Nonlinear Distributional Gradient Temporal-Difference Learning

Chao Qu' Shie Mannor?> Huan Xu34

Abstract

We devise a distributional variant of gradient
temporal-difference (TD) learning. Distributional
reinforcement learning has been demonstrated to
outperform the regular one in the recent study
(Bellemare et al., 2017a). In the policy evaluation
setting, we design two new algorithms called dis-
tributional GTD2 and distributional TDC using
the Cramér distance on the distributional version
of the Bellman error objective function, which
inherits advantages of both the nonlinear gradi-
ent TD algorithms and the distributional RL ap-
proach. In the control setting, we propose the
distributional Greedy-GQ using the similar deriva-
tion. We prove the asymptotic almost-sure conver-
gence of distributional GTD2 and TDC to a local
optimal solution for general smooth function ap-
proximators, which includes neural networks that
have been widely used in recent study to solve the
real-life RL problems. In each step, the computa-
tional complexities of above three algorithms are
linear w.r.t. the number of the parameters of the
function approximator, thus can be implemented
efficiently for neural networks.

1. Introduction

Reinforcement learning (RL) considers a problem where an
agent interacts with the environment to maximize the cumu-
lative reward trough time. A standard approach to solve the
RL problem is called value function based reinforcement
learning, which finds a policy that maximizes the value func-
tion V' (s) (Sutton & Barto, 1998). Thus, the estimation of
the value function of a given stationary policy of a Markov
Decision Process (MDP) is an important subroutine of gen-
eralized policy iteration (Sutton & Barto, 1998) and a key

! Ant Financial Services Group, Hang Zhou, China *Faculty
of Electrial Engineering, Technion, Haifa, Israel 3 Alibaba Group,
Seattle, USA *H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Tech, Atlanta, USA. Correspondence to:
Chao Qu <luoji.qc@antfin.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

intermediate step to generate good control policy (Gelly &
Silver, 2008; Tesauro, 1992). The value function is known
to solve the Bellman equation, which succinctly describes
the recursive relation on state-action value function Q(s, a).

Q"(s,a) =ER(s,a) + 1By o Q" (s, d'),

where the expectation is taken over the next state s’ ~
P(-|s,a), the reward R(s,a) and the action a’ from policy
m, «y is the discount factor. Hence, many RL algorithms are
based on the idea of solving the above Bellman equation
in a sample driven way, and one popular technique is the
temporal-difference (TD) learning (Sutton & Barto, 1998).

The last several years have witnessed the success of the TD
learning with the value function approximation (Mnih et al.,
2015; Van Hasselt et al., 2016), especially when using a deep
neural network. In their seminal work, Tsitsiklis & Van Roy
(1996) proved that the TD()) algorithm converges when
a linear function approximator is implemented and states
are sampled according to the policy evaluated (sometimes
referred as on-policy setting in RL literature). However, if ei-
ther the function approximator is non-linear, or the on-policy
setting does not hold, there are counterexamples that demon-
strate that TD()\) may diverge. To mitigate this problem,
a family of TD-style algorithms called Gradient Temporal
Difference (GTD) are proposed by (Sutton et al., 2009b;a)
that address the instability of the TD algorithm with the
linear function approximator in the off-policy setting. These
works rely on the objective function called mean-squared
projected Bellman error (MSPBE) whose unique optimum
are the fixed points of the TD(0) algorithm. Bhatnagar et al.
(2009) extend this idea to the non-linear smooth function
approximator (e.g., neural networks) and prove the conver-
gence of the algorithm under mild conditions. In the control
setting, Maei et al. (2010) propose Greedy-GQ which has
similar objective function as MSPBE but w.r.t. the Bellman
optimality operator.

Recently, the distributional perspective on reinforcement
learning has gained much attention. Rather than study on
the expectation of the long term return (i.e., Q(s,a)), it
explicitly takes into consideration the stochastic nature of
the long term return Z(s, a) (whose expectation is Q(s, a)).
The recursion of Z(s, a) is described by the distributional

Nonlinear Distributional Gradient Temporal-Difference Learning

Bellman equation as follows,
Z(s,a) 2 R(s,a) +12(s,), (M

where 2 stands for “equal in distribution” (see Section 2
for more detailed explanations). The distributional Bell-
man equation essentially asserts that the distribution of Z is
characterized by the reward R, the next random state-action
(s',a’) following policy 7 and its random return Z(s', a’).
Following the notion in (Bellemare et al., 2017a) we call Z
the value distribution. Bellemare et al. (2017a) showed that
for a fixed policy the Bellman operator over value distribu-
tions is a y-contraction in a maximal form of the Wasserstein
metric, thus making it possible to learn the value distribution
in a sample driven way. There are several advantages to
study the value distributions: First, real-life decision makers
sometimes are interested in seeking big wins on rare occa-
sions or avoiding a small chance of suffering a large loss.
For example, in financial engineering, this risk-sensitive
scenario is one of the central topics. Because of this, risk-
sensitive RL has been an active research field in RL (Heger,
1994; Defourny et al., 2008; Bagnell & Schneider, 2003;
Tamar et al., 2016), and the value distribution obviously
provides a very useful tool in designing risk-sensitive RL al-
gorithms. Second, it can model the uncertainty. Engel et al.
(2005) leveraged the distributional Bellman equation to de-
fine a Gaussian process over the unknown value function.
Third, from the algorithmic view, as discussed in (Bellemare
et al., 2017a), the distributional Bellman operator preserves
multimodality in value distribution, which leads to more
stable learning. From the exploration-exploitation tradeoff
perspective, if the value distribution is known, the agent
can explore the region with high uncertainty, which is of-
ten called “optimism in the face of uncertainty” (Kearns &
Singh, 2002; O’Donoghue et al., 2017).

