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Abstract
Machine learning (ML) training algorithms often possess an inherent self-correcting behavior due to their iterative-
convergent nature. Recent systems exploit this property to achieve adaptability and efficiency in unreliable computing
environments by relaxing the consistency of execution and allowing calculation errors to be self-corrected during training.
However, the behavior of such systems are only well understood for specific types of calculation errors, such as those
caused by staleness, reduced precision, or asynchronicity, and for specific algorithms, such as stochastic gradient descent.
In this paper, we develop a general framework to quantify the effects of calculation errors on iterative-convergent
algorithms. We then use this framework to derive a worst-case upper bound on the cost of arbitrary perturbations to
model parameters during training and to design new strategies for checkpoint-based fault tolerance. Our system, SCAR,
can reduce the cost of partial failures by 78%–95% when compared with traditional checkpoint-based fault tolerance
across a variety of ML models and training algorithms, providing near-optimal performance in recovering from failures.

1. Introduction
Distributed model training for machine learning (ML) is a
workload that is typically long-running and resource-intensive.
Throughout a job’s lifetime, it is susceptible to hardware fail-
ures, performance fluctuations, and other uncertainties inherent
to real-world cluster environments. For example, processes
can be preempted by a cluster resource allocator (Vavilapalli
et al., 2013; Hindman et al., 2011), parameter synchronization
can be bottlenecked on a slow or congested network (Li et al.,
2014b; Zhang et al., 2017b), and stragglers can severely impact
overall job throughput (Cipar et al., 2013; Harlap et al., 2016).
These concerns are amplified in modern shared clusters and
cloud-based spot instances such as those provided by Amazon
Web Services (AWS). Thus, developing new fault-tolerance
strategies for modern ML systems is a critical area of research.

ML-agnostic distributed systems approaches for addressing
such problems often adopt strong consistency semantics. They
aim to provide strong execution guarantees at a per-operation
level (such as linearizability or serializability), but may also
incur higher performance overhead. On the other hand, ML
training is often tolerant to small calculation errors and may not
require such strong consistency guarantees. This observation
has been exploited by recent ML systems to overcome cluster

1Petuum, Inc., Pittsburgh, Pennsylvania, USA 2Computer Science
Department, Carnegie Mellon Univeristy, Pittsburgh, Pennsylvania,
USA 3Machine Learning Department, Carnegie Mellon Univeristy,
Pittsburgh, Pennsylvania, USA. Correspondence to: Aurick Qiao
<aurick.qiao@petuum.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019
by the author(s).

x*

x(0)

x(T)

x(k)

x(T)	+	δ

Figure 1. The self-correcting behavior of iterative-convergent
algorithms. Even though a calculation error results in an undesirable
perturbation of � at iteration T , the subsequent iterations still brings
the solution closer to the optimum value of x⇤.

unreliability and resource limitation issues, such as bounded
staleness consistency (Ho et al., 2013; Cipar et al., 2013; Cui
et al., 2014), quantization and low-precision arithmetic (Cour-
bariaux et al., 2014; Gupta et al., 2015; Hubara et al., 2017),
and lock-free execution (Niu et al., 2011; Dean et al., 2012).
One notable exception to this trend is checkpoint-based fault
tolerance, a common strategy in current ML systems for
mitigating hardware failures (Abadi et al., 2016; Wei et al.,
2015; Low et al., 2012) which continues to enforce strong
consistency semantics at a high cost of re-computing lost work.

This trend of relaxing consistency in ML systems relies
on the self-correcting behavior of iterative-convergent ML
training algorithms (Fig. 1). During each step, the training
algorithm calculates updates based on the current values of
model parameters, and then applies the updates to obtain a
“better” set of model parameters. By iteratively performing this
computation, the model parameters eventually converge to a
set of optimal values. Small computation errors made during
this procedure are eventually washed out by the successive
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iterative improvements. This self-correcting behavior of
ML training suggests a general strategy for designing robust
training systems for unreliable environments, as follows:
(A) The execution system allows certain environmental faults

and/or resource limitations to manifest as calculation errors
in model training. These errors can be conceptualized as
perturbations to the model parameters.

(B) The perturbations are self-corrected by the model training
algorithm, which incurs an extra cost (e.g. additional
iterations, batches, epochs, etc.). We refer to this additional
cost as the rework cost of the perturbations.

