
A. The Optimality Condition for qθ

Theorem A.1. For the mean-field variational distribution,
the optimal qθ(yn|xV) of each node n is given by the fol-
lowing fixed-point condition:

log qθ(yn|xV) =
Eqθ(yNB(n)∩U |xV)[log pφ(yn|yNB(n),xV)] + const.

Proof. To make the notation more concise, we will omit
xV in the following proof (e.g. simplifying qθ(yn|xV) as
qθ(yn)). Recall that our overall goal for qθ is to minimize
the KL divergence between qθ(yU) and pφ(yU |yL). Based
on that, if we consider each individual node n0, the objective
function for qθ(yn0) is given as follows:

O(qθ(yn0
)) = −KL(qθ(yU)||pφ(yU |yL))

=
∑
yU

qθ(yU)[log pφ(yU |yL)− log qθ(yU)]

=
∑
yU

∏
n

qθ(yn)

[
log pφ(yU ,yL)−

∑
n

log qθ(yn)

]
+ const

=
∑
yn0

∑
yU\n0

qθ(yn0
)
∏
n 6=n0

qθ(yn)[
log pφ(yU ,yL)−

∑
n

log qθ(yn)

]
+ const

=
∑
yn0

qθ(yn0
)
∑

yU\n0

∏
n 6=n0

qθ(yn) log pφ(yU ,yL)

−
∑
yn0

qθ(yn0)
∑

yU\n0

∏
n 6=n0

qθ(yn)∑
n 6=n0

log qθ(yn) + log qθ(yn0
)

+ const

=
∑
yn0

qθ(yn0
) logF (yn0

)−
∑
yn0

qθ(yn0
) log qθ(yn0

)

+ const

=− KL
(
qθ(yn0)||

F (yn0)

Z

)
+ const.

(1)
Here, Z is a normalization term, which makes F (yn0) a
valid distribution on yn0

, and we have

logF (yn0
) =

∑
yU\n0

∏
n 6=n0

qθ(yn) log pφ(yU ,yL)

= Eqθ(yU\n0
)[log pφ(yU ,yL)].

Based on the Eq.(1), the optimal qθ(yn0) is achieved when

it equals to F (yn0
)

Z , and thus we have:

log qθ(yn0) = logF (yn0) + const
= Eqθ(yU\n0

)[log pφ(yU ,yL)] + const

= Eqθ(yU\n0
)

[
log pφ(yn0

|yV \n0
)
]
+ const

= Eqθ(yU\n0
)

[
log pφ(yn0 |yNB(n0))

]
+ const

= Eqθ(yNB(n0)∩U)

[
log pφ(yn0

|yNB(n0))
]
+ const.

Here, pφ(yn0
|yV \n0

) = pφ(yn0
|yNB(n0)) is based on the

conditional independence property of Markov networks.

B. Additional Experiment
B.1. Results on Random Data Splits

Table 1. Results on random data splits (%).
Algorithm Cora Citeseer Pubmed

GCN 81.5 71.3 80.3
GAT 82.1 71.5 80.1

GMNN 83.1 73.0 81.9

In the previous experiment, we have seen that GMNN
significantly outperforms all the baseline methods for
semi-supervised object classification under the data splits
from Yang et al. (2016). To further validate the effectiveness
of GMNN, we also evaluate GMNN on some random data
splits. Specifically, we randomly create 10 data splits for
each dataset. The size of the training, validation and test
sets in each split is the same as the split in Yang et al. (2016).
We compare GMNN with GCN (Kipf & Welling, 2017) and
GAT (Veličković et al., 2018) on those random data splits,
as they are the most competitive baseline methods. For each
data split, we run each method with 10 different seeds, and
report the overall mean accuracy in Tab. 1. We see GMNN
consistently outperforms GCN and GAT on all datasets,
proving the effectiveness and robustness of GMNN.

B.2. Results on Few-shot Learning Settings

Table 2. Results on few-shot learning settings (%).
Algorithm Cora Citeseer Pubmed

GCN 74.9 69.0 76.9
GAT 77.0 68.9 75.4

GMNN 78.6 72.7 79.1

In the previous experiment, we have proved the effectiveness
of GMNN for object classification in the semi-supervised
setting. Next, we further conduct experiment in the few-
short learning setting to evaluate the robustness of GMNN
to data sparsity. We choose GCN and GAT for comparison.

For each dataset, we randomly sample 5 labeled nodes under
each class as training data, and run each method with 100
different seeds. The mean accuracy is shown in Tab. 2. We
see GMNN significantly outperforms GCN and GAT. The
improvement is even larger than the case of semi-supervised
setting, where 20 labeled nodes under each class are used
for training. This observation proves the effectiveness of
GMNN even when labeled objects are extremely limited.

