Appendix: Proving Thm 1

In this appendix, we will prove Thm 1. We will start with a few lemmas:

Lemma 1.1. Given assumptions 1 and 2 in Thm. 1, S_1 is a deterministic one-to-one mapping of U_1 ; so is S_2 to U_2 .

The proof is obvious and omitted.

Lemma 1.2. Given all the assumptions in Thm. 1. Then exist a asymptotic global minimizer of Eq. (5) that statisfies: 1.

$$\lim_{T \to \infty} \frac{1}{T} I(C_1; U_1) = 0 \tag{13}$$

where $I(\cdot; \cdot)$ denotes mutual information.

2.

$$\underset{T \to \infty}{\text{plim }} \hat{X}_{1 \to 1} = X_1 \tag{14}$$

3.

$$\lim_{T \to \infty} \mathbb{E}[(\hat{X}_{1 \to 1} - X_1)^2] + \lambda \mathbb{E}[(E_c(\hat{X}_{1 \to 1}) - C_1)^2] = 0$$
(15)

Proof. Define the following set

$$\mathcal{X} = \{x_1 : \log p_{X_1}(x_1|U_1) \le n - 1 = n^* - 1 + T^{2/3}\}$$
(16)

 \mathcal{X} characterizes the set of instances where the optimal code length is guaranteed to be smaller than n.

Denote $C_1 = E_c^*(X_1;T)$ as the the following coding scheme. When $X_1 \in \mathcal{X}$, C_1 is the optimal lossless code for $p_{X_1}(\cdot|u_1)$ (whose code length is smaller than n by Shannon's Coding Theorem) padded with 0 to length n. When $X_1 \notin \mathcal{X}$, C_1 is any random number of dimension n.

Denote an auxiliary random variable

$$A_1 = \mathbb{1}[X_1 \in \mathcal{X}] \tag{17}$$

where $\mathbb{1}[\cdot]$ denotes the indicator function.

When $A_1 = 1$, there is a one-to-one mapping from C_1 to X_1 , so we have

$$H(C_1|U_1, A_1 = 1) = H(X_1|U_1, A_1 = 1)$$
 (18)

On the other hand, define h_m as the capacity of each dimension of C_1 , *i.e.*

$$h_{\mathbf{m}} = \max_{p_{C_{1,i}}(\cdot)} H(C_{1i}) \tag{19}$$

Then, the information C_1 contains is limited by the number of dimensions it has, *i.e.*

$$H(C_1) \le \sum_{i} H(C_{1i}) \le nh_{\rm m}$$

$$\le n^*h_m + T^{2/3}h_m$$

$$\le H(X_1|U_1) + 1 + T^{2/3}h_m$$
(20)

where the second line is from assumption 3 of Thm. 1. The third line is from the Shannon's coding theorem.

Notice that A_1 is a function of X_1 , and thus we have

$$H(X_{1}|U_{1}) = H(X_{1}, A_{1}|U_{1})$$

$$= H(X_{1}|U_{1}, A_{1}) + H(A_{1}|U_{1})$$

$$\leq H(X_{1}|U_{1}, A_{1}) + H(A_{1})$$

$$= H(X_{1}|U_{1}, A_{1} = 1)p_{A_{1}}(1)$$

$$+ H(X_{1}|U_{1}, A_{1} = 0)p_{A_{1}}(0) + H(A_{1})$$

$$= H(C_{1}|U_{1}, A_{1} = 1)p_{A_{1}}(1)$$

$$+ H(X_{1}|U_{1}, A_{1} = 0)p_{A_{1}}(0) + H(A_{1})$$

$$\leq H(C_{1}|U_{1}, A_{1} = 0)p_{A_{1}}(0)$$

$$+ H(C_{1}|U_{1}, A_{1} = 0)p_{A_{1}}(0)$$

$$+ H(X_{1}|U_{1}, A_{1} = 0)p_{A_{1}}(0) + H(A_{1})$$

$$= H(C_{1}|U_{1}, A_{1})$$

$$+ H(X_{1}|U_{1}, A_{1} = 0)p_{A_{1}}(0) + H(A_{1})$$

$$\leq H(C_{1}|U_{1})$$

$$+ H(X_{1}|U_{1}, A_{1} = 0)p_{A_{1}}(0) + H(A_{1})$$

$$(21)$$

where the last but three line is given by Eq. (18).

Eqs. (20) and (21) imply that

$$I(C_1; U_1) = H(C_1) - H(C_1|U_1)$$

$$\leq 1 + T^{2/3}h_m + H(X_1|U_1, A_1 = 0)p_{A_1}(0) + H(A_1)$$
(22)

For any $t \leq T$, $X_1(t)$ is a discrete random variable with finite support cardinality, denoted as K. Then we have

$$H(X_1|U_1, A_1 = 0) \le \sum_{t=1}^{T} H(X_1(t)|U_1, A_1 = 0)$$

$$\le T \log K$$
(23)

On the other hand, notice that $\{X_1(t)\}$ is a stationary Markov process of order τ . We have

$$\log p_{X_1}(\cdot|U_1) = \sum_{t=1}^{\tau} \log p_{X_1(t)}(\cdot|U_1, X_1(1:t-1)) + \sum_{t=\tau+1}^{T} \log p_{X_1(t)}(\cdot|U_1, X_1(t-\tau:t-1))$$
(24)

From the central limit theorem for ergodic Markov process

$$\lim_{T \to \infty} p_{A_1}(1) = 1, \quad \lim_{T \to \infty} p_{A_1}(0) = 0 \tag{25}$$

Combining Eqs. (22), (23) and (25), we have

$$\frac{1}{T}I(C_1; U_1) \le \frac{1}{T}(1 + T^{2/3}h_m + p_{A_1}(0)T\log K + H(A_1))$$

$$\to 0, \text{ as } T \to \infty$$
(26)

Hence Eq. (13) is proved.