Motivated by this general strategy, we develop a framework
for exploiting self-correction in ML systems in a way that
is adaptive to generic perturbations whose cause or origin is
unknown. It provides a theoretical foundation for understanding
the self-correcting behavior of iterative-convergent model
training as well as the tools needed by ML systems to take
advantage of this behavior. Our main contributions are:

1. We quantify the impact of generic perturbations on
iterative-convergent algorithms in terms of their rework
cost. Under reasonable convergence assumptions, we
bound the rework cost in terms of the sizes of these
perturbations.

2. We propose new strategies for checkpoint-based fault tol-
erance in distributed model training. Partially recovering
from checkpoints, combined with prioritizing checkpoints
in a way that reduces the size of perturbations, can signif-
icantly reduce the rework cost due to partial failures.

3. We design SCAR, a parameter server system for fault
tolerant ML training and show that SCAR reduces
the rework cost of partial failures by 78%–95% when
compared with traditional checkpointing, which is close
to optimal (vs. training with no failures).

2. Modeling Faults in ML Training
Most ML training algorithms are iterative, i.e. model param-
eters are updated given a current estimate of the model param-
eters x(k) until convergence to some target parameter x⇤. Such
algorithms are commonly called iterative-convergent, and in-
clude most optimization, Monte Carlo, and numerical schemes
used in practice. These iterative schemes are of the form

x(k+1)=f(x(k)), x(k)2Rd, (1)
for some function f . This model of iterative-convergent algo-
rithms assumes that the current state x(k) is stored persistently
and losslessly in memory. In practice, modern distributed ML
systems are subject to faults such as hardware failures, memory
corruption, and performance fluctuations. Thus, it is unrealistic
to assume that x(k) can always be retrieved with perfect fidelity.
To model this uncertainty, let �k be a random variable that repre-
sents an unknown perturbation that corrupts the current state to
produce a perturbed state x(k)+�k. We make no assumptions
about the cause, size, or behavior of the perturbations �k. More
specifically, we assume the iterates obey the following scheme:

y(0)=x(0)

y(1)=f(y(0)+�0)

...

y(k+1)=f(y(k)+�k)

(2)

In the absence of errors, ie. �k=0, we have y(k)=x(k), which
reduces to the basic iterative scheme (1). Moreover, since �k
is arbitrary, this model allows for any type of perturbation.
In particular, perturbations may occur in every iteration or
periodically according to some random process. This setup
captures many of the ways that system faults can be manifested
as perturbations, and we give a few important examples below.

Example 2.1 (Reduced Precision). A simple practical example
is using reduced precision floating/fixed point representations
for storing parameter values. If ey(k) is a reduced precision
version of the exact parameter values y(k), then the algorithm
suffers perturbations of �k=ey(k)�y(k) at each iteration k. If
the representation has a p-bit mantissa, then the size of �k is
bounded by |�k|<2�(p�1)|y(k)| (Higham, 2002).

Example 2.2 (Bounded Staleness Consistency). In stochastic
gradient descent (SGD) under the stale synchronous parallel
(SSP) consistency model (Ho et al., 2013), gradients are
computed in a data-parallel fashion where each of M machines
may observe a stale version of the model parameters ex(k)m .
Suppose r(ex(k)m , Dm) are the gradients computed during
iteration k using input data Dm at machine m. If r(x(k),D)
is the true stochastic gradient at iteration k, then the algorithm
suffers a perturbation at iteration k+1 of:

�k+1=
1

M

MX

m=1

r(ex(k)m ,Dm)�r(x(k),D)

Example 2.3 (Checkpoint-based Fault Tolerance). In failure
recovery from checkpoints, a copy of the entire job state is peri-
odically saved to persistent storage, and is restored in the case of
a failure. Suppose a system experiences a failure at iteration T ,
and recovers from the failure by restoring a full checkpoint of
the model parameters taken at iteration C<T . Then the algo-
rithm suffers a perturbation at iteration T of �T =x(T)�x(C).
Although from the system’s point of view the application is
returned to an exact prior state, we can still view the act of
checkpoint recovery as a perturbation to the model parameters.

