
Meta-Learning Neural Bloom Filters

A. Further Model Details

A.1. Efficient addressing

We discuss some implementation tricks that could be em-
ployed for a production system.

Firstly the original model description defines the addressing
matrix A to be trainable. This ties the number of parameters
in the network to the memory size. It may be preferable
to train the model at a given memory size and evaluate
for larger memory sizes. One way to achieve this is by
allowing the addressing matrix A to be non-trainable. We
experiment with this, allowing A ⇠ N (0, I) to be a fixed
sample of Gaussian random variables. We can think of these
as point on a sphere in high dimensional space, the controller
network must learn to organize inputs into separate buckets
across the surface of the sphere.

To make the addressing more efficient for larger memory
sizes, we experiment with sparsification of the addressing
softmax by preserving only the top k components. We
denote this sparse softmax �k(·). When using a sparse
address, we find the network can fixate on a subset of rows.
This observation is common to prior sparse addressing work
(Shazeer et al., 2017). We find sphering the query vector,
often dubbed whitening, remedies this (see Appendix G for
an ablation). The modified sparse architecture variant is
illustrated in Algorithm 3.

Algorithm 3 Sparse Neural Bloom Filter

1: def sparse controller(x):
2: z  fenc(x)
3: s fq(z) // Raw query word
4: q  moving zca(q) // Spherical query
5: a �k(qTA) // Sparse address
6: w  fw(z)

7: def sparse write(x):
8: a,w  sparse controller(x)
9: Mt+1[aidx] Mt[aidx] + wa

T
val

10: def sparse read(x):
11: a,w, z  sparse controller(x)
12: r  M [aidx]� aval

13: o fout([r, w, z])

One can avoid the linear-time distance computation q
T
A in

the addressing operation �k(qTA) by using an approximate
k-nearest neighbour index, such as locality-sensitive hashing
(Datar et al., 2004), to extract the nearest neighbours from
A in O(logm) time. The use of an approximate nearest
neighbour index has been empirically considered for scal-
ing memory-augmented neural networks (Rae et al., 2016;
Kaiser et al., 2017) however this was used for attention on

M directly. As M is dynamic the knn requires frequent
re-building as memories are stored or modified. This archi-
tecture is simpler — A is fixed and so the approximate knn
can be built once.

To ensure the serialized size of the network (which can be
shared across many memory instantiations) is independent
of the number of slots in memory m we can avoid storing
A. In the instance that it is not trainable, and is simply a
fixed sample of random variables that are generated from a
deterministic random number generator — we can instead
store a set of integer seeds that can be used to re-generate
the rows of A. We can let the i-th seed ci, say represented
as a 16-bit integer, correspond to the set of 16 rows with
indices 16i, 16i+ 1, . . . , 16i+ 15. If these rows need to be
accessed, they can be regenerated on-the-fly by ci. The total
memory cost of A is thus m bits, where m is the number of
memory slots3.

Putting these two together it is possible to query and write
to a Neural Bloom Filter with m memory slots in O(logm)
time, where the network consumes O(1) space. It is worth
noting, however, the Neural Bloom Filter’s memory is of-
ten much smaller than the corresponding classical Bloom
Filter’s memory, and in many of our experiments is even
smaller than the number of unique elements to store. Thus
dense matrix multiplication can still be preferable - espe-
cially due to its acceleration on GPUs and TPUs (Jouppi
et al., 2017) - and a dense representation of A is not in-
hibitory. As model optimization can become application-
specific, we do not focus on these implementation details
and use the model in its simplest setting with dense matrix
operations.

A.2. Moving ZCA

The moving ZCA was computed by taking moving averages
of the first and second moment, calculating the ZCA matrix
and updating a moving average projection matrix ✓zca. This
is only done during training, at evaluation time ✓zca is fixed.
We describe the update below for completeness.

Input: s fq(z) (1)
µt+1  �µt + (1� �)s̄ 1st moment EMA (2)

⌃t+1  �⌃t + (1� �) sT s 2nd moment EMA (3)

U, s,  svd(⌃� µ
2) Singular values (4)

W  UU
T
/

p
(s) ZCA matrix (5)

✓zca  ⌘✓zca + (1� ⌘)W ZCA EMA (6)
q  s ✓zca Projected query (7)

In practice we do not compute the singular value decompo-
sition at each time step to save computational resources, but

3One can replace 16 with 32 if there are more than one million
slots



Meta-Learning Neural Bloom Filters

instead calculate it and update ✓ every T steps. We scale the
discount in this case ⌘

0 = ⌘/T .

