
Fault Tolerance in Iterative-Convergent Machine Learning

A. Discussion
Here we discuss some special cases and extensions of interest,
including nonconvex models, infinite perturbations (e.g.
T=1), and SGD.

A.1. Examples for Theorem 3.1

In this section, we discuss some examples where the bound
(6) is applicable, along with some generalizations.
Example A.1 (Convex optimization). Theorem 3.1 applies to
ML systems that are based on minimizing a strongly convex
objective. This includes many classical problems including
regression.
Example A.2 (Nonconvex optimization). If the loss function
` is nonconvex, then Theorem 3.1 still applies with some mod-
ifications. The assumptions (3) and (5) can be verified using
known results on nonconvex optimization (Xu & Yin, 2017;
Attouch et al., 2010) under the so-called Kurdyka-Łojasiewicz
property, from which the bound (6) follows directly. Trouble
arises, however, when ` has multiple basins of attraction: A
perturbation �k could “push” the perturbed iterate ey(k) into
a different basin, resulting in a limit point that is different
from x⇤. Theorem 3.1 continues to hold as long as this can
be avoided, i.e. the �k are not too large.
Example A.3 (SGD). The assumption (5) does not hold
for SGD, which has a sublinear convergence rate in general.
Nonetheless, it is straightforward to extend our framework to
sublinear algorithms, with the caveat that analogous bounds
on the iteration cost become more complicated. In fact, it is not
hard to see from our proof how to do this: Lemma B.1 in the
Appendix establishes the following useful general inequality

Eky(k+1)�x⇤kck+1
⇥
kx(0)�x⇤k+�T

⇤
.

Evidently, the factor of c governs how quickly �T (i.e. the
cost incurred by perturbations) gets washed out as k increases.
For algorithms that converge sublinearly such as SGD, this
effect will also be sublinear, but still tend to zero as long as
the perturbations are not too large (see Appendix A.3 for a
brief discussion). This is further corroborated by the empirical
experiments in Section 5, where we show that the strategies for
checkpoint-based fault tolerance proposed in the next section
are successful on SGD as well as other optimization schemes
such as alternating least squares. Similar arguments apply
to convex (but not strongly convex) loss functions, for which
gradient descent has a sublinear convergence rate in general.
Example A.4 (Infinite perturbations). An interesting case
occurs when �k 6= 0 for all k. In other words, there is a
possibility of a fault in every iteration. For arbitrary �k, it
is clearly impossible to establish any kind of convergence
result. In fact, suppose k�kk � for each k. Then there is
an irreducible error of (c/(1�c))�, meaning that we cannot
hope to obtain an "-optimal solution for any "<(c/(1�c))�.
This helps to explain why we focus on the nontrivial case

with �k =0 for k>T in Theorem 3.1. One setting in which
the analysis with infinite perturbations is nontrivial is when
� is known to be small, e.g. when using reduced precision
as in Example 2.1. This setting can be analyzed by setting
��2�(p�1)kx(k)k for all k. For details, see Appendix A.2.

A.2. Analysis for T=1

Suppose Ek�kk  � for each k. For intuition, note that
Lemma B.1 implies that for any k,

Eky(k+1)�x⇤kck+1
h
kx(0)�x⇤k+

kX

`=0

c�`�
i

=ck+1
h
kx(0)�x⇤k+�

1�c�(k+1)

1�c�1

i
(7)

=ck+1kx(0)�x⇤k+�
c�ck+2

1�c
k!1�! c

1�c
�.

Evidently, there is an irreducible, positive error if we are
subjected to faults in every single iteration.

Thus, the best we can hope for is convergence to within
some tolerance "> (c/(1�c))�. Re-arranging and solving
for k in (7) as in the proof of Theorem 3.1, we deduce that
Eky(k+1)�x⇤k<" as long as

k>
log
⇣kx(0)�x⇤k� c

1�c�

"� c
1�c�

⌘

log(1/c)
.

The resulting iteration cost bound is (cf. (6)):

⇡(�k,")
log

1�

c
1�c

�

kx(0)�x⇤k

1�
c

1�c
�

"

!

log(1/c)
. (8)

This bound is only informative if kx(0)�x⇤k> (c/(1�c))�
and ">(c/(1�c))�.