Remark 2.1. Reduced precision (Example 2.1) and bounded
staleness consistency (Example 2.2) have already been
the focus of much attention in both the ML and systems
communities (Zhang et al., 2017a; Jia et al., 2018; Wei et al.,
2015; Dai et al., 2015). Although not typically studied within
the explicit set-up of (2), these strategies generate perturbations
which fit within our framework, and preserve the correctness
of training by keeping the sizes of these perturbations small.
This is accomplished via bounded floating-point/fixed-point
rounding errors for reduced precision and via a maximum
staleness limit for bounded staleness consistency. In Section
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4, we apply the general set-up of (2) to devise new strategies
for checkpoint-based fault tolerance (Example 2.3) by reducing
the sizes of the perturbations �k.
Remark 2.2. The iteration in (2) is closely related to perturbed
gradient descent (Ge et al., 2015; Jin et al., 2017; Du et al.,
2017). The main difference lies in the motivation: Jin et al.
(2017) show that by choosing �k cleverly, it is possible to
escape saddle points and guarantee that the iteration (2)
converges to a second-order stationary point. The idea is to
design the perturbations �k to an advantage, which is in stark
contrast to our set-up, in which we have no control over �k. In
the worst case, we allow �k to be chosen adversarially.

3. Analysis
Suppose that an ML system has experienced perturbations
�1,...,�T up to the T th iteration. A (random) sequence ak is
called "-optimal if Ekak �x⇤k < ". The main question we
seek to address in this section is the following: Given "> 0,
what is the “cost” in number of iterations for y(k) to reach
"-optimality compared to the unperturbed sequence x(k)?
We write “cost” in quotations to emphasize that this number
can be negative—for example, �k could randomly move y(k)
closer to x⇤, or �k can be constructed in advance to improve
convergence as in perturbed gradient descent (see Remark 2.2).
We call this quantity the rework cost of the perturbed sequence
y(k), introduced in Sec. 1. Our goal in the present section is
to bound the rework cost, which will be formally defined next.

3.1. Rework cost

In order to keep things simple, we assume that the unperturbed
sequence satisfies

kf(x(k))�x⇤kckx(k)�x⇤k, 0<c<1, (3)
i.e. the iterates x(k) converge linearly. Although some
algorithms (e.g. SGD) do not converge linearly, many of
the most popular algorithms in practice do (e.g. gradient
descent, proximal quasi-Newton, Metropolis-Hastings). This
assumption is made purely for simplicity: We use (3) as a
baseline for comparison, and the analysis can be extended to
more general schemes such as SGD if desired (Appendix A.1).

Formally, the rework cost is defined as follows: Let (y(k),")
be a lower bound such that m>(y(k), ") implies Eky(m)�
x⇤k<" (this may be +1 or negative). Under (3), it is straight-
forward to derive a similar lower bound for the unperturbed
sequence x(k) as (x(k), ") = log

�
1
"kx

(0)�x⇤k
�
/log(1/c).

This will be used as a baseline for comparison: The rework
cost for the perturbations �k is defined to be

⇡(�k,"):=(y(k),")�(x(k),"). (4)
Using the unperturbed sequence x(k) as a benchmark, ⇡(�k,")
bounds the additional number of iterations needed for the per-
turbed sequence y(k) to reach "-optimality (where we bear in
mind that this can be negative). Clearly, ⇡(�k,") depends on the

sequence �k, and should be smaller whenever the �k are smaller.
We seek a bound on ⇡(�k,") that holds for arbitrary �k.
Remark 3.1. We use the criterion Eky(k)�x⇤k<" as an opti-
mality criterion instead of directly boundingP(ky(k)�x⇤k<").
This is commonly done (e.g. Bottou et al., 2016) since bounds
on Eky(k) � x⇤k imply bounds on the latter probability via
standard concentration arguments (see e.g. Rakhlin et al., 2012).

3.2. Bounding the rework cost

To bound the rework cost, we also require that the update f
satisfies a convergence rate similar to (3) for the perturbed data
ey(k) :=y(k)+�k:

Ekf(ey(k))�x⇤kcEkey(k)�x⇤k, 0<c<1. (5)

This simply says that wherever the algorithm is, on average,
a single step according to f will not move the iterates further
from x⇤. For example, it is not hard to show that gradient
descent satisfies this condition whenever the objective is
strongly convex (see e.g. the proof of Theorem 2.1.5 in
Nesterov, 2013). In fact, this assumption is satisfied for a
variety of nonconvex problems (Xu & Yin, 2017; Attouch
et al., 2010), and similar results hold for other optimization
schemes such as proximal methods and Newton’s method.

