
On the Spectral Bias of Neural Networks

A. Experimental Details
A.1. Experiment 1

We fit a 6 layer ReLU network with 256 units per layer fθ to
the target function λ, which is a superposition of sine waves
with increasing frequencies:

λ : [0, 1]→ R, λ(z) =
∑
i

Ai sin(2πkiz + ϕi)

where ki = (5, 10, 15, ..., 50), and ϕi is sampled from the
uniform distribution U(0, 2π). In the first setting, we set
equal amplitude for all frequencies, i.e. Ai = 1∀ i, while in
the second setting we assign larger amplitudes to the higher
frequencies, i.e. Ai = (0.1, 0.2, ..., 1). We sample λ on
200 uniformly spaced points in [0, 1] and train the network
for 80000 steps of full-batch gradient descent with Adam
(Kingma & Ba, 2014). Note that we do not use stochas-
tic gradient descent to avoid the stochasticity in parameter
updates as a confounding factor. We evaluate the network
on the same 200 point grid every 100 training steps and
compute the magnitude of its (single-sided) discrete fourier
transform at frequencies ki which we denote with |f̃ki |. Fi-

nally, we plot in figure 1 the normalized magnitudes |f̃ki |Ai
averaged over 10 runs (with different sets of sampled phases
ϕi). We also record the spectral norms of the weights at
each layer as the training progresses, which we plot in figure
1 for both settings (the spectral norm is evaluated with 10
power iterations). In figure 2, we show an example target
function and the predictions of the network trained on it
(over the iterations), and in figure 10 we plot the loss curves.

A.2. Experiment 5

We use the same 6-layer deep 256-unit wide network and
define the target function

λ : D → R, z 7→ λ(z) =
∑
i

Ai sin(2πkiz + ϕi)

where ki = (20, 40, ..., 180, 200), Ai = 1 ∀ i and ϕ ∼
U(0, 2π). We sample φ on a grid with 1000 uniformly
spaced points between 0 and 1 and map it to the input
domain via γL to obtain a dataset {(γL(zj), λ(zj))}999

j=0, on
which we train the network with 50000 full-batch gradient
descent steps of Adam. On the same 1000-point grid, we
evaluate the magnitude of the (single-sided) discrete Fourier
transform of fθ ◦ γL every 100 training steps at frequencies
ki and average over 10 runs (each with a different set of
sampled zi’s). Fig 8 shows the evolution of the spectrum as
training progresses for L = 0, 4, 10, 16, and Fig 8e shows
the corresponding loss curves.

A.3. Experiment 3

In Figure 11, we show the training curves corresponding to
Figure 4.

(a) Equal Amplitudes.

(b) Increasing Amplitudes.

Figure 10. Loss curves averaged over multiple runs. (cf. Experi-
ment 1)

On the Spectral Bias of Neural Networks

(a) k = 0.1 (b) k = 1 (c) β = 0.5 (d) β = 1.

Figure 11. (a,b,c,d): Training curves for various settings of noise amplitude β and frequency k corresponding to Figure 4.

A.4. Experiment 4

Consider the Gaussian Radial Basis Kernel, given by:

k : X ×X → R, kσ(x,y) 7→ exp

(
‖x− y‖
σ2

)
(16)

where X is a compact subset of Rd and σ ∈ R+ is defined
as the width of the kernel16. Since k is positive definite
(Fasshauer, 2011), Mercer’s Theorem can be invoked to
express it as:

k(x,y) =

∞∑
n=1

λiϕn(x)ϕn(y) (17)

where ϕn is the eigenfunction of k satisfying:∫
k(x,y)ϕn(y)dy = 〈k(x, ·), ϕn〉 = λnϕn(x) (18)

Due to positive definiteness of the kernel, the eigenvalues
λi are non-negative and the eigenfunctions ϕn form an
orthogonal basis ofL2(X), i.e. 〈ϕi, ϕj〉 = δij . The analogy
to the final case is easily seen: let X = xi

N
i=1 be the set of

samples, f : X → R a function. One obtains (cf. Chapter 4
(Rasmussen, 2004)):

〈k(x, ·), f〉 =

N∑
i=1

k(x,xi)fi (19)

where fi = f(xi). Now, defining K as the positive definite
kernel matrix with elements Kij = k(xixj), we consider
it’s eigendecomposition V ΛV T where Λ is the diagonal
matrix of (w.l.o.g sorted) eigenvalues λ1 ≤ ... ≤ λN and
the columns of V are the corresponding eigenvectors. This
yields:

k(xi,xj) = Kij = (V ΛV T)ij =

N∑
n=1

λnvnivnj

=

N∑
n=1

λnϕn(xi)ϕn(xj) =⇒ ϕn(xi) = vni (20)

16We drop the subscript σ to simplify the notation.