A.3. Relation to uniform hashing

We can think of the decorrelation of s, along with the sparse
content-based attention with A, as a hash function that maps
s to several indices in M . For moderate dimension sizes
of s (256, say) we note that the Gaussian samples in A

lie close to the surface of a sphere, uniformly scattered
across it. If q, the decorrelated query, were to be Gaussian
then the marginal distribution of nearest neighbours rows
in A will be uniform. If we chose the number of nearest
neighbours k = 1 then this implies the slots in M are
selected independently with uniform probability. This is
the exact hash function specification that Bloom Filters
assume. Instead we use a continuous (as we choose k > 1)
approximation (as we decorrelate s! q vs Gaussianize) to
this uniform hashing scheme, so it is differentiable and the
network can learn to shape query representations.

B. Space Comparison

For each task we compare the model’s memory size, in
bits, at a given false positive rate — usually chosen to be
1%. For our neural networks which output a probability
p = f(x) one could select an operating point ⌧✏ such that the
false positive rate is ✏. In all of our experiments the neural
network outputs a memory (state) s which characterizes
the storage set. Let us say SPACE(f, ✏) is the minimum
size of s, in bits, for the network to achieve an average
false positive rate of ✏. We could compare SPACE(f,✏)
with SPACE(Bloom Filter,✏) directly, but this would
not be a fair comparison as our network f can emit false
negatives.

To remedy this, we employ the same scheme as Kraska
et al. (2018) where we use a ‘backup’ Bloom Filter with
false positive rate � to store all false negatives. When
f(x) < ⌧✏ we query the backup Bloom Filter. Because
the overall false positive rate is ✏ + (1 � ✏)�, to achieve
a false positive rate of at most ↵ (say 1%) we can set
✏ = � = ↵/2. The number of elements stored in the
backup bloom filter is equal to the number of false neg-
atives, denoted nfn. Thus the total space can be calcu-
lated, TOTAL SPACE(f,↵) = SPACE(f,

↵
2 ) + nfn

* SPACE(Bloom Filter,
↵
2 ). We compare this quan-

tity for different storage set sizes.

C. Model Size

For the MNIST experiments we used a 3-layer convolutional
neural network with 64 filters followed by a two-layer feed-
forward network with 64&128 hidden-layers respectively.
The number of trainable parameters in the Neural Bloom

Filter (including the encoder) is 243, 437 which amounts to
7.8Mb at 32-bit precision. We did not optimize the encoder
architecture to be lean, as we consider it part of the library
in a sense. For example, we do not count the size of the
hashing library that an implemented Bloom Filter relies on,
which may have a chain of dependencies, or the package size
of TensorFlow used for our experiments. Nevertheless we
can reason that when the Neural Bloom Filter is 4kb smaller
than the classical, such as for the non-uniform instance-
based familiarity in Figure 2b, we would expect to see a net
gain if we have a collection of at least 1, 950 data-structures.
We imagine this could be optimized quite significantly, by
using 16-bit precision and perhaps using more convolution
layers or smaller feed-forward linear operations.

For the database experiments we used an LSTM character
encoder with 256 hidden units followed by another 256
feed-forward layer. The number of trainable parameters in
the Neural Bloom Filter 419, 339 which amounts to 13Mb.
One could imagine optimizing this by switching to a GRU
or investigating temporal convolutions as encoders.

D. Hyper-Parameters

We swept over the following hyper-parameters, over the
range of memory sizes displayed for each task. We com-
puted the best model parameters by selecting those which
resulted in a model consuming the least space as defined in
Appendix B. This depends on model performance as well as
state size. The Memory Networks memory size was fixed
to equal the input size (as the model does not arbitrate what
inputs to avoid writing).

Memory Size (DNC, NBF) {2, 4, 8, 16, 32, 64}
Word Size (MemNets, DNC, NBF) {2, 4, 6, 8, 10}
Hidden Size (LSTM) {2, 4, 8, 16, 32, 64}
Sphering Decay ⌘ (NBF) {0.9, 0.95, 0.99}
Learning Rate (all) {1e-4, 5e-5}

Table 3. Hyper-parameters considered

E. Experiment Details

For the class-based familiarity task, and uniform sampling
task, the model was trained on the training set and evaluated
on the test set. For the class-based task sampling, a class is
sampled at random and S is formed from a random subset of
images from that class. The queries q are chosen uniformly
from either S or from images of a different class.