Contributions: Although distributional approaches on RL
(e.g., C51 in (Bellemare et al., 2017a)) have shown promis-
ing results, theoretical properties of them are not well un-
derstood yet, especially when the function approximator is
nonlinear. As nonlinear function approximation is inevitable
if we hope to combine RL with deep neural networks — a
paradigm with tremendous recent success that enables auto-
matic feature engineering and end-to-end learning to solve
the real problem. Therefore, to extend the applicability of
the distributional approach to the real problem and close the
gap between the theory and practical algorithms, we propose
the nonlinear distributional gradient temporal-difference
learning. It inherits the merits of non-linear gradient TD
and distributional approaches mentioned above. Using the
similar heuristic, we also propose a distributional control
algorithm called distributional Greedy-GQ.

The contributions of this paper are the following.

e We propose a distributional MSPBE (D-MSPBE) as

the objective function to optimize, which is an exten-
sion of MSPBE when the stochastic nature of the ran-
dom return is considered.

e We derive two stochastic gradient algorithms to opti-
mize the D-MSPBE using the weight-duplication trick
in (Sutton et al., 2009b; Bhatnagar et al., 2009). In
each step, the computational complexity is linear w.r.t.
the number of parameters of the function approxima-
tor, thus can be efficiently implemented for neural net-
works.

e We propose a distributional RL algorithm in the control
setting called distributional Greedy-GQ, which is an
distributional counterpart of (Maei et al., 2010).

e We prove distributional GTD2 and TDC converge to
a local optimal solution in the policy evaluation set-
ting under mild conditions using the two-time-scale
stochastic approximation argument. If the linear func-
tion approximator is applied we have the finite sample
bound.

Remarks: More precisely, we have m addition operations in
each step of the algorithm (see our algorithm) but the costs
of them are negligible compared to computations in neural
networks in general. Thus the computational complexity in
each step is still linear w.r.t. the number of parameters of
the function approximator (neural networks).

2. Problem setting and preliminaries

We consider a standard setting in reinforcement learning,
where an agent acts in a stochastic environment by sequen-
tially choosing actions over a sequence of time steps, in
order to maximize the cumulative reward (Sutton & Barto,
1998). This problem is formulated as a Markov Deci-
sion Process (MDP) which is a 5-tuple (S, A, R, P,~):
S is the finite state space, A is the finite action space,
P = (P(s']s,a))s,s’es,ac4 are the transition probabili-
ties, R = (R(s,a))s,s'eS,ac.4 are the real-valued immedi-
ate rewards and v € (0,1) is the discount factor. A pol-
icy is used to select actions in the MDP. In general, the
policy is stochastic and denoted by m, where 7 (s, a;) is
the conditional probability density at a; associated with
the policy. We also define R™(s) = > . 4 7(s,a)R(s,a),
P7(s,s") =3 ,cam(s,a)P(s'|s,a).

Suppose the policy 7 to be evaluated is followed and it gener-
ates a trajectory (sg, ag, 71, $1, 01,72, $2, ...). We are given
an infinite sequence of 3-tuples (s;, r¢, s}) that satisfies the
following assumption.

Assumption 1. (s;);>¢ is an S-valued stationary Markov
process, s; ~ d(-), r+ = R™(s¢) and s} ~ P™(sy,).

Nonlinear Distributional Gradient Temporal-Difference Learning

Here d(-) denotes the probability distribution over initial
states for a transition. Since stationarity is assumed, we
can drop the index ¢ in the #*" transition (s¢, 7, s}) and use
(s,r,s") to denote a random transition. The (state-action)
value function Q™ of a policy 7 describes the expected
return from taking action a € A from state s € S.

o0

Q7 (s,a) =]EZ Y R(st,az),

t=0

st ~ P(:|st—1,at-1),ar ~ w(-|st),80 = 8,a9 = a. Itis
well known that the value function Q7 (s, a) satisfies the
Bellman equation. Q™ (s,a) = ER(s,a) + YEQ™ (¢,).
Define the Bellman operator as (7 Q™) (s, a) := ER(s,a) +
YEQ™(s',a’), then the Bellman equation becomes Q™ =
TQT. To lighten the notation, from now on we may drop
the superscript m when the policy to be evaluated is kept
fixed.

