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Appendix

A. Proofs of Direct Uncertainty Prediction Results
We first prove Theorem 1.

Proof. To show unbiasedness of hdup, we need to show that E[hdup] = E[U(Y)]. But from the tower law (law of total
expectation):

E[hdup] = E
[
E
[
U(E[Y|O])

∣∣g(O)
]]

= E[U(E[Y|O])]

To prove the biasedness of huvc, first note that

huvc = U(E[Y|g(O)]) = U(E[E[Y|O]|g(O)])

by the conditional independence of Y, g(O) given O. Next, by the fact that U(·) is concave and Jensen’s inequality,

huvc = U(E[E[Y|O]|g(O)]) ≥ E[U(E[Y|O]|g(O)] = hdup

This is a strict inequality whenever the distribution of posteriors induced by conditioning on g(O) is not a point-mass.
Therefore we have that huvc overestimates the the true uncertainty U(Y).

For specific U(·), we can compute the bias term by first computing huvc − hdup and then taking an expectation. For
Udisagree, we have

huvc = U(E[Y|g(O)]) = 1−
∑
l

E[E[Yl|O]|g(O)]2

and
hdup = E[U(E[Y|O])|g(O)] = 1−

∑
l

E[E[Yl|O]2|g(O)]

And so,
huvc − hdup =

∑
l

E[E[Yl|O]2|g(O)]−
∑
l

E[E[Yl|O]|g(O)]2

But this is just

V ar
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E[E[Yl|O]|g(O)]

)
Taking expectations over values of g(O) gives the bias, i.e.

E

[
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For Uvar, we have

huvc =
∑
l

l2E[E[Yl|O]|g(O)]−
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lE[E[Yl|O]|g(O)]

)2

and

hdup = E
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∣∣∣∣∣∣ g(O)


And so huvc − hdup becomes

E
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Which is just
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)
Taking expectations over values of g(O) like before gives the result.
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B. Mixture of Gaussians Setting
We train a DUP and UVC (Figure 1) on a synthetic task where data is generated from a mixture of Gaussians. All of our
settings have uniform mixtures of Gaussians, with the Gaussian mean vectors being drawn fromN (0, 1/d) (d corresponding
to the dimension) so that in expectation, each mean vector has norm 1. The variance is set to be the identity. Like before, we
set x = g(o) = |o|. We draw five labels for each x from the posterior distribution over Gaussian centers given x, and apply
Udisagree() to the empirical histogram. As with the medical imaging application, we threshold these uncertainty scores
(with threshold 0.5) to give a binary low uncertainty/high uncertainty label, which we use to train our DUPs and UVCs.
Results are given in percentage AUC to account for some settings having unbalanced classes.

We train fully connected networks with two hidden layers of width 300 on this task, using the SGD with momentum
optimizer and an initial learning rate of 0.01.

C. SVHN and CIFAR-10 Setting
In Section 2.2, we train DUP and UVC models to predict label disagreement on a synthetic task on SVHN and CIFAR-10.
The task setup is as follows: for each image in SVHN/CIFAR-10, we decide on a variance (0, 1, 2, 3) for a Gaussian filter
that is applied to the image. Three labels are then drawn for the image from a noisy distribution over labels, with the label
noise distribution depending on the variance of the Gaussian filter. Specifically, for a Gaussian filter with variance 0, the
noise distribution is just a point mass on the true label. For a Gaussian filter with variance 1, the three labels are drawn from
a distribution with 0.02 mass on four incorrect labels, and the remaining 0.92 mass on the correct label. For variance equal
to 2, the labels are drawn from a distribution with 0.08 mass on four different labels, and remaining mass on the true label.
For variance 3, this mass is now 0.12 on the incorrect labels.

A simple conv network, with 3x3 kernels and channels 64−−128−−256, followed by fully connected layers of width
1000 and 200 (each with batch normalization) is trained on this dataset, with the UVC model trained on the empirical
histogram, and the DUP model trained on a binary agree/disagree target. (Disagreement threshold is if at least one label
disagrees.) We find that DUP outperforms UVC on both SVHN and CIFAR-10.

