H(A1)

= H(C1|U1, A1)

+H(X1|U1, A1 = 0)pA1(0) +H(A1)

 H(C1|U1)

+H(X1|U1, A1 = 0)pA1(0) +H(A1)
(21)

where the last but three line is given by Eq. (18).

Eqs. (20) and (21) imply that

I(C1;U1) = H(C1)�H(C1|U1)

 1 + T
2/3

hm

+H(X1|U1, A1 = 0)pA1(0) +H(A1)
(22)

For any t  T , X1(t) is a discrete random variable with
finite support cardinality, denoted as K. Then we have

H(X1|U1, A1 = 0) 
TX

t=1

H(X1(t)|U1, A1 = 0)

 T logK

(23)

On the other hand, notice that {X1(t)} is a stationary
Markov process of order ⌧ . We have

log pX1(·|U1) =
⌧X

t=1

log pX1(t)(·|U1, X1(1 : t� 1))

+
TX

t=⌧+1

log pX1(t)(·|U1, X1(t� ⌧ : t� 1))

(24)

From the central limit theorem for ergodic Markov process

lim
T!1

pA1(1) = 1, lim
T!1

pA1(0) = 0 (25)
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Combining Eqs. (22), (23) and (25), we have

1

T
I(C1;U1) 

1

T
(1 + T

2/3
hm + pA1(0)T logK +H(A1))

! 0, as T ! 1
(26)

Hence Eq. (13) is proved.

Next, for X1 2 X , notice that [C1, S1] is a lossless code of
[X1, U1], because

H(X1, U1) = H(U1) +H(X1|U1)

= H(U1) +H(C1|U1)

= H(S1) +H(C1|S1)

= H(C1, S1)

(27)

where the second line is from Eq (18); the third line is from
Lem. 1.1. Eq. (27) implies that [U1, X1] is fully recoverable
from [C1, S1]. Therefore, there exists an optimum decoder
D

⇤(·, ·) such that
X̂1!1 = X1 (28)

Combining Eqs. (25) and (28), Eq. (14) is proved.

Apply Ec(·) to both sides, we get

plim
T!1

Ec(X̂1!1) = Ec(X1) = C1 (29)

Hence, considering X1 has finite second moment, conver-
gence with probability implies mean squared convergence,
i.e.

lim
T!1

E[kX̂1!1�X1)
2k22]+�E[kEc(X̂1!1)�C1k1] = 0

(30)
which means that [E⇤

c (·), D⇤(·, ·)] is the asymptotic global
optimizer of Eq. (5).

Now we are ready to prove Thm 1.

Proof. (Thm. 1) Denote X
0
2 as speech drawn from the

ground truth distribution of the converted speech, i.e.

pX(·|U = U2, Z = Z1). Then our goal is to show that
X̂1!2 is assymptotically identically distributed to X

0
2.

What we will do is bridge the two random variables by
passing X

0
2 to AUTOVC for self-reconstruction. Namely,

C
0
2 = E

⇤
c (X

0
2), and X̂

0
2!2 = D

⇤(C 0
2, S2) (31)

where E
⇤(·) and D(·) are the optimal encoder and decoder

derived in Lem. 1.2.

From Lem. 1.2, we know that X̂ 0
2!2 ! X

0
2 with probability.

So all is left to do is to show that X̂ 0
2!2 is assymptotically

identically distributed to X̂1!2.

First, notice that

pC1(·|z1, u2) = pC1(·|z1)
= pEc(X1)(·|z1)
= pEc(X)(·|Z = z1)

(32)

where the first line is due to the fact that C1 and Z1 are
both independent of U2 (Recall U2 is not involved in the
generation process of C1); the last line is from the fact that
(U1, Z1, X1) is identically distributed to (U,Z,X).

Therefore, we can show that

lim
T!1

1

T
KL(pC0

2
(·|z1, u2)||pEc(X)(·|Z = z1))

= lim
T!1

1

T
KL(pC0

2
(·|z1, u2)||pC1(·|Z = z1))

=0

(33)

where the last line is given by Eq. (13) of Lem. 1.2.

On the other hand,

pX̂1!2
(·|z1, u2) = pD⇤(C1,S2)(·|z1, u2)

pX̂0
2!2

(·|z1, u2) = pD⇤(C0
2,S2)(·|z1, u2)

(34)

Combining Eqs. (33) and (34), we have

lim
T!1

1

T
KL(pX̂1!2

(·|z1, u2)||pX̂0
2!2

(·|z1, u2)) = 0

(35)

Here is a final note on Thm 1. The content loss can help
to constrain information capacity of the bottleneck by soft-
constraining the range of each dimension of the content
code, otherwise the information capacity of each bottleneck
dimension can be unbounded and Thm 1 does not apply.