2.1. Distributional Bellman equation and Cramér
distance

Recall that the return Z is the sum of discounted reward
along the agent’s trajectory of interactions with the environ-
ment, and hence Q(s,a) = EZ(s, a). When the stochastic
nature of the return Z is considered, we need a distributional
variant of the Bellman equation which the distribution of Z
satisfies. Following the notion in (Bellemare et al., 2017a),
we define the transition operator P™:

P™Z(s,a) 2 Z(s',d), s ~ P(|s,a),d ~x(|s),

where A :2 B indicates that the random variable A is
distributed according to the same law of B. The distri-
butional Bellman operator 77 is 7™ Z(s, a) 2 R(s,a) +
~vPT™Z(s, a). For more rigorous definition and discussions
on this operator, we refer reader to (Bellemare et al., 2017a).

Bellemare et al. (2017a) prove that the distributional Bell-
man operator is a y-contraction in a maximal form of the
Wasserstein metric. However as pointed by them (see propo-
sition 5 in their paper), in practice, it is hard to estimate
the Wasserstein distance using samples and furthermore
the gradient estimation w.r.t. the parameter of the function
approximator is biased in general. Thus KL divergence is
implemented instead in the algorithm C51 rather than the
Wasserstein metric. However the KL divergence may not
be robust to the discrepancies in support of distribution (Ar-
jovsky et al., 2017). In this paper, we adapt the Cramér
distance (Székely, 2003; Bellemare et al., 2017b) instead,
since the unbiased sample gradient estimaton of Cramér
distance can be easily obtained in the setting of reinforce-
ment learning (Bellemare et al., 2017b). The square root of
Cramér distance is defined as follows: Suppose there are
two distributions P and (and their cumulative distribution

functions are F'p and F{; respectively, then the square root
of Cramér distance between P and () is

6(PQ) = (/

— 00

(o]

(Fp(z) — Fo(x))dz)".
Intuitively, it can be thought of as the two norm on the
distribution function. Indeed, the distributional Bellman
operator is a ,/y-contraction in a maximal form of the
square root of Cramér distance. Here, for two random
return Z;, Zs with distribution Pz, and Pyz,, a maximal
form of the square root of Cramér distance is defined as
éQ(le) PZQ) = SUDPg o éQ(PZ1 (57 a)v PZ2 (Sv a’))
Proposition 1. Uy is a metric over value distributions and
T™ is a \/y— contraction in 0.

The proof is similar to Theorem 2 in (Bellemare et al.,
2017b) and and proposition 2 in (Rowland et al., 2018).

2.2. Gradient TD and Greedy-GQ

We now review linear and nonlinear gradient TD and
Greedy-GQ proposed by (Sutton et al., 2009b; Bhatna-
gar et al., 2009; Maei et al., 2010), which helps to better
understand the nonlinear distributional gradient TD and
distributional Greedy-GQ. One approach in reinforcement
learning for large scale problems is to use a linear function
approximation for the value function V. Particularly, the
value function is V(s) = 67 ¢(s), where the feature map
isgp:S — R?, and 6 € R? is the parameter of the linear
model. The objective function of the gradient TD family is
the mean squared projected Bellman error (MSPBE).

1 - N
MSPBE(9) = 5||V ~TV|3%, (2)

where V is the vector of value function over S , Dis adi-
agonal matrix with diagonal elements being the stationary
distribution d(s) over S induced by the policy 7, and II is
the weighted projection matrix onto the linear space spanned
by ¢(1), ..., p(|S]), which is IT = ®(®T D®)~1dT D. Sub-
stitute II into (2), the MSPBE can be written as

1 R N
MSPBE(0) =5[|®"D(V = TV)|[fgr pg) -)
:%E[6¢]TE[¢¢T]_1E[5¢],

where § is the TD error for a given transition (s,r,s’),
ie, d = r+ v07¢' — 6T ¢. Its negative gradient is
—3VMSPBE() = E[(¢ — v¢')¢"w, where w =
E[¢pp?]~ LE[6¢]. Sutton et al. (2009b) use the weight-
duplication trick to update w on a “faster” time scale as
follows w41 = wy + B¢ (5 — ¢ wy) py. Two different ways
to update 6 leads to GTD2 and TDC.

011 = 0 + o (¢ — v9}) (df wi) (GTD2),
Orp1 = 0; + ey — b, (¢ wy) (TDO).

Nonlinear Distributional Gradient Temporal-Difference Learning

Once the nonlinear approximation is used, we can optimize
a slightly different version of MSPBE. There is an additional
term h; in the update rule

Orr1 = 0y + cu{(dr — v¢,) (0f wi) — hy} GTD2
See more discussion in section 3.

Similarly, Greedy-GQ optimizes the following objective
function,

J(0) = [OT™Qq — Qo

where 7y is a greedy policy w.r.t. QQy. Reusing the weight-
duplication trick, Maei et al. (2010) give the update rule.

Orp1 =0, + 010y — ’Y(U’tTQS)Qg]a

Wiy1 = Wy + Bidr41 — o7 wiler,

where gZA) is an unbiased estimate of expected value of the
next state under 7g.