Next, for $X_1 \in \mathcal{X}$, notice that $[C_1, S_1]$ is a lossless code of $[X_1, U_1]$, because

$$H(X_{1}, U_{1}) = H(U_{1}) + H(X_{1}|U_{1})$$

$$= H(U_{1}) + H(C_{1}|U_{1})$$

$$= H(S_{1}) + H(C_{1}|S_{1})$$

$$= H(C_{1}, S_{1})$$
(27)

where the second line is from Eq (18); the third line is from Lem. 1.1. Eq. (27) implies that $[U_1, X_1]$ is fully recoverable from $[C_1, S_1]$. Therefore, there exists an optimum decoder $D^*(\cdot, \cdot)$ such that

$$\hat{X}_{1\to 1} = X_1 \tag{28}$$

Combining Eqs. (25) and (28), Eq. (14) is proved.

Apply $E_c(\cdot)$ to both sides, we get

$$\lim_{T \to \infty} E_c(\hat{X}_{1 \to 1}) = E_c(X_1) = C_1$$
(29)

Hence, considering X_1 has finite second moment, convergence with probability implies mean squared convergence, *i.e.*

$$\lim_{T \to \infty} \mathbb{E}[\|\hat{X}_{1 \to 1} - X_1)^2\|_2^2] + \lambda \mathbb{E}[\|E_c(\hat{X}_{1 \to 1}) - C_1\|_1] = 0$$
(30)

which means that $[E_c^*(\cdot), D^*(\cdot, \cdot)]$ is the asymptotic global optimizer of Eq. (5).

Now we are ready to prove Thm 1.

Proof. (Thm. 1) Denote X_2' as speech drawn from the ground truth distribution of the converted speech, *i.e.* $p_X(\cdot|U=U_2,Z=Z_1)$. Then our goal is to show that $\hat{X}_{1\to 2}$ is assymptotically identically distributed to X_2' .

What we will do is bridge the two random variables by passing X_2' to AUTOVC for self-reconstruction. Namely,

$$C_2' = E_c^*(X_2'), \text{ and } \hat{X}_{2 \to 2}' = D^*(C_2', S_2)$$
 (31)

where $E^*(\cdot)$ and $D(\cdot)$ are the optimal encoder and decoder derived in Lem. 1.2.

From Lem. 1.2, we know that $\hat{X}'_{2\to 2} \to X'_2$ with probability. So all is left to do is to show that $\hat{X}'_{2\to 2}$ is assymptotically identically distributed to $\hat{X}_{1\to 2}$.

First, notice that

$$p_{C_1}(\cdot|z_1, u_2) = p_{C_1}(\cdot|z_1)$$

$$= p_{E_c(X_1)}(\cdot|z_1)$$

$$= p_{E_c(X)}(\cdot|Z = z_1)$$
(32)

where the first line is due to the fact that C_1 and Z_1 are both independent of U_2 (Recall U_2 is not involved in the generation process of C_1); the last line is from the fact that (U_1, Z_1, X_1) is identically distributed to (U, Z, X).

Therefore, we can show that

$$\lim_{T \to \infty} \frac{1}{T} KL(p_{C'_{2}}(\cdot|z_{1}, u_{2})||p_{E_{c}(X)}(\cdot|Z = z_{1}))$$

$$= \lim_{T \to \infty} \frac{1}{T} KL(p_{C'_{2}}(\cdot|z_{1}, u_{2})||p_{C_{1}}(\cdot|Z = z_{1}))$$

$$= 0$$
(33)

where the last line is given by Eq. (13) of Lem. 1.2.

On the other hand,

$$p_{\hat{X}_{1\to2}}(\cdot|z_1, u_2) = p_{D^*(C_1, S_2)}(\cdot|z_1, u_2)$$

$$p_{\hat{X}_{2\to2}'}(\cdot|z_1, u_2) = p_{D^*(C_2', S_2)}(\cdot|z_1, u_2)$$
(34)

Combining Eqs. (33) and (34), we have

$$\lim_{T \to \infty} \frac{1}{T} KL(p_{\hat{X}_{1 \to 2}}(\cdot | z_1, u_2) || p_{\hat{X}'_{2 \to 2}}(\cdot | z_1, u_2)) = 0$$
(35)

Here is a final note on Thm 1. The content loss can help to constrain information capacity of the bottleneck by soft-constraining the range of each dimension of the content code, otherwise the information capacity of each bottleneck dimension can be unbounded and Thm 1 does not apply.