Learned Features Interestingly, we also observe that the features learned by the DUP and UVC models are different to
each other. We apply saliency maps, specifically SmoothGrad (Smilkov et al., 2017) and IntGrad (Sundararajan et al., 2017)
to study the features that DUP and UVC pay attention to in the input image.

D. Details of DUP in the Medical Domain
As described in Section 4, to train DUP models, we threshold the scores given by applying Udisagree, Uvar to the data
(xi, p̂i). Preliminary experiments in trying to directly regress onto the raw scores using mean-squared error performed
poorly.

We threshold the scores as follows. For Uvar we thresholded at approximately 2/9, the variance when three doctors have
more than an ’off by one’ disagreement: more than a single disagreement, or a single grade disagreement.

For Udisagree, where only the number of disagreements counts, we thresholded at 0.3, to prioritize being sensitive enough to
disagreement cases and having more than 20% of the data marked as high disagreement. We also experimented with using
soft targets for disagreement classification, but the results (Table 6) showed that this was less effective than than having the
binary 0/1 scores, likely because this makes the classification problem more like a regression.

Our model consists of an Inception-v3 base, with the ImageNet head removed and a small (2 hidden layer, 300 hidden units)
fully connected neural network using Inception-v3 PreLogits to perform DUP. The full Inception-v3 network is trained with
a batch size of 8 and learning rate 0.001 with the Adam optimizer. For training only the small neural network, we use the
SGD with momentum optimizer, a batch size of 32 and learning rate of 0.01.

Prelogits, Calibration and Regularization Our training data for DUP models, T (var)
train , T

(disagree)
train , only consists of xi

with more than one label, and is too small to effectively train an Inception sized model end to end. Therefore, we use the
prelogit embeddings of xi from a pretrained DR classification model (Histogram-E2E), and training smaller models on
top of these embeddings. We do this both for the baseline, getting the Histogram-PC model, as well as the DUP models,
Variance-PRC and Disagree-PC.
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Figure 4. Saliency maps for DUP and UVC models on the SVHN/CIFAR-10 disagreement task. The plot shows two images from
the blurred CIFAR-10 dataset and two images from the blurred SVHN dataset. The second column is SmoothGrad applied to the UVC
model, and the third SmoothGrad applied to the DUP model. The third and fourth columns show IntGrad applied to the DUP and UVC
models. We observe that the DUP and UVC models appear to be paying attention to different features of the dataset.

Model Type Ttest AUC Majority Median Majority= 1 Median= 1 Referable

Disagree Soft Targets 76.3% 79.0% 78.7% 81.6% 79.0% 84.7%
Disagree-P 78.1% 81.0% 80.8% 84.6% 81.9% 86.2%
Disagree-PC 78.1% 80.9% 80.9% 84.5% 81.8% 86.2%

Table 6. Using soft targets for disagreement prediction does not help in performance (AUC). Holdout AUC column corresponds to
Disagreement Prediction Performance in Table 3, other columns refer to Table 4 in main text.
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Task Model Type Performance (AUC)

Variance Prediction Variance-E2E-2H 72.7%

Variance Prediction Variance-LR 72.4%
Disagreement Prediction Disagree-LR 75.9%

Table 7. Additional results from table 3.

Task Model Type Performance (AUC)

Entropy Prediction UVC Histogram-PC 75.5%
Entropy Prediction DUP Disagree-P 77.2%

Table 8. DUP and UVC models trained with entropy as a target function. Again, we see that the DUP model outperforms the UVC model.

The C suffix of all of these models corresponds to calibration on the logits. Following the findings of (Guo et al., 2017),
we apply temperature scaling on the logits: we set the predictions of the model to be f(z/T ) where f is the softmax
function, applied pointwise, and z are the logits. We initialize T to 1, and then split e.g. T (disagree)

train into a T
′(disagree)
train and

a T
′(disagree)
valid , with 10% of the data in the validation set. We train as normal on T

′(disagree)
train , with T fixed at 1, and then

train on T
′(disagree)
valid , by only varying the temperature T , and holding all other parameters fixed.

The use of Prelogit embeddings and Calibration gives the strongest performing baseline UVC and DUPs: Histogram-PC,
Variance-PRC and Disagree-PC. For the Variance DUP, an additional regularization term is added to the loss by having a
separate regressing on the raw variance value.