3. Nonlinear Distributional Gradient TD

In this section, we propose distributional Gradient TD algo-
rithms by considering the Cramér distance between value
distribution of Z(s,a) and T Z(s,a) which is a distribu-
tional counterpart of (Bhatnagar et al., 2009). To ease the
exposition, in the following we consider the value distribu-
tion on state s rather than the state-action pair (s, a) since
the extension to (s, a) is straightforward.

3.1. Distributional MSPBE (D-MSPBE)

Suppose there are |S| = n states. One simple choice of the
objective function is as follows

Z d(s:)05(Z (1), TZ(s1))- &)

However, a major challenge to optimize (5) is the double
sampling problem (Dann et al., 2014), i.e., two indepen-
dent samples are required from each state . To see that,
notice that if we only consider the expectation of the return,
(5) reduces to the mean squared Bellman error (MSBE),
and the corresponding algorithms to minimize MSBE are
the well-known residual gradient algorithms (Baird, 1995),
which is known to require two independent samples for each
state (Dann et al., 2014). To get around the double sampling
problem, we instead adapt MSPBE into its distributional ver-
sion. To simplify the problem, we follow (Bellemare et al.,
2017a) and assume that the value distribution is discrete with
range [Vinin, Vimax) and whose support is the set of atoms
{zj =Vain+({—1DAz:1<j<m}, Az := %
In practice Vi and Vi,ax are not hard to get. For instance,
suppose we know the bound on the reward |r| < b, then we
can take Vinin, Vinax as i%. We further assume that the

atom probability can be given by a parametric model 6 such
as a softmax function:

exp(lo(si, 2;))

i1exp(lo(si, 2;))

po(si,2;) = >

where £y (s;, Zj) can be a non-linear function, e.g., a neural
network. From an algorithmic perceptive, such assumption
or approximation is necessary, since it is hard to represent
the full space of probability distributions.

We denote the (cumulative) distribution function of Z(s) as
Fy(s,z). Notice Fp(s, z) is non-linear w.r.t. § in general,
thus it is not restricted to a hyperplane as that in the linear
function approximation. Following the non-linear gradi-
ent TD in (Bhatnagar et al., 2009), we need to define the
tangent space at 6. Particularly, we denote F € R"™*!
as a vector of Fy(s;,2;),4 = 1,...,n,j = 1,...m and as-
sume Fy is a differentiable function of . M = {Fy €
R"™*1|9 € R?} becomes a differentiable submanifold of
R™", Define ¢g(s, z) = % , then the tangent space
at 0 is TMy = {®pala € R}, where &y € R™"* jg
defined as (®g)((;,5),1) = %Fg(si, zj), i.e., each row of it
is ¢} (54, 2;). Let I be the projection that projects vectors
to TM. Particularly, to project the distribution function
F(s, z) onto the T M w.r.t. the Cramér distance, we need
to solve the following problem

2

o= argngnz Zd(si)<F(Sia Zj) — ¢o(si, Zj)TO‘))
(6)

where F'(s;, z;) is the value of distribution function of Z(s;)
at z;. Since this is a least squares problem, we have that the
projection operator has a closed form

[y = ®(P) DDy) 0] D,

where D is a nm X nm diagonal matrix with diagonal
elements being d(s1)I™*™, d(s9) ™™, ..., d(sp)™*™.
Given this projection operator, we propose the distributional
MSPBE (D-MSPBE). Particularly, the objective function to
optimize is as follows

mini‘lgnize: | Fy — TG,

where Gy € R"™*1 is the vector form of Gy(s;, zj), and
G (s, zj) is the value of distribution function of 7 Z(s;) at
atom z;. Assume (@] D®y)~! is non-singular, similar to
the MSPBE, we rewrite the above formulation into another

form.
D-MSPBE:

minimize: J(6) := @3 D(Fy — G9)||%¢,5D%),1.

(7N
To better understand D-MSPBE, we compare it wigh
MSPBE. First, in equation (3), we have the term V' — T'V,

Nonlinear Distributional Gradient Temporal-Difference Learning

which is the difference between the value function V and
TV, while we have the difference between the distribution
of Z and T'Z in equation (7). Second, the D matrix is
slightly different, since in each state we need m atoms to
describe the value distribution. Thus we have the diago-
nal element as d(s;)I™>*™. Third, ®y is a gradient for Fy
and thus depends on the parameter 6 rather than a constant
feature matrix, which is similar to (Bhatnagar et al., 2009).

3.2. Distributional GTD2 and Distributional TDC

In this section, we use the stochastic gradient to optimize
the D-MSPBE (equation 7) and derive the update rule of
distributional GTD2 and distributional TDC.

The first step is to estimate ®} D(Fy — Gp) from sam-
ples. We denote Gy as the empirical distribution of Gy
and EGQ = (. Notice one unbiased empirical distribution
Go(s,-) at state s is the distribution of r + vZ(s'), whose
distribution function is Fy (s, Z;T) by simply shifting and
shrinking the distribution of Z(s’). Then we have

m

Z¢9(Sazj)(F9(57Zj) - 69(3’Zj))

Jj=1

®TD(Fy — Gy) =E
Then we can write D-MSPBE in the following way

=E(D do(s,2)(Fa(s, z) — Go(s,2))) "

j=1
EZ¢9 8,25)%

EZQS@ (s,2; Yoa (s zJ

j=1

(Fy(s, zj) — Go(s, %))

We define dg(s,2;) = Gy(s,z;) — Fy(s, z;), analogous
to the temporal difference, and call it temporal distribu-

tion difference. To ease the exposition, we denote A =
E>T ¢o(s,2)05 (s,2;). Then we have

=E(Z ®o(s,25)00(s, zj))TAfl X
= . @®)
EZ (¢a(s, z)0a(s, z)).