Under (3) and (5), we have the following general bound on
the rework cost:

Theorem 3.1. Assume Ek�kk<1 for kT and �k=0 for
k>T . Under (3) and (5), we have for any ">0,

⇡(�k,")
log

⇣
1+ �T

kx(0)�x⇤k

⌘

log(1/c)
(6)

where �T :=
PT

`=0c
�`Ek�`k.

In fact, the bound (6) is tight in the following sense: As long as
(3) cannot be improved, there exists a deterministic sequence
�1,...,�T such that (6) holds with equality. Theorem 3.1 is illus-
trated on a simple quadratic program (QP) in Figure 2, which
provides empirical evidence of the tightness of the bound.

The interesting part of the bound (6) is the ratio
�T/kx(0) � x⇤k, which is essentially a ratio between
the aggregated cost of the perturbations and the “badness” of
the initialization. For more intuition, re-write this ratio as

�T

kx(0)�x⇤k
=

PT
`=0c

k�`Ek�`k
ckkx(0)�x⇤k

.

Up to constants, the denominator is just the error of the
original sequence x(k) after k iterations. The numerator is
more interesting: It represents a time-discounted aggregate
of the overall cost of each perturbation. Each perturbation
�` is weighted by a discount factor ck�`, which is larger for
more recent perturbations (e.g. �T ) and smaller for older
perturbations (e.g. �0). Thus, the dominant quantity in (6) is
a ratio between the re-weighted perturbations and the expected
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(a) Rework cost vs. k�kk for a single
perturbation at iteration 500.

(b) Rework cost vs. �T for a single
perturbation at iteration 500.

(c) Rework cost vs. �T for perturba-
tions with p=0.001 at each iteration.

Figure 2. Illustrations of rework costs using gradient descent on a simple 4-D quadratic program. Each plot consists of 1,000 trials with
perturbation(s) randomly generated according to a normal distribution. The red line is the rework cost bound according to Theorem 3.1. The
value of c is determined empirically, and the value of ✏ is set so that an unperturbed trial converges in roughly 1,000 iterations.

error from the original sequence. As expected, if the original
sequence converges very quickly and the perturbations are
large, the rework cost increases proportionally.

Theorem 3.1 also assumes that there are no perturbations after
time T . The idea is that if there are no more perturbations, (6)
bounds the cost of the perturbations incurred so far. Of course,
in practice, the system may experience faults after time T , in
which case (6) can be adjusted to include the most recent fault.
The difficulty in directly accounting for future perturbations lies
in our assumption that the �k can be arbitrary: If future iterations
can experience any perturbation, it is clear that convergence can-
not be guaranteed (e.g. consider �k=x�y(k) for some fixed
x 6= x⇤ and all k > T ). Under some additional assumptions,
something can be said about this case; see Example A.4.

4. Checkpoint-Based Fault Tolerance
As an application of our framework, we study new strategies
for checkpoint-based fault tolerance, by which a stateful
computation is made resilient to hardware failures by
periodically saving its program state to persistent storage.
This fault-tolerance mechanism is used in many popular ML
frameworks including TensorFlow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2017).

Using traditional checkpointing, the entire saved program state
is restored after a failure, and input data is re-loaded from its
persistent storage. Then, all computation since the previous
checkpoint is repeated. This process maximizes the consistency
of recovery by restoring the system to an exact state it was in
during the past, but can incur high rework cost if the checkpoint
interval is long. Let Trework be the total amount of time spent
re-computing lost iterations. For a single failure, Trework for
the traditional checkpoint strategy is the total amount of time
between the previous checkpoint and the failure.

Although this traditional checkpointing is sufficient for many
usage scenarios, it can break down in computing environments
where the mean-time-to-failure is low (Harlap et al., 2017).

For example, resource schedulers in shared clusters can kill
running jobs to give more resources to higher-priority jobs, and
cloud-based spot instances may be preempted frequently. In
these environments, jobs using traditional checkpointing can
incur a large penalty each time they experience a failure. In the
most degenerate scenario, a job can run for an undetermined
amount of time when its checkpoint interval is longer than the
mean-time-to-failure. Thus, it is critical to reduce the rework
cost incurred by checkpoint-based fault tolerance.

Fortunately, for iterative-convergent ML, we can exploit its
self-correcting behavior to reduce Trework. In particular, we can
give up the consistency of checkpoint-recovery, and design a
system which tries to reduce the size of the perturbation k�Tk
incurred upon failure. By doing so, Theorem 3.1 shows that
the rework cost bound is also reduced, lowering the worst case
rework cost and thus reducing Trework.