A.3. Stochastic gradient descent

Assume the objective function ` is strongly convex. In order
to derive upper bounds on the iteration cost for SGD, we start
from following general recursion, which is standard from the
literature (Nemirovski et al., 2009; Rakhlin et al., 2012):

Ekx(k+1)�x⇤k2(1�↵k)Ekx(k)�x⇤k2+↵2
kG

2, (9)

where ↵k!0 is a sequence that depends on ` and the step size,
and G is an upper bound on the expected norm of the stochastic
gradients. Comparing (9) to (11), the only difference is that
instead of a constant c < 1, we have a sequence 1�↵k ! 1.
Thus, instead of decaying at the geometric rate ck, the iterates
of SGD converge at a slower rate (1�↵1)···(1�↵k).

Define ak := (1�↵1)···(1�↵k). Under the assumptions of

Fault Tolerance in Iterative-Convergent Machine Learning

Theorem 3.1, we have the following analogue of (14):

Eky(k)�x⇤kak
h
kx(0)�x⇤k+

TX

`=0

a�1
`

�
Ek�`k+↵2

`G
2
�i
<".

This yields an implicit formula for k, which can be used to
upper bound the iteration cost for SGD. For example, a popular
choice of ↵k is ↵k/1/k, in which case ak/1/k (this follows
from an induction argument), and solving for k yields the
desired upper bound.

B. Proofs
B.1. Proof of Theorem 3.1

We start with the following useful lemma:

Lemma B.1. Assuming (5), we have for any k

Eky(k+1)�x⇤kck+1
h
kx(0)�x⇤k+

kX

`=0

c�`Ek�`k
i
. (10)

Proof. For any k>0 we have
Eky(k+1)�x⇤k=Ekf(ey(k))�x⇤k

cEkey(k)�x⇤k
=cEky(k)+�k�x⇤k
c
⇥
Eky(k)�x⇤k+Ek�kk

⇤
, (11)

where we have invoked (5). Iterating this inequality, we obtain:
c
⇥
Eky(k)�x⇤k+Ek�kk

⇤
(12)

c2Eky(k�1)�x⇤k+c2Ek�k�1k+cEk�kk
...

ck+1Eky(0)�x⇤k+
kX

i=0

ci+1Ek�k�ik

=ck+1kx(0)�x⇤k+
kX

`=0

ck�`+1Ek�`k. (13)

In the last step we simply re-indexed the summation and
use y(0) = x(0). Combining (11) and (13) yields the desired
bound.

Proof of Theorem 3.1. By Lemma B.1, we have for any k>T ,

Eky(k)�x⇤kck
h
kx(0)�x⇤k+

TX

`=0

c�`Ek�`k
i
<" (14)

() 1

"

h
kx(0)�x⇤k+�T

i
<c�k (15)

Re-arranging, we deduce that Eky(k)�x⇤k<" if

k>
log
⇣
1
"

h
kx(0)�x⇤k+�T

i⌘

log(1/c)
�(y(k),").

It is easy to check (e.g. take �k=0 in the previous derivation)
that (x(k), ") = log

�
1
"kx

(0)�x⇤k
�
/log(1/c) is a bound on

the number of iterations required for the unperturbed sequence
x(k) to reach "-optimality. Thus, the iteration cost is given by
⇡(�k,")=(y(k),")�(x(k),")


log
⇣
1
"

h
kx(0)�x⇤k+�T

i⌘
�log

�
1
"kx

(0)�x⇤k
�

log(1/c)

=
log
⇣
1+ �T

kx(0)�x⇤k

⌘

log(1/c)
,

as claimed.

B.2. Proof of Theorem 4.1

Let z=x(C) be the checkpoint of the model parameters saved
at iteration C, and let S be the subset of model parameters lost
during a failure at iteration T . Then

||�||= ||z�x(T)||
is the perturbation due to full recovery, and

||�0||= ||zS�x(T)
S ||

is the perturbation due to partial recovery, since x(T)
Sc does not

change due to failure, where Sc is the complement set of S.
Then we have

||�0||2= ||zS�x(T)
S ||2

 ||zS�x(T)
S ||2+||zSc�x(T)

Sc ||2

+(zS�x(T)
S)·(zSc�x(T)

Sc)

 ||(zS�x(T)
S)+(zSc�x(T)

Sc)||2

= ||z�x(T)||2= ||�||2

Thus k�0kk�k, as claimed.