In the following theorem, we choose Gy(s,z) =
Fy(s', %57), an unbiased empirical distribution we men-
tioned above and give the gradient of D-MSPBE w.r.t. 6.
We defer the proof to the appendix.

Theorem 1. Assume that Fy(s, z;) is twice continuously
differentiable in 0 for any s € S and j € {1,...,m},
IEZ;“ 1 b0(s,2j)08 (s,2;) is non-singular in a small
neighborhood of 0. Denote h = E377 (dg(s,2j) —

wT g (s,2;))V2Fy(s, z;)w, then we have

1 o 2i—r
—=VoJ(0) =E> (dg(s,zj)—da(s’, L—))x

(255(8, Zj)w - h7
which has another form
1 " ZJ
—5 Ve (0 :—EZ¢ D)o (5, 2)w
(10
+ EZ(@(S’%W(S,%)) —h,
j=1

ATTEYTT) (da(s, 25)00(s, 25)).-

Based on Theorem 1, we obtain the algorithm of distribu-
tional GTD2 and distributional TDC. Particularly (9) leads
to Algorithm 1, and (10) leads to Algorithm 2. The dif-
ference between distributional gradient TD methods and
regular ones are highlighted in boldface.

where w =

Algorithm 1 Distributional GTD?2 for policy evaluation

Input: step size oy, step size 3, policy 7.
fort =0,1,...do

m

Wig1 = W+ z (=3, (st, 2)wi+Ba,) o, (51, 25)

j=1

m
Ors1 =T[0, + i { Y (%0, (51, %)
i=t
Zi — Tt
— do, (5141, ——)) b5, (s, 2)wi — he}]
I' : R — R% is a projection onto an compact set C'
with a smooth boundary.

ht = Em (601: - thQbet (Stﬂ Zj))v2F9t (5t7 Zj)wta
where 8, = Fp, (5441, -2 T”) — Fp, (st,2;).
end for

Some remarks are in order. We use distributional GTD2 as
an example, but all remarks hold for the distributional TDC
as well.

(1). We stress the difference between the the update rule
of GTD2 in (4) and that of the distributional GTD2 (high-
lighted in boldface): In the distributional GTD2, we use the
temporal distribution difference dg, instead of the temporal
difference in GTD2. Also notice there is a summation over
zj, which corresponds to the integral in the Cramér distance,
since we need the difference over the whole distribution
rather than a certain point. The term Z=" comes from

Nonlinear Distributional Gradient Temporal-Difference Learning

Algorithm 2 Distributional TDC for policy evaluation

Input: step size «y, step size 3y, policy 7.
fort=0,1,...do

m

W1 = Wi+ Z (—¢§; (St»zj)wt+50t)¢9t(stv 2j)-

i=1

Orv1 =T[0; + at{z (80, b0, (51, 2)—
j=1
Z; — T

b0, (8t415 ——) (95, (50, 2))w)) — he}].
I' : R — R9 is a projection onto an compact set C
with a smooth boundary.
he = 3521 (86, — wi ¢, (56, 25)) V2 Fo, (51, 2 Jwy,
where 09, = Fy, (S¢+1, zj;”) — Fy, (s¢, 25).

end for

the shifting and shrinkage on the distribution function of
Z (St+1) .

(2). The term h; results from the nonlinear function approxi-
mation, which is zero in the linear case. This term is similar
to the one in nonlinear GTD2 (Bhatnagar et al., 2009). No-
tice we do not need to explicitly calculate the Hessian in
the term V2 Fy, (s, z)w. This term can be evaluated using
forward and backward propagation in neural networks with
the complexity scaling linearly w.r.t. the number of parame-
ters in neural networks, see the work (Pearlmutter, 1994) or
chapter 5.4.6 in (Christopher, 2016). We give an example in
the appendix to illustrate how to calculate this term.

Zj—T¢

(3). It is possible that - is not on the support of the
distribution in practice. Thus we need to approximate it by
projecting it on the support of the distribution, e.g., round to
the nearest atoms. This projection step would lead to further
errors, which is out of scope of this paper. We refer readers
to related discussion in (Dabney et al., 2017; Rowland et al.,
2018), and leave its analysis as a future work.

(4). The aim of wy is to estimate w for a fixed value of 6.
Thus w is updated on a “faster” timescale and parameter 6
is updated on a “slower” timescale.