We design a system architecture, SCAR,1 consisting of
two strategies which reduce k�Tk compared to traditional
checkpoint recovery: (1) Partial recovery, and (2) Prioritized
checkpoints. SCAR extends the popular parameter server (PS)
architecture for distributed model training (Ho et al., 2013; Li
et al., 2014b;a)—the model parameters are partitioned across
a number of PS nodes, which are accessed by worker nodes.
We assume that during a failure, any number of PS nodes
can go down, causing the loss of their partitions of the model
parameters. We present these strategies and the design of
SCAR below, and show evaluation of SCAR in Section 5.

4.1. Partial Recovery

Our first strategy is to only recover (i.e. from a previous
checkpoint) the part of the model parameters which are lost due
to the failure. Since the model parameters are partitioned across
several PS nodes, a partial failure of PS nodes should only
cause a partial loss of model parameters. Mathematically, the
partial recovery strategy should result in a smaller perturbation

1SCAR stands for Self-Correcting Algorithm Recovery.
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to the model parameters and, according to Theorem 3.1, incur
a smaller rework cost.

Suppose that a fully-consistent checkpoint is taken after
iteration C , and a failure occurs during iteration T >C which
triggers checkpoint recovery.
Theorem 4.1. Let � be the perturbation incurred by full
checkpoint recovery, and �0 be the perturbation incurred by
partial checkpoint recovery, then k�0k<k�k.

Furthermore, the size of the perturbation should also be related
to the fraction of model parameters which are lost—losing
fewer model parameters should generate a smaller perturbation.
To establish this relationship, we will assume that parameters
are partitioned uniformly at random across the PS nodes, and so
a random subset of parameters will be lost. This assumption is
reasonable as the partitioning scheme is typically within the con-
trol of the PS system, which can choose a random partitioning.
Theorem 4.2. Suppose that a failure causes the loss of a
fraction 0<p1 of all model parameters chosen uniformly at
random. Let � be the perturbation incurred by full checkpoint
recovery, and �0 be the perturbation incurred by partial
checkpoint recovery, then E||�0||2=p||�||2.

Thus, the expected size of perturbations incurred by partially
restoring from a checkpoint decreases as the fraction of
parameters lost decreases.

4.2. Priority Checkpoint

With the partial recovery strategy, we have shown that relaxing
the consistency of checkpoint recovery can reduce the size of
perturbations (i.e. �k) experienced by the training algorithm
due to a failure, and thus reduce the rework cost. In this
section, we further consider relaxing the consistency of saving
checkpoints by taking more frequent, partial checkpoints.

Rather than saving all parameters every C iterations, consider
saving a fraction r<1 of the parameters every rC iterations.
A running checkpoint is kept in persistent storage, which is
initialized to the initial parameter values x(0) and updated each
time a partial checkpoint is saved. At a given time, this check-
point may consist of a mix of parameters saved during different
iterations, and the choice of which subset of parameters to
checkpoint can be controlled via system design. This strategy
enables, e.g., prioritization of which parameters are saved
during each checkpoint so as to prioritize saving parameters that
will minimize the size of the perturbation caused by a failure.
To do this, we consider a simple heuristic: Save the parameters
which have changed the most since they were previously saved.

The checkpoint period rC is chosen so that the number
of parameters saved every C iterations remains roughly
constant across different values of r. As a result the prioritized
checkpoint strategy writes the same amount of data per constant
number of iterations to persistent storage as the full checkpoint

Parameter	Shard	1

(Cached)
Checkpoint	Shard	1

Fault-Tolerance	Controller

Shared	Persistent	Storage

Checkpoint	Shard	1

Parameter	Shard	N

(Cached)
Checkpoint	Shard	N

Checkpoint	Shard	N

Checkpoint
Coordinator

Recovery
Coordinator

Parameter	Server	1 Parameter	Server	N

Failure	Detector

Figure 3. SCAR system architecture for partial recovery and
prioritized checkpoints in distributed model training.

strategy, while having more frequent opportunities to prioritize
and save parameters to the running checkpoint. We evaluate
the system overhead implications of this scheme in Section 5.5.