For the non-uniform instance-based familiarity task we sam-
pled images from an exponential distribution. Specifically
we used a fix permutation of the training images, and from
that ordering chose p(ith image) / 0.999i for the images to
store. The query images were selected uniformly. We used



Meta-Learning Neural Bloom Filters

Figure 4. Database extrapolation task. Models are trained up to sets of size 200 (dashed line). We see extrapolation to larger set sizes
on test set, but performance degrades. Neural architectures perform best for larger allowed false positive rates.

a fixed permutation (or shuffle) of the images to ensure most
probability mass was not placed on images of a certain class.
I.e. by the natural ordering of the dataset we would have
otherwise almost always sampled 0 images. This would be
confounding task non-uniformity for other latent structure
to the sets. Because the network needed to relate the im-
age to its frequency of occurence for task, the models were
evaluated on the training set. This is reasonable as we are
not wishing for the model to visually generalize to unseen
elements in the setting of this exact-familiarity task. We
specifically want the network weights to compress a map of
image to probability of storage.

For the database task a universe of 2.5M unique tokens
were extracted from GigaWord v5. We shuffled the tokens
and placed 2.3M in a training set and 250K in a test set.
These sets were then sorted alphabetically. A random sub-
set, representing an SSTable, was sampled by choosing a
random start index and selecting the next n elements, which
form our set S. Queries are sampled uniformly at random
from the universe set. Models are trained on the training set
and evaluated on the test set.

F. Database Extrapolation Task

We investigate whether neural models are able to extrapolate
to larger test sizes. Using the database task setup, where
each set contains a contiguous set of sorted strings; we train
both the Neural Bloom Filter and LSTM on sets of sizes
2 - 200. We then evaluate on sets up to 250, i.e. a 25%
increase over what is observed during training. This is to
emulate the scenario that we train on a selection of databse
tablets, but during evaluation we may observe some tablets
that are slightly larger than those in the training set. Both
the LSTM and Neural Bloom Filter are able to solve the
task, with the Neural Bloom Filter using significantly less
space for the larger allowed false positive rate of 5% and
1%. We do see the models’ error increase as it surpasses the
maximum training set size, however it is not catastrophic.
Another interesting trend is noticeable; the neural models
have higher utility for larger allowed false positive rates.

This may be because of the difficulty in training the models
to an extremely low accuracy.

G. Effect of Sphering

We see the benefit of sphering in Figure 5 where the con-
verged validation performance ends up at a higher state.
Investigating the proportion of memory filled after all ele-
ments have been written in Figure 6, we see the model uses
quite a small proportion of its memory slots. This is likely
due to the network fixating on rows it has accessed with
sparse addressing, and ignoring rows it has otherwise never
touched — a phenomena noted in Shazeer et al. (2017).
The model finds a local minima in continually storing and
accessing the same rows in memory. The effect of sphering
is that the query now appears to be Gaussian (up to the first
two moments) and so the nearest neighbour in the address
matrix A (which is initialized to Gaussian random variables)
will be close to uniform. This results in a more uniform
memory access (as seen in Figure 6) which significantly
aids performance (as seen in Figure 5).

Figure 5. For sparse addresses, sphering enables the model to learn
the task of set membership to high accuracy.

H. Timing Benchmark

We use the Neural Bloom Filter network architecture for the
large database task (Table 1). The network uses an encoder
LSTM with 256 hidden units over the characters, and feeds



Meta-Learning Neural Bloom Filters

Figure 6. For sparse addresses, sphering the query vector leads to
fewer collisions across memory slots and thus a higher utilization
of memory.

this through a 256 fully connected layer to encode the input.
A two-layer 256-hidden-unit MLP is used as the query archi-
tecture. The memory and word size is 8 and 4 respectively,
and so the majority of the compute is spent in the encoder
and query network. We compare this with an LSTM con-
taining 32 hidden units. We benchmark the single-query
latency of the network alongside the throughput of a batch
of queries, and a batch of inserts. The Neural Bloom Filter
and LSTM is implemented in TensorFlow without any cus-
tom kernels or specialized code. We benchmark it on the
CPU (Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz) and
a GPU (NVIDIA Quadro P6000). We compare to empirical
timing results published in a query-optimized Bloom Filter
variant (Chen et al., 2007).

It is worth noting, in several Bloom Filter applications, the
actual query latency is not in the critical path of computation.
For example, for a distributed database, the network latency
and disk access latency for one tablet can be orders of mag-
nitude greater than the in-memory latency of a Bloom Filter
query. For this reason, we have not made run-time a point
of focus in this study, and it is implicitly assumed that the
neural network is trading off greater latency for less space.
However it is worth checking whether run-time could be
prohibitive.