4. Distributional Greedy-GQ

In practice, we care more about the control problem. Thus
in this section, we propose the distributional Greedy-GQ
for the control setting. Now we denote Fy((s,a), z) as the
distribution function of Z (s, a). Policy g is a greedy policy
w.r.t. Q(s,a). i.e., the mean of Z(s,a). Go((s,a), 2) is the
distribution function of 77 Z((s;,a;)). The aim of the

distributional Greedy-GQ is to optimize following objective
function.
min || Fy — TIGo|7

Using almost similar derivation as distributional GTD2
(With only difference in notation and we omit the term
h: here), we give the following algorithm 3, analogous to
the Greedy-GQ (Maei et al., 2010).

Algorithm 3 Distributional Greedy-GQ
Input: step size oy, step size B;, 0 <np <1
fort=0,1,...do

Q(si+1,a) = 3270, 2pj(se, a), where pj(s;,a) is
the density function w.rt. Fyp((s,a)). a* =
arg max, Q(st41,a).

m

Wiyl = Wy + 5t2(— ¢4, ((st, 1), zj)we + 69,

j=1

X ¢0t((st7a’t)7 ZJ)

Orir = 0r + ar{D_ (30,60, (50, as), 2)—
j=1
Zj — Tt

no, ((st+1,a"),) (5, ((51,a1), zj)wy)) }.

where &, = Fy, ((5141,0a%), %)
Fo, ((st;at), 2)-
end for

Some remarks are in order.

e 0 < n < 1 interpolates the distributional Q-learning
and distributional Greedy-GQ. When 7 = 0, it reduces
to the distributional Q-learning with Cramér distance
while C51 uses KL-divergence. When n = 1 it is
the distributional Greedy-GQ where we mainly use
the temporal distribution difference Jy, to replace the
TD-error in (Maei et al., 2010).

e Unfortunately for the nonlinear function approximator
and control setting, so far we do not have convergence
guarantee. If the linear function approximation is used,
we may obtain a asymptotic convergence result follow-
ing the similar argument in (Maei et al., 2010). We
leave both of them as the future work.

5. Convergence analysis

In this section, we analyze the convergence of distributional
GTD2 and distributional TDC and leave the convergence of
distributional Greedy-GQ as a future work. To the best of
our knowledge, the convergence of control algorithm even in
the non-distributional setting is still a tricky problem. The

Nonlinear Distributional Gradient Temporal-Difference Learning

argument essentially follows the two time scale analysis
(e.g., theorem 2 in (Sutton et al., 2009a) and (Bhatnagar
et al., 2009)). We first define some notions used in our
theorem. Given a compact set C C RY, let C(C) be the
space of continuous mappings C' +— R?. Given projection I'
onto C, let operator I' : C(C) — C(R%) be
[w(0) = lim W
0<e—0 €

When 6 € C° (interior of C), T'v(#) = v(6) . Otherwise, if
0 € dC, T'w(f) is the projection of v(8) to the tangent space
of C' at . Consider the following ODE:

o— f(—%vm(e), 6(0) € C,

where J(0) is the D-MSPBE in (7). Let K be the set of
all asymptotically stable equilibria of the above ODE. By
the definitions X' C C. We then have the following conver-
gence theorem, which proof is deferred to the appendix.

Theorem 2. Let (s¢,r,5},)i>0 be a sequence of transi-
tions satisfying Assumption 1. The positive step-sizes in
Algogrithm 1 gond 2 satisfy Y ;oo ar = 00, 3,00 B = 00,
Sortoal, >, BE < coand Gt — 0,ast — oo. Assume
that for any 6 € C and s € S s.t. d(s) > 0, Fy is three
times continuously differentiable. Further assume that for
each§ € C, (E >y ols, 2j)03 (s, 2;)) is nonsingular.
Then 0; — K in Algorithm 1 and 2, with probability one,
ast — 0.

If we assume the distribution function can be approximated
by the linear function. We can obtain a finite sample bound.
Due to the limit of space we defer it to appendix.

6. Experimental result
6.1. Distributional GTD2 and distributional TDC

In this section, firstly we use a simple grid world experi-
ment to test the convergence of our distributional GTD2 and
distributional TDC in the off-policy setting. Then we assess
the empirical performance of them and compare the perfor-
mance with their non-distributional counterparts, namely,
GTD2 and TDC. Particularly, we use a simple cartpole
problem to test the algorithm, where we do several policy
evaluation steps to get a accurate estimation of value func-
tion and then do a policy improvement step. To apply distri-
butional GTD?2 or distributional TDC, we use a neural net-
work to approximate the distribution function Fy((s, a), z).
Particularly, in both experiments, we use a neural network
with one hidden layer. The inputs are state-action pairs, and
the output is a softmax function. There are 50 hidden units
and we choose the number of atoms as 30 in the distribution,
i.e., the number of outputs in softmax function is 30. In the
policy evaluation step, the update rule of w and 6 is simple,

