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1. Frequency Masking Threshold
In this section, we detail how we compute the frequency
masking threshold for constructing imperceptible adversar-
ial examples. This procedure is based on psychoacoustic
principles which were refined over many years of human
studies. For further background on psychoacoustic mod-
els, we refer the interested reader to (Lin & Abdulla, 2015;
Mitchell, 2004).

Step 1: Identifications of Maskers

In order to compute the frequency masking threshold of an
input signal x(n), where 0 ≤ n ≤ N , we need to first iden-
tify the maskers. There are two different classes of maskers:
tonal and nontonal maskers, where nontonal maskers have
stronger masking effects compared to tonal maskers. Here
we simply treat all the maskers as tonal ones to make sure
the threshold that we compute can always mask out the
noise. The normalized PSD estimate of the tonal maskers
p̄mx (k) must meet three criteria. First, they must be local
maxima in the spectrum, satisfying:

p̄x(k − 1) ≤ p̄mx (k) and p̄mx (k) ≥ p̄x(k + 1), (1)

where 0 ≤ k < N
2 .

Second, the normalized PSD estimate of any masker must
be higher than the threshold in quiet ATH(k), which is:

p̄mx (k) ≥ ATH(k), (2)

where ATH(k) is approximated by the following frequency-
dependency function:

ATH(f) = 3.64(
f

1000
)−0.8 − 6.5 exp{−0.6(

f

1000
− 3.3)2}

+ 10−3(
f

1000
)4.

(3)

The quiet threshold only applies to the human hearing range
of 20Hz ≤ f ≤ 20kHz. When we perform short time
Fourier transform (STFT) to a signal, the relation between
the frequency f and the index of sampling points k is

f =
k

N
· fs, 0 ≤ f < fs

2
(4)

where fs is the sampling frequency and N is the window
size.

Last, the maskers must have the highest PSD within the
range of 0.5 Bark around the masker’s frequency, where bark
is a psychoacoustically-motivated frequency scale. Human’s
main hearing range between 20Hz and 16kHz is divided
into 24 non-overlapping critical bands, whose unit is Bark,
varying as a function of frequency f as follows:

b(f) = 13 arctan(
0.76f

1000
) + 3.5 arctan(

f

7500
)2. (5)

As the effect of masking is additive in the logarithmic
domain, the PSD estimate of the the masker is further
smoothed with its neighbors by:

p̄mx (k̄) = 10 log10[10
p̄x(k−1)

10 + 10
p̄mx (k)

10 + 10
p̄x(k+1)

10 ] (6)

Step 2: Individual masking thresholds

An individual masking threshold is better computed with
frequency denoted at the Bark scale because the spreading
functions of the masker would be similar at different Barks.
We use b(i) to represent the bark scale of the frequency in-
dex i. There are a number of spreading functions introduced
to imitate the characteristics of maskers and here we choose
the simple two-slope spread function:

SF[b(i), b(j)] =

{
27∆bij , if ∆bij ≤ 0.

G(b(i)) ·∆bij , otherwise
(7)

where
∆bij = b(j)− b(i), (8)

G(b(i)) = [−27 + 0.37 max{p̄mx (b(i))− 40, 0}] (9)

where b(i) and b(j) are the bark scale of the masker at
the frequency index i and the maskee at frequency index j
respectively. Then, T [b(i), b(j)] refers to the masker at Bark
index b(i) contributing to the masking effect on the maskee
at bark index b(j). Empirically, the threshold T [b(i), b(j)]
is calculated by:

T [b(i), b(j)] = p̄mx (b(i))+∆m[b(i)]+SF[b(i), b(j)], (10)



Supplementary Material for Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition

where ∆m[b(i)] = −6.025 − 0.275b(i) and SF[b(i), b(j)]
is the spreading function.

Step 3: Global masking threshold

The global masking threshold is a combination of individual
masking thresholds as well as the threshold in quiet via
addition. The global masking threshold at frequency index
i measured with Decibels (dB) is calculated according to:

θx(i) = 10 log10[10
ATH(i)

10 +

Nm∑
j=1

10
T [b(j),b[i]]

10 ], (11)

where Nm is the number of all the selected maskers. The
computed θx is used as the frequency masking threshold
for the input audio x to construct imperceptible adversarial
examples.

2. Stability in Optimization
In case of the instability problem during back-propagation
due to the existence of the log function in the threshold
θx(k) and the normalized PSD estimate of the perturbation
p̄δ(k), we remove the term 10 log10 in the PSD estimate of
pδ(k) and px(k) and then they become:

pδ(k) =

∣∣∣∣ 1

N
sδ(k)

∣∣∣∣2 , px(k) =

∣∣∣∣ 1

N
sx(k)

∣∣∣∣2 (12)

and the normalized PSD of the perturbation turns into

p̄δ(k) =
109.6pδ(k)

maxk{px(k)}
. (13)

Correspondingly, the threshold θx(k) becomes:

θx(k) = 10
θx
10 (14)

3. Notations and Definitions
The notations and definitions used in our proposed algo-
rithms are listed in Table 1.

4. Implementation Details
The adversarial examples generated in our paper are all
optimized via Adam optimizer (Kingma & Ba, 2014). The
hyperparameters used in each section are displayed below.