B.3. Proof of Theorem 4.2

Let z=x(C) be the checkpoint of the model parameters saved
at iteration C, and let S be the subset (chosen uniformly at
random) of model parameters lost during a failure at iteration
T . Then

E||�0||2=E||zS�x(T)
S ||2

=E
h
(zS�x(T)

S)·(zS�x(T)
S)
i

=
X

i

E
h
(zS�x(T)

S)2i

i

=
X

i

E
h
[i2S](zi�x(T)

i)2
i

=
X

i

P(i2S)(zi�x(T)
i)2

=
X

i

p(zi�x(T)
i)2

=p||z�x(T)||2=p||�||2

Thus E||�0||2=p||�||2, as claimed.

Fault Tolerance in Iterative-Convergent Machine Learning

C. Implementation and experiments
C.1. Details of SCAR implementation

When a checkpoint is triggered:
1. The checkpoint coordinator sends a message to each

PS node, which computes the distance of each of its
parameters from their previously saved values in the
running checkpoint using its in-memory cache.

2. Each PS node sends its model parameter IDs and
computed distances to the checkpoint coordinator.

3. Upon receipt of the computed distances from all PS
nodes, the checkpoint coordinator selects the fraction r
of parameters with the largest distances, and sends their
IDs back to their corresponding PS nodes.

4. Upon receipt of the parameter IDs, each PS node updates
its in-memory cache, and saves those parameters to the
shared persistent storage.

During step 4, the training algorithm can be resumed as soon
as the in-memory caches have been updated, while output to
the shared persistent storage happens asynchronously in the
background. Thus, the checkpointing overhead in SCAR is just
the time needed for prioritizing parameters and updating the in-
memory cache. Furthermore, steps 2 and 3 simply answer a dis-
tributed top-k query. Although we chose a simple implementa-
tion for our prototype, a more scalable algorithm such as TPUT
(Cao & Wang, 2004) can be used to remove the bottleneck of
centralizing this computation onto the checkpoint controller.

When a failure is detected:
1. The failure detector notifies the recovery coordinator,

which determines how the parameters belonging to the
failed PS nodes should be re-partitioned.

2. The recovery coordinator partitions and sends the failed
parameter IDs to the remaining PS ndoes, which re-load
the parameters from the current running checkpoint in
shared persistent storage.

SCAR is implemented using C++ and leverages an existing
elastic ML framework (Qiao et al., 2018), which provides
mechanisms for transparently re-routing requests from workers
away from failed PS nodes, as well as for new PS nodes to join
the active training job, replacing the old failed PS nodes.

C.2. Details of Models and Datasets in Section 5.1

Multinomial Logistic Regression (MLR). The model param-
eters are an M⇥N matrix of real numbers, where M is the
dimensionality of the data, and N is the number of output
classes. When distributed, the rows of the parameter matrix
are randomly partitioned. For MNIST, we use a batch size of
10,000, a learning rate of 1⇥10�5, and a convergence criteria of
2.5⇥104 in cross-entropy loss. For CoverType, we use a batch
size of 1,000, a learning rate of 1⇥10�7, and a convergence
criteria of 6.7⇥105 in cross-entropy loss. For both datasets, the
convergence criteria is reached in roughly 60 iterations.

Matrix Factorization (MF). The model parameters are ma-
trices L2Rm⇥p and R2Rp⇥n. When distributed, the rows of
L and the columns of R are randomly partitioned. For Movie-
Lens, we use 20 factors and a convergence criteria of 9.2⇥102

in mean squared error loss. For Jester, we use 5 factors and
a convergence criteria of 5.57⇥103 in mean squared error loss.
The MovieLens dataset is the movielens-small version
consisting of 671 users and 9,125 items. The Jester dataset is
the Jester 2+ version, We further remove users with no
ratings, and re-scale ratings from [�10,10] to [0,10]. For both
datasets, the factor matrices L and R are randomly initialized
with each entry sampled uniformly at random from [0,1), and
the convergence criteria is reached in roughly 60 iterations.

Latent Dirichlet Allocation (LDA). The model parameters
are the document-topic and word-topic distributions. We use
a scaled total variation between document-topic distributions as
the norm for computing distances between parameters. When
distributed, the document-topic distributions are randomly
partitioned across nodes. We do not consider failures of
word-topic distributions because they can be re-generated from
the latent token-topic assignments.