since we just need to calculate the gradient of Fy, which can
be obtained by the forward and backward propagation. The
update rule of h; is slightly more involved, where we have
the term V2 Fy(s, z;)w;. Roughly speaking, it requires four
times as many computations as the regular back propagation
and we present the update rule in the appendix. In the grid
world problem, the target policy is set to be the optimal
policy. The data-generating policy is a small perturbation
on the optimal policy. In the control problem (cartpole),
we use the e-greedy policy over the expected action values,
where € starts at 0.1 and decreases gradually to 0.02. To im-
plement regular nonlinear GTD2 and TDC (Bhatnagar et al.,
2009), we still use one hidden layer neural network with
30 hidden units. The output is Q¢ (s, a). The control policy
is € greedy with e = 0.1 at the beginning and decreases to
€ = 0.02 gradually. In the experiment, we choose discount
factor v = 0.9. Since reward is bounded in [0, 1] in cartpole
problem, in distributional GTD2 and distributional TDC,
we choose Vi,in, = 0 and Vj,ax = 10. In the experiment, we
use 20 episodes to evaluate the policy, and then choose the
policy by the e-greedy strategy. We report all experimental
results in Figure 1. In the left panel of Figure 1, we test the
convergence of the distributional GTD2 and distributional
TDC in D-MSPBE. 1t is clearly to see that both algorithms
converge. In the middle panel of Figure 1, we compare dis-
tributional GTD2 and TDC with their vanilla counterparts.
We observe that the distributional GTD2 has the best re-
sult, followed by the distributional TDC. The distributional
TDC seems to improve the policy faster at the early stage
of the training and then slows down. The performance of
regular GTD2 and TDC are inferior than their distributional
counterparts. We also observe that standard deviations of
the distributional version are smaller than those of regular
one. In addition, the performance of the distributional al-
gorithms increases steadily with few oscillations. Thus the
simulation results show that the distributional RL is more
stable than the regular one which matches the argument and
observations in (Bellemare et al., 2017a). In the right panel,
we draw a distribution function of Z(s, a) estimate by the
algorithm.

6.2. Distributional Greedy-GQ

In practice, we are more interested in the control problem.
Therefore, the aim of this section is to test the performance
of distributional Greedy-GQ and compare the result with
DQN and distributional DQN (C51). Particularly, we test
the algorithm in the environment Cartpole v0, lunarlander
v2 in the openai gym (Brockman et al., 2016) and vizdoom
(Kempka et al., 2016). All above algorithms are imple-
mented in the off-policy manner with experience replay and
target networks. In the platform of vizdoom, we choose
defend the center as the environment, where the agent oc-
cupies the center of a circular arena. Enemies continuously

Nonlinear Distributional Gradient Temporal-Difference Learning

9.0
—}— Distributional GTD2
Distributional TDC 8.5

8.0

DMSPBE
cumulative reward
~
o

NN actionl
B action2

— Distributional GTD2 024
Distributional TDC
GTD2

—.- TDC I
0.0 y o

0 2000 4000

time step

6000 8000 0 1000 2000

3000
episodes

4000 5000 6000 0 5 10 15 20 25 30

Figure 1. Left: Convergence of distributional GTD2 and distributional TDC. Middle: Performance of algorithms in Cartpole. Right:

distribution of Z(s, a) at some state s.

Cumulative Reward
Cumulative Reward

— cs51
..... DON
-= Distributional Greedy-GQ

Kill Counts

— C51
----- DON
—-= Distributional Greedy-GQ

— C51

DQN 21

100 100 200

Episodes

150 200 0

Episodes

—-~ Distributional Greedy-GQ

4000 6000 8000

Episodes

300 400 500 0

Figure 2. Left: Result in Cartpole v0. Middle: Result in lunarlander V2. Right: Result in vizdoom. In the left and middle panels, the

x-axis is the training episode; the y-axis is the cumulative reward.

get spawned from far away and move closer to the agent
until they are close enough to attack. The death penalty —1
is given by the environment. We give the penalty —0.1 if
the agent loses ammo and health. Reward +1 is received
if one enemy is killed. Totally, there are 26 bullets. The
aim of the agent is to kill enemy and avoid being attacked
and killed. For the environment Cartpole and lunarlander,
to implement distributional Greedy-GQ and C51, we use
two hidden-layer neural network with 64 hidden units to ap-
proximate the value distribution where activation functions
are relu. The outputs are softmax functions with 40 units to
approximate the probability atoms. We apply Adam with
learning rate Se-4 to train the agent. In vizdoom experiment,
the first three layers are CNN and then it follows a dense
layer where all activation functions are relu. The outputs
are softmax functions with 50 units. We set V,;, = —10
and Vipax = 20 in the experiment.

We demonstrate all experiments in Figure 2. In the experi-
ments of Cartpole and vizdoom, the performance of distri-
butional Greedy-GQ are comparable with C51 and both of
them are better than the DQN. Particularly, in the left panel,
distributional Greedy-GQ is slightly better than C51. The
variance of them are both smaller than that of DQN possibly
because the distributional algorithms are more stable. In the

experiment of vizdoom, C51 learns faster than distributional
Greedy-GQ at the beginning but after 7000 episodes training
distributional Greedy-GQ has the same performance with
C51 and starts to outperform C51 later. In middle panel,
C51 and distributional Greedy-GQ are slightly betten than
the non-distributional counterpart DQN.