4.1. Imperceptible Adversarial Examples

In order to construct imperceptible adversarial examples, we
divide the optimization into two stages. In the first stage, the
learning rate lr1 is set to be 100 and the number of iterations
T1 is 1000 as (Carlini & Wagner, 2018). The max-norm

Algorithm 1 Optimization with Masking Threshold
Input: audio waveform x, target phrase y, ASR system
f(·), perturbation δ, loss function `(x, δ, y), hyperparam-
eters ε and α, learning rate in the first stage lr1 and second
stage lr2, number of iterations in the first stage T1 and
second stage T2.
# Stage 1: minimize ‖δ‖
Initialize δ = 0, ε = 2000 and α = 0.
for i = 0 to T1 − 1 do
δ ← δ − lr1 · sign(∇δ`(x, δ, y))
Clip ‖δ‖ ≤ ε
if i % 10 = 0 and f(x+ δ) = y then

if ε > max(‖δ‖) then
ε← max(‖δ‖)

end if
ε← 0.8 · ε

end if
end for

# Stage 2: minimize the perceptibility
Reassign α = 0.05
for i = 0 to T2 − 1 do
δ ← δ − lr2 · ∇δ`(x, δ, y)
if i % 20 = 0 and f(x+ δ) = y then
α← 1.2 · α

end if
if i % 50 = 0 and f(x+ δ) 6= y then
α← 0.8 · α

end if
end for
Output: adversarial example x′ = x+ δ

bound ε starts from 2000 and will be gradually reduced
during optimization. In the second stage, the number of
iterations T2 is 4000. The learning rate lr2 starts from 1 and
will be reduced to be 0.1 after 3000 iterations. The adaptive
parameter α which balances the importance between `net
and `θ begins with 0.05 and gradually updated based on the
performance of adversarial examples. Algorithm 1 shows
the details of the two-stage optimization.

4.2. Robust Adversarial Examples

To develop the robust adversarial examples that could work
after played over-the-air, we also optimize the adversarial
perturbation in two stages. The first stage intends to find a
relative small perturbation while the second stage focuses
on making the constructed adversarial example more robust
to random room configurations. The learning rate lr1 in the
first stage is 50 and δ will be updated for 2000 iterations.
The max-norm bound ε for the adversarial perturbation δ
starts from 2000 as well and will be gradually reduced. In
the second stage, the number of iterations is set to be 4000
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x The clean audio input
δ The adversarial perturbation added to clean audio
x′ The constructed adversarial example
y The targeted transcription
f(·) The attacked neural network (ASR)
F (·) Fourier transform
k The index of the spectrum
N The window size in short term Fourier transform
sx(k) The k-th bin of the spectrum for audio x
sδ(k) The k-th bin of the spectrum for perturbation δ
px(k) The log-magnitude power spectral density (PSD) for audio x at index k
p̄x(k) The normalized PSD estimated for audio x at index k
pδ(k) The log-magnitude power spectral density (PSD) for audio δ at index k
p̄δ(k) The normalized PSD estimated for audio δ at index k
θx(k) The frequency masking threshold for audio x at index k
`(x, δ, y) Loss function to optimize to construct adversarial examples
`net(·, y) Loss function to fool the neural network with the input (·) and output y
`θ(x, δ) Imperceptibility loss function
α A hyperparameter to balance the importance of `net and `θ
‖·‖ Max-norm
ε Max-norm bound of perturbation δ
∇δ(·) The gradient of (·) with regard to δ
lr1, lr2, lr3 The learning rate in gradient descent
r Room reverberation
t(·) The room transformation related to the room configuration
T The distribtion from which the transformation t(·) is sampled from
δ∗im The optimized δ in the first stage in constructing imperceptible adversarial examples
ε∗r The optimized ε in the first stage in constructing robust adversarial examples
δ∗r The optimized δ in the first stage in constructing robust adversarial examples
ε∗∗r The max-norm bound for δ used in the second stage in constructing robust adversarial examples
δ∗∗r The optimized δ in the second stage in constructing robust adversarial examples
∆ The difference between ε∗∗r − ε∗r
Ω A set of transformations sampled from distribution T
M The size of the transformation set Ω

Table 1. Notations and Definitions used in our algorithms.

Original phrase 1 the more she is engaged in her proper duties the less leisure will she have for it even as an
accomplishment and a recreation

Targeted phrase 1 old will is a fine fellow but poor and helpless since missus rogers had her accident
Original phrase 2 a little cracked that in the popular phrase was my impression of the stranger who now made his

appearance in the supper room
Targeted phrase 2 her regard shifted to the green stalks and leaves again and she started to move away

Table 2. Examples of the original and targeted phrases on the LibriSpeech dataset.
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and the learning rate lr2 is 5. In this stage, ε is fixed and
equals the optimized ε∗r in the first stage plus ∆. The size
of transformation set Ω is set to be M = 10.

4.3. Imperceptible and Robust Attacks

To construct imperceptible as well as robust adversarial
examples, we begin with the robust adversarial examples
generated in Section. 4.2. In the first stage, we focus on
reducing the imperceptibility by setting the initial α to be
0.01 and the learning rate is set to be 1. We update the adver-
sarial perturbation δ for 4000 iterations. If the adversarial
example successfully attacks the ASR system in 4 out of
10 randomly chosen rooms, then α with be increased by 2.
Otherwise, for every 50 iterations, α will be decreased by
0.5.

In the second stage, we focus on improving the less percep-
tible adversarial examples to be more robust. The learning
rate is 1.5 and α starts from a very small value 0.00005. The
perturbation will be further updated for 6000 iterations. If
the adversarial example successfully attacks the ASR sys-
tem in 8 out of 10 randomly chosen rooms, then α will be
increased by 1.2.

5. Transcription Examples
Some examples of the original phrases and targeted tran-
scriptions from the LibriSpeech dataset (Panayotov et al.,
2015) are shown in Table 2.
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