Additional Model: Variance-E2E We tried a variant of Variance-E2E, Variance-E2E-2H, which has one head for predicting
variance and the other for classifying, to enable usage of all the data. We then evaluate the variance head on Ttest, but in fact
noticed a small drop in performance, Table 7.

Do we need the Prelogit embeddings? We tried seeing if we could match performance by training on pretrained classifier
logits instead of the prelogit embeddings. Despite controlling for parameter difference by experimenting with more
hidden layers, we found we were unable to match performance from the prelogit layer, Table 7, compare to Table 3. This
demonstrates that some information is lost between the prelogit and logit layers.

E. Additional Results: Entropy, Finite Sample Behavior and Convergence Analysis
We performed additional experiments to further understand the properties of DUP and UVC models. For these experiments,
we compare a representative DUP model, Disagree-P, to a representative UVC model, Histogram-PC.

Theorem 1 states that DUP offers benefits over UVC for concave target uncertainty functions. This is a natural property for
measures of spread, simply stating that the measure of spread increases with averaging (probability distributions). In the
main text, we concentrate on two such specific uncertainty functions, Uvar and Udisagree, which are particularly suited to
the domain. However, other standard uncertainty functions, such as entropy, are also concave. We test the performance of
DUP (Disagree-P) and UVC (Histogram-PC) with Uentropy as the target function.

The results are shown in Table 8, where we again see that DUP outperforms UVC.

We also study how model performance is impacted by different training set sizes (similar to the analysis in (Chen et al.,
2018)). We subsample different amounts of the original training set T (disagree)

train , and train DUP and UVC models on this
subset. The results over 5 repeats of different subsamples and optimization runs are shown in Figure 5.

We see that the performance gap between DUP and UVC is robust to train data size differences. Additionally, when ≥ 30%
of the training data is used, DUP and UVC performance remains relatively constant. This supports carrying over the results
of Theorem 1) and the full joint distribution f(o,y) to the finite data setting.
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Figure 5. DUP and UVC performance during training and when varying train data size. We study DUP (Disagree-P) and UVC
(Histogram-PC) performance for varying amounts of training data. We find that the gap in performance is robust to variations in dataset
size. For more than 30% of the data, performance of DUP and UVC remains relatively constant, supporting the applicability of Theorem
1 in the finite data setting. The right plot looks at performance through training, with the gap appearing rapidly early in training, and
slowly widening.

We also study convergence of DUP and UVC models. We find that the performance gap between DUP and UVC manifests
very early in training (Figure 5, right plot), and continues to gradually widen through training.

F. Background on the Wasserstein Distance
Given two probability distributions f, g, and letting Π(f, g) be all product probability distributions with marginals f , g, the
Wasserstein distance between p, q is

||f − g||w = inf
π∈Π(f,g)

E(r,t)∼π [d(r, t)]

where d(, ) is some metric. This distance has connections to optimal transport, and corresponds to the minimum cost (with
respect to d(, )) of moving the mass in distribution f so that it is matches the mass in distribution g. We can represent the
amount of mass to move from r to t with π(r, t). To be consistent with the mass at the start, f(r), and the mass at the end
g(t) we must have that

∫
t′
π(r, t′) = f(r) and

∫
r′
π(r′, t) = g(t).

The result in the main text follows from the following theorem:

Theorem 3. If f, g are (discrete) probability distributions and g is a point mass distribution at t0, then π ∈ Π(f, g) is
uniquely defined as:

π(r, t) =

{
0 if t 6= t0

f(r) if t = t0

Proof. The proof is direct: for t 6= t0, we must have
∫
r′
π(r′, t) = g(t) = 0, and so

∫
t′
π(r, t′) = π(r, t0) = f(r).

We consider three different distances d(, ):

1 Absolute Value d(r, t) = |r − t|. This follows an interpretation in which the grades are equally spaced, so that all
successive grade differences have the same weight.

2 2-Wasserstein Distance d(r, t) = (r − t)2, and, to make into a metric

||f − g||w =
(
E(r,t)∼π [d(r, t)]

)1/2
This adds a higher penalty for larger grade differences.

3 Binary Disagreement We set d(r, t) = 0 if r = t and 1 otherwise.