7. Conclusion and Future work

In this paper, we propose two non-linear distributional gra-
dient TD algorithms and prove their convergences to a local
optimum, while in the control setting, we propose the dis-
tributional Greed-GQ. We compare the performance of our
algorithm with their non-distributional counterparts, and
show their superiority. Distributional RL has several advan-
tages over the regular approach, e.g., it provides richer set
of prediction, and the learning is more stable. Based on
this work on distributional RL, we foresee many interest-
ing future research directions about performing RL beyond
point of the estimation of the value function. An immediate
interesting one is to develop efficient exploration to devise
the control policy using more distribution information rather
than using the expectation.

Nonlinear Distributional Gradient Temporal-Difference Learning

References

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.
stat, 1050:26, 2017.

Bagnell, J. A. and Schneider, J. Covariant policy search.
1JCAL, 2003.

Baird, L. Residual algorithms: Reinforcement learning with
function approximation. In Machine Learning Proceed-
ings 1995, pp. 30-37. Elsevier, 1995.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 449—-458,
2017a.

Bellemare, M. G., Danihelka, I., Dabney, W., Mohamed, S.,
Lakshminarayanan, B., Hoyer, S., and Munos, R. The
cramer distance as a solution to biased wasserstein gradi-
ents. arXiv preprint arXiv:1705.10743, 2017b.

Bhatnagar, S., Precup, D., Silver, D., Sutton, R. S., Maei,
H. R., and Szepesviri, C. Convergent temporal-difference
learning with arbitrary smooth function approximation.
In Advances in Neural Information Processing Systems,
pp. 1204-1212, 2009.

Borkar, V. S. and Meyn, S. P. The ode method for con-
vergence of stochastic approximation and reinforcement
learning. SIAM Journal on Control and Optimization, 38
(2):447-469, 2000.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Christopher, M. B. PATTERN RECOGNITION AND MA-
CHINE LEARNING. Springer-Verlag New York, 2016.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile
regression. arXiv preprint arXiv:1710.10044, 2017.

Dann, C., Neumann, G., and Peters, J. Policy evaluation
with temporal differences: A survey and comparison. The
Journal of Machine Learning Research, 15(1):809-883,
2014.

Defourny, B., Ernst, D., and Wehenkel, L. Risk-aware
decision making and dynamic programming. 2008.

Engel, Y., Mannor, S., and Meir, R. Reinforcement learning
with gaussian processes. In Proceedings of the 22nd

international conference on Machine learning, pp. 201—
208. ACM, 2005.

Gelly, S. and Silver, D. Achieving master level play in 9 x 9
computer go. In AAAI volume 8, pp. 1537-1540, 2008.

Heger, M. Consideration of risk in reinforcement learning.
In Machine Learning Proceedings 1994, pp. 105-111.
Elsevier, 1994.

Juditsky, A., Nemirovski, A., and Tauvel, C. Solving varia-
tional inequalities with stochastic mirror-prox algorithm.
Stochastic Systems, 1(1):17-58, 2011.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 49(2-3):209-
232, 2002.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaskowski, W. Vizdoom: A doom-based ai research plat-
form for visual reinforcement learning. In Computational
Intelligence and Games (CIG), 2016 IEEE Conference
on, pp. 1-8. IEEE, 2016.

Maei, H. R., Szepesviri, C., Bhatnagar, S., and Sutton,
R. S. Toward off-policy learning control with function
approximation. In ICML, pp. 719-726, 2010.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

O’Donoghue, B., Osband, 1., Munos, R., and Mnih, V. The
uncertainty bellman equation and exploration. arXiv
preprint arXiv:1709.05380, 2017.

Pearlmutter, B. A. Fast exact multiplication by the hessian.
Neural computation, 6(1):147-160, 1994.

Rowland, M., Bellemare, M., Dabney, W., Munos, R., and
Teh, Y. W. An analysis of categorical distributional re-
inforcement learning. In International Conference on
Artificial Intelligence and Statistics, pp. 29-37, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Sil-
ver, D., Szepesviri, C., and Wiewiora, E. Fast gradient-
descent methods for temporal-difference learning with
linear function approximation. In Proceedings of the 26th
Annual International Conference on Machine Learning,

pp- 993-1000. ACM, 2009a.

Sutton, R. S., Maei, H. R., and Szepesviri, C. A convergent
o(n) temporal-difference algorithm for off-policy learn-
ing with linear function approximation. In Advances in
neural information processing systems, pp. 1609-1616,
2009b.

Székely, G. E-statistics: The energy of statistical samples.
Bowling Green State University, Department of Mathe-
matics and Statistics Technical Report, 3(05):1-18, 2003.

Nonlinear Distributional Gradient Temporal-Difference Learning

Tamar, A., Di Castro, D., and Mannor, S. Learning the vari-
ance of the reward-to-go. Journal of Machine Learning
Research, 17(13):1-36, 2016.

Tesauro, G. Practical issues in temporal difference learning.
In Advances in neural information processing systems,
pp. 259-266, 1992.

Tsitsiklis, J. and Van Roy, B. An analysis of temporal-
difference learning with function approximation. /EEE
Transactions on Automatic Control, 42:674—690, 1996.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double g-learning. In AAAI, vol-
ume 16, pp. 2094-2100, 2016.