4.3. SCAR Architecture and Implementation

We implement our system, SCAR, using these two checkpoint-
based fault tolerance strategies. SCAR is implemented as a PS
architecture—the parameters of the ML model are randomly
partitioned across PS nodes, while the input data is partitioned
across worker nodes. During each iteration, the workers read
values from the PS nodes, compute updates using their local
input data, and send the updates to the PS nodes to be applied.

Figure 3 illustrates the architecture of SCAR. A fault tolerance
controller runs as a separate service and consists of (1) a
checkpoint coordinator responsible for coordinating periodic
checkpoints at a fixed time interval, and (2) a recovery
coordinator responsible for coordinating the failure recovery
process whenever a failure is detected. The detection of failures
is performed by a failure detector service, which can leverage
heartbeating mechanisms in existing systems for distributed
consensus such as ZooKeeper (Hunt et al., 2010). Checkpoints
are saved to shared persistent storage, such as distributed
filesystems like NFS (Sandberg et al., 1988), CephFS (Weil
et al., 2006), or distributed databases like Cassandra (Lakshman
& Malik, 2010). To speed up distance calculations between the
current and previously saved parameters, each PS node keeps
an in-memory cache of the current checkpoint, which is up-
dated whenever a new partial checkpoint is saved. More details
on the implementation of SCAR can be found in Appendix C.1.

5. Experiments
With our evaluation, we wish to (1) illustrate our rework cost
bounds for different types of perturbations using practical
ML models, (2) empirically measure the rework costs of a
variety of models under the partial recovery and prioritized
checkpoint strategies in SCAR, and (3) show that SCAR incurs
near-optimal rework cost in a set of large-scale experiments.
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(a) Random perturbations. (b) Adversarial perturbations.

Figure 4. Rework costs of MLR on MNIST for (a) random Gaussian
perturbations and (b) adversarial perturbations generated in the oppo-
site direction from the optimum. In each trial, a single perturbation is
generated at iteration 50. The red line is the upper bound according to
Theorem 3.1. The value of c is determined empirically, and the value of
✏ is set so that an unperturbed trial converges in roughly 100 iterations.

5.1. Models and Datasets

We use several popular models and datasets as examples for
our analysis and checkpoint strategies. We briefly describe
them below, and refer to Appendix C.2 for more details.

Multinomial Logistic Regression (MLR) trained with
stochastic (minibatch) gradient descent. We train MLR on
the MNIST (Lecun et al., 1998) and CoverType (Dheeru &
Karra Taniskidou, 2017) datasets.

Matrix Factorization (MF) trained with alternating least
squares (ALS). We train MF on the MovieLens (Harper &
Konstan, 2015) and Jester (Goldberg et al., 2001) datasets.

Latent Dirichlet Allocation (LDA) trained with collapsed
Gibbs sampling (Liu, 1994). We train LDA on the 20 News-
groups (Lang, 1995) and Reuters (Lewis et al., 2004) datasets.

Convolutional Neural Network (CNN) consisting of 2
convolution layers and 3 fully-connected layers, trained with
Adam (Kingma & Ba, 2014). We train this CNN on the
MNIST (Lecun et al., 1998) dataset.

Due to limited space, we report some of the experiments here:
For complete results and additional figures, see Appendix C.3.

5.2. Iteration Cost Bounds

To illustrate the behavior of the rework cost and to verify
Theorem 3.1 for different types of models and perturbations,
we train MLR and LDA and generate a perturbation according
to one of three types: random, adversarial, and resets.

For random perturbations (Figure 4(a)), the rework cost bound
is a loose upper bound on the actual rework cost. This is in
contrast to the simpler quadratic program (QP) experiments
shown in Figure 2, in which the bound is relatively tight. On the
other hand, we also do not observe any perturbations resulting
in a negative rework cost as for QP. This experiment shows
that for MLR, a perturbation in a random direction is unlikely

(a) MLR on MNIST. (b) LDA on 20 Newsgroups.

Figure 5. Perturbations are generated by resetting a random fraction
of parameters back to their initial values, for both (a) MLR and (b)
LDA. Other settings are the same as Figure 4.

to greatly impact the total number of iterations to convergence.

We run a second experiment in which we generate “adversarial”
perturbations opposite the direction of convergence (Figure
4(b)). In this case, we see that our bound is much closer to the
actual rework costs, indicating that it is still a tight worst-case
upper bound on the rework cost for MLR.