B.3. Comparison with Self-training Methods

Table 3. Comparison with self-training methods (%).
Algorithm Cora Citeseer Pubmed

Self-training 82.7 72.4 80.1
GMNN 83.4 73.1 81.4

Our proposed GMNN approach is related to self-training
frameworks. In GMNN, the pφ network essentially seeks
to annotate unlabeled objects, and the annotated objects are
further treated as extra data to update qθ through Eq. (??).
Similarly, in self-training frameworks, we typically use qθ
itself to annotate unlabeled objects, and collect additional
training data for qθ. Next, we compare GMNN with the self-
training method in the semi-supervised object classification
task, and the results are presented in Tab. 3.

We see GMNN consistently outperforms the self-training
method. The reason is that the self-training method uses qθ
for both inference and annotation, while GMNN uses two
different networks qθ and pφ to collaborate with each other.
The information captured by qθ and pφ is complementary,
and therefore GMNN achieves much better results.

B.4. Comparison of Different Approximation Methods

Table 4. Comparison of different approximation methods (%).

Method Cora Citeseer Pubmed
Single Sample 82.1 71.5 80.4

Multiple Samples 83.2 72.5 81.1
Annealing 83.4 73.1 81.4

Max Pooling 83.2 72.8 81.2
Mean Pooling 83.4 72.6 80.5

In GMNN, we use a mean-field variational distribution qθ
for inference, and the optimal qθ is given by the fixed-point
condition in Eq. (??). Learning the optimal qθ requires
computing the right side of Eq. (??), which involves the
expectation with respect to qθ(yNB(n)∩U |xV) for each node
n. To estimate the expectation, we notice qθ(yNB(n)∩U |xV)
can be factorized as

∏
k∈NB(n)∩U qθ(yk|xV). Based on that,

we can develop several approximation methods.

Single Sample. The simplest way is to draw a sample

ŷk ∼ qθ(yk|xV) for each k ∈ NB(n) ∩ U , and use the
sample to estimate the expectation.

Multiple Samples. In practice, we can also draw multiple
samples from qθ(yk|xV) to estimate the expectation. Such
a method has lower variance but entails higher cost.

Annealing. Another method is to introduce an annealing
parameter τ in qθ(yk|xV), such that we have:

qθ(yk|xV) = Cat(yn|softmax(
Wθhθ,n

τ
)).

Then we can set τ to a small value (e.g. 0.1) and draw a
sample ŷk ∼ qθ(yk|xV) for k ∈ NB(n) ∩ U to estimate
the expectation, which typically has lower variance.

Max Pooling. Another method is max pooling, where we
set ŷk = argmaxyk qθ(yk|xV) for k ∈ NB(n) ∩ U , and
use {ŷk}k∈NB(n)∩U as a sample to estimate the expectation.

Mean Pooling. Besides, we can also use the mean pool-
ing method similar to the soft attention method in Deng
et al. (2018). Specifically, we set ȳk = Eqθ(yk|xV)[yk] for
each unlabeled neighbor k of the object n, which can be
understood as a soft label vector of that neighbor. For each
labeled neighbor k of the object n, we set ȳk as the one-hot
label vector. Then we can approximate the expectation as:

Eqθ(yNB(n)∩U |xV)[log pφ(yn|yNB(n),xV)]

≈pφ(yn|ȳNB(n),xV)] , Cat(yn|softmax(Wφhφ,n))

where the object representation hφ,n is learned by feeding
{ȳk}k∈NB(n) as features in a graph neural network g:

hφ,n = g(ȳNB(n), E).

Comparison. We empirically compare different methods in
the semi-supervised object classification task, where we use
10 samples for the multi-sample method and the parameter
τ in the annealing method is set as 0.1. Tab. 4 presents the
results. We see the annealing method consistently outper-
forms other methods on all datasets, and therefore we use
the annealing method for all the experiments in the paper.

B.5. Best Results with Standard Deviation

Table 5. Best results on semi-supervised object classification (%).

Algorithm Cora Citeseer Pubmed
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

GMNN 83.675 ± 0.900 73.576 ± 0.795 81.922 ± 0.529
p-value < 0.0001 < 0.0001 < 0.0001

Finally, we present the best mean accuracy together with
the standard deviation of GMNN over 100 runs in Tab. 5.
The improvement over GAT is statistically significant.

References
Deng, Y., Kim, Y., Chiu, J., Guo, D., and Rush, A. Latent

alignment and variational attention. In NeurIPS, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting semi-
supervised learning with graph embeddings. In ICML,
2016.