In LDA, each document in the input data consists of a series of
tokens, where each token is assigned a categorical topic. Topic
assignments are repeatedly randomly sampled during the life-
time of a job. From these token-topic assignments, a document-
topic distribution is constructed for each document, and a word-
topic distribution is constructed for each unique word. Both
the document-topic and word-topic distributions can be re-
generated given the token-topic assignments, so losing the distri-
butions themselves is not a problem. However, when distributed,
each document-topic distribution is typically co-located with
the document it corresponds to. Thus, losing a document-topic
distribution is typically associated with also losing the token-
topic assignments of that document, which do require recovery
from a saved checkpoint. Therefore, we only consider the loss
of document-topic distributions, and assume that the word-topic
distributions can be reconstructed at any time.

Since the parameters of LDA are distributions, a natural norm
to use is the total variation norm. However, the total variation
norm when applied to LDA puts the same weight onto every
document-topic distribution. This means that re-sampling a
token-topic assignment in a shorter document has a greater
impact to the overall norm than re-sampling a token-topic
assignment in a longer document, which biases checkpoint pri-
oritization towards shorter documents. To address this, we scale
the total variation norm of each document-topic distribution by
the length of the document it corresponds to. The result is still
a valid norm, since it is a positive linear combination (which is
constant with respect to the input data) of total variation norms.

For 20 Newsgroups, we use a convergence criteria of 9.5⇥106

in negative log-likelihood. For Reuters, we use a convergence
criteria of 8.5⇥105 in negative log-likelihood. For both datasets

Fault Tolerance in Iterative-Convergent Machine Learning

we train using 20 topics and hyperparameters ↵=�=1. The
convergence criteria is reached in roughly 60 iterations.

Convolutional Neural Network (CNN). The network
consists of 2 convolution layers with ReLU activations (Nair &
Hinton, 2010) and max pooling followed by 3 fully-connected
layers with ReLU activation. Because of the structure in
neural network models, we consider two different partitioning
strategies: 1) In by-layer partitioning, we assume that the
layers of the network are randomly partitioned across nodes;
and 2) In by-shard partitioning, we further divide each layer’s
parameters into shards, and all shards are randomly partitioned
across nodes. The experiments shown in Sec. 5 use by-layer
partitioning, but we show both in Fig. C.1 and Fig. C.2. We
use a batch size of 64, the recommended Adam settings
of ↵ = 0.001, �1 = 0.9, �2 = 0.999, and ✏ = 10�8, and a
convergence criteria of 0.08 in cross-entropy loss. In by-layer
partitioning, the weight and bias parameters are independent
and partitioned separately (so they can either be lost together, or
not). In by-shard partitioning, each parameter tensor is evenly
partitioning according to its first dimension. The optimizer
parameters (ie. the running first and second moment estimates
in the case of Adam) are placed with their corresponding model
parameters. Thus, an optimizer parameter is always faulted
simultaneously with its corresponding model parameter.

C.3. Additional experiments

Figures C.1 and C.2 show additional results on the same four
models applied to different datasets. The first row in each
figure is the same as Figures 6 and 7 in the main paper.

Fault Tolerance in Iterative-Convergent Machine Learning

(a) MLR on CoverType. (b) MF on MovieLens. (c) LDA on 20 Newsgroups. (d) CNN-bylayer on MNIST.

(e) MLR on MNIST. (f) MF on Jester. (g) LDA on Reuters. (h) CNN-byshard on MNIST.

Figure C.1. Partial vs. full recovery for all models and datasets, where the set of failed parameters are selected uniformly at random. The x-axis
shows the fraction of failed parameters, and the y-axis shows the number of rework iterations. The error bars indicate 95% confidence intervals,
calculated by repeating each trial 100 times.

(a) MLR on CoverType. (b) MF on MovieLens. (c) LDA on 20 Newsgroups. (d) CNN-bylayer on MNIST.

(e) MLR on MNIST. (f) MF on Jester. (g) LDA on Reuters. (h) CNN-byshard on MNIST.

Figure C.2. Prioritized checkpoint experiments for all models and datasets comparing between the random, round-robin, and priority strategies.
The x-axis indicated checkpoint frequency relative to full checkpoints, where 1 indicates full checkpoints, 2 indicates 1/2 checkpoints at 2⇥
frequency, etc., and the y-axis shows the number of rework iterations. The error bars indicate 95% confidence intervals, calculated by repeating
each trial 100 times, and the dashed black line represents the rework cost of a full checkpoint.