While Figure 4 shows the rework costs for synthetically
generated perturbations, Figure 5 generates more realistic per-
turbations for both MLR and LDA. We generate perturbations
by resetting a random subset of model parameters back to their
initial values. This scheme simulates the type of perturbations
the training algorithm would observe in the partial recovery
scenario described in Section 4.1. In this case, we see that the
behavior of actual rework costs is closer to the scenario with
adversarial perturbations, although not quite as costly.

5.3. Partial Recovery

To empirically characterize the behavior of partial recovery
from checkpoints, we simulate failures of varying fractions
of model parameters for each model. We compare the rework
costs incurred by full recovery with the rework costs incurred
by partial recovery. For each model, we sample the failure
iteration from a geometric distribution, which causes the loss
of a subset of model parameters chosen uniformly at random.

Fig. 6 shows the results. For all models and datasets, we see the
average rework cost incurred by partial recovery decreases as
the failure fraction decreases. Meanwhile, the average rework
cost incurred by full recovery remains constant at its maximum
value, since all parameters are loaded from the checkpoint
regardless of which are actually lost.

Across all models and datasets tested, SCAR with partial
recovery reduces the rework cost by 12%–42% for 3/4 failures,
31%–62% for 1/2 failures, and 59%–89% for 1/4 failures.

5.4. Priority Checkpoint

In this section, we evaluate the effectiveness of our priority
checkpoint strategy for the MLR, MF, LDA, and CNN models.
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(a) MLR on CoverType. (b) MF on MovieLens. (c) LDA on 20 Newsgroups. (d) CNN on MNIST.

Figure 6. Partial vs. full recovery where the set of failed parameters are selected uniformly at random. The x-axis shows the fraction of failed
parameters, and the y-axis shows the number of rework iterations. The error bars indicate 95% confidence intervals, calculated by repeating
each trial 100 times, and the dashed black line represents the rework cost of a full checkpoint. For experiments on all datasets, see Fig. C.1

(a) MLR on CoverType. (b) MF on MovieLens. (c) LDA on 20 Newsgroups. (d) CNN on MNIST.

Figure 7. Prioritized checkpoint experiments comparing between the random, round-robin, and priority strategies. The x-axis indicated checkpoint
frequency relative to full checkpoints, where 1 indicates full checkpoints, 2 indicates 1/2 checkpoints at 2⇥ frequency, etc., and the y-axis
shows the number of rework iterations. The error bars indicate 95% confidence intervals, calculated by repeating each trial 100 times, and
the dashed black line represents the rework cost of a full checkpoint. For experiments on all datasets, see Fig. C.2

We compare the rework costs incurred by different fractions
of partial checkpoints, while keeping constant the number
of parameters saved per constant number of iterations, as
described in Section 4.2. As before, we sample the failure
iteration from a geometric distribution. In this experiment keep
the fraction of lost parameters fixed at 1/2.

To gauge the effectiveness of prioritization, we compare
between several strategies: (1) priority, parameters saved
to checkpoint are selected based on the prioritization described
in Section 4.2, (2) round, parameters saved to checkpoint are
selected in a round-robin manner, and random, parameters
saved to checkpoint are selected uniformly at random.

Fig. 7 shows the results. For all models and datasets, we see
the priority strategy results in decreasing rework costs
when the fraction of each checkpoint decreases (and frequency
of checkpoints increases). On the other hand, the round
strategy either reduces or increases the rework cost depending
on the model and dataset, while the random strategy nearly
always increases the rework cost.

Across all models and datasets tested, combining partial recov-
ery with prioritized 1/8th checkpoints at 8⇥ frequency reduces
the rework cost of losing 1/2 of all model parameters by 78%–
95% when compared with traditional checkpoint recovery.

5.5. Large Scale Experiments

Lastly, we evaluate the convergence impact and system
overhead of SCAR with two large-scale training scenarios
using MLR and LDA. We use four AWS i3.2xlarge instances
to train MLR on the full 26GB Criteo (Juan et al., 2016)
dataset, and LDA on a 12GB subset of the ClueWeb12 dataset
(Gabrilovich et al., 2013).

Convergence impact. For both MLR and LDA, we trigger a
failure of 25% of parameters (corresponding to a single failed
node in our 4-node cluster) after 7 epochs. We compare SCAR,
which saves 1/8 of the highest-priority parameters every epoch,
with traditional checkpointing, which saves all parameters every
8 epochs. Fig. 8 shows the results. For both MLR and LDA,
SCAR achieves near-optimal rework costs of less than a single
epoch, while traditional checkpointing incurs rework costs of 7
epochs corresponding to the exact amount of computation lost.

Our experiment scenario highlights the worst-case behavior
of traditional checkpointing, which occurs when the failure
happens immediately before a full checkpoint is taken. A
randomly occurring failure is just as likely to happen any
time during the checkpoint interval. However, in expectation,
traditional checkpointing would still incur 4 epochs of rework
cost. In dynamic-resource environments where failures can
occur frequently, SCAR’s reduced rework cost can significantly
reduce total training time.
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Figure 8. Large scale experiments with (a) MLR on Criteo and (b)
LDA on ClueWeb12. A failure of 25% of model parameters is
triggered after epoch 7. SCAR saves 1/8 of parameters every epoch,
while traditional checkpointing saves all parameters every 8 epochs.

System overhead. The checkpointing mechanisms of SCAR
can be implemented with low performance overhead. In our
experiments, we measured an average per-epoch overhead
of < 1s for MLR and < 5s for LDA, when compared with
traditional checkpointing. Given that the average time spent
computing each epoch is ⇡ 140s for MLR and ⇡ 220s for
LDA, this added overhead is negligible.

6. Related Work
In the optimization literature, optimization with inexact
gradients has been extensively studied (see Schmidt et al.,
2011; Devolder et al., 2014, and the references therein). These
works focus on convergence rates and typically assume the
errors in the gradients are small. By contrast, our focus is
somewhat different, instead considering the case where the
perturbations are generic, i.e. they are not restricted to gradient
computations and may be significant. Mania et al. (2015) and
El Gamal & Lai (2017) also consider a model similar to (2),
however, perturbations are only added to the gradients.

A related body of work is distributed training under Byzantine
faults (Blanchard et al., 2017; Chen et al., 2017; Damaskinos
et al., 2018; Guerraoui et al., 2018), where a proportion of
machines may act adversarially. However, perturbations to
parameters during training are not always Byzantine, and
can often be controlled via system implementations, such as
bounded staleness consistency models, or partial recovery and
prioritized checkpointing as in the present work.

Coded computing has been proposed as a technique to reduce
the effects of stragglers and faults in distributed machine
learning (Tandon et al., 2017; Karakus et al., 2017; Lee et al.,

2018). These techniques use coding theory to increase the
redundancy of input data or linear computations such as matrix
multiplication. The failure of model parameters remains an
outstanding problem, which is the main focus of our work.

In other distributed ML systems, fault tolerance is approached
in an ML-agnostic way. TensorFlow (Abadi et al., 2016) offers
recovery from periodic checkpoints, while the parameter server
of Li et al. (Li et al., 2014a) offers live replication of parameter
values. Proteus (Harlap et al., 2017) proposes an approach for
fault-tolerance on transient machines by using more reliable ma-
chines for active backup of program state. In comparison, our
system takes advantage of the self-correcting nature of ML, of-
fering lower rework cost compared with traditional checkpoint-
restart, and without the performance overhead of live replication
or storing parameter state on designated reliable machines.

7. Conclusion
The self-correcting behavior of ML forms the basis of system
techniques that allow model training to achieve adaptability
and efficiency in unreliable and resource-limited environments.
In this paper, we outlined a general approach to design such
systems by reducing the sizes of perturbations to model
parameters. We derived an upper bound on the rework
cost of perturbations which can guide the design of new
systems. We then proposed and implemented new strategies
for checkpoint-based fault tolerance in our system SCAR.
We showed that SCAR is able to reduce the rework cost of
failures by an order of magnitude or more when compared to
traditional checkpoint-based fault tolerance.

As for future work, we have already observed that our main
assumptions (3) and (5) can be relaxed, however, it remains
to study these generalizations in more detail. In particular, the
cases of nonconvex `, and sublinear schemes such as SGD
(see also discussion in Appendix A.1). Furthermore, we have
avoided making assumptions on the perturbations �k, however,
by imposing additional assumptions on the frequency or size of
these perturbations, one could derive tighter upper bounds on
the rework cost. On the systems side, we proposed Theorem
3.1 primarily as a tool for analyzing existing systems and
guiding the design of new systems. However, there exists
opportunities for systems to more directly utilize Theorem
3.1. By approximating c and kx(0)�x⇤k, we may obtain a
predictive model which can be evaluated on-the-fly to inform
decisions made by a system during run-time.
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