Like in (Braun et al., 2006), we define the spectrum f̃ [n] of
the function f as:

f̃ [n] = 〈f, ϕn〉 = f · vn (21)

where f = (f(x1), ..., f(xN)). The value n can be thought
of a generalized notion of frequency. Indeed, it is known
(Fasshauer, 2011; Rasmussen, 2004), for instance, that the
eigenfunctions ϕn resemble sinusoids with increasing fre-
quencies (for increasing n or decreasing λn). In Figure 6,
we plot the eigenvectors v0 and vN for {xi}50

i=1 uniformly
spaced between [0, 1]. Further, in Figure ? we evaluate the
discrete Fourier transform of all N = 50 eigenvectors, and
find that the eigenfunction index n does indeed coincide
with frequency k. Finally, we remark that the link between
signal complexity and the spectrum is extensively studied
in (Braun et al., 2006).

A.4.1. LOSS CURVES ACCOMPANYING FIGURE 5

A.5. Qualitative Ablation over Architectures

Theorem 1 exposes the relationship between the fourier
spectrum of a network and its depth, width and max-norm
of parameters. The following experiment is a qualitative
ablation study over these variables.
Experiment 7. In this experiment, we fit various networks
to the δ-function at x = 0.5 (see Fig 14a). Its spectrum
is constant for all frequencies (Fig 14b), which makes it
particularly useful for testing how well a given network
can fit large frequencies. Fig 17 shows the ablation over
weight clip (i.e. max parameter max-norm), Fig 15 over
depth and Fig 16 over width. Fig 18 exemplarily shows how
the network prediction evolves with training iterations. All
networks are trained for 60K iterations of full-batch gradient
descent under identical conditions (Adam optimizer with
lr = 0.0003, no weight decay).

We make the following observations.

(a) Fig 15 shows that increasing the depth (for fixed width)
significantly improves the network’s ability to fit higher
frequencies (note that the depth increases linearly).

On the Spectral Bias of Neural Networks

(a) Eigenvector with the largest eigenvalue (n = 1).

(b) Eigenvector with the smallest eigenvalue (n = 50).

Figure 12. Two extreme eigenvectors of the Gaussian RBF kernel
for 50 uniformly spaced samples between 0 and 1.

Figure 13. Loss curves for the Figure 5. We find that the validation
loss dips at around the 200th iteration.

(b) Fig 16 shows that increasing the width (for fixed depth)
also helps, but the effect is considerably weaker (note
that the width increases exponentially).

(c) Fig 17 shows that increasing the weight clip (or the
max parameter max-norm) also helps the network fit
higher frequencies.

The above observations are all consistent with Theorem 1,
and further show that lower frequencies are learned first
(i.e. the spectral bias, cf. Experiment 1). Further, Figure 17
shows that constraining the Lipschitz constant (weight clip)
prevents the network from learning higher frequencies, fur-
nishing evidence that the O(Lf) bound can be tight.

A.6. MNIST: A Proof of Concept

In the following experiment, we show that given two man-
ifolds of the same dimension – one flat and the other not –
the task of learning random labels is harder to solve if the
input samples lie on the same manifold. We demonstrate
on MNIST under the assumption that the manifold hypoth-
esis is true, and use the fact that the spectrum of the target
function we use (white noise) is constant in expectation, and
therefore independent of the underlying coordinate system
when defined on the manifold.

Experiment 8. In this experiment, we investigate if it is
easier to learn a signal on a more realistic data-manifold like
that of MNIST (assuming the manifold hypothesis is true),
and compare with a flat manifold of the same dimension. To
that end, we use the 64-dimensional feature-space E of a de-
noising17 autoencoder as a proxy for the real data-manifold
of unknown number of dimensions. The decoder functions
as an embedding of E in the input space X = R784, which
effectively amounts to training a network on the reconstruc-
tions of the autoencoder. For comparision, we use an in-
jective embedding18 of a 64-dimensional hyperplane in X .

17This experiment yields the same result if variational autoen-
coders are used instead.

18The xy-plane is R3 an injective embedding of a subset of R2

On the Spectral Bias of Neural Networks

(a) Sampled δ-function at x = 0.5.

(b) Constant Spectrum of the δ-function.

Figure 14. The target function used in Experiment 7.

The latter is equivalent to sampling 784-dimensional vectors
from U([0, 1]) and setting all but the first 64 components to
zero. The target function is white-noise, sampled as scalars
from the uniform distribution U([0, 1]). Two identical net-
works are trained under identical conditions, and Fig 19
shows the resulting loss curves, each averaged over 10 runs.

This result complements the findings of (Arpit et al., 2017)
and (Zhang et al., 2017a), which show that it’s easier to fit
random labels to random inputs if the latter is defined on the
full dimensional input space (i.e. the dimension of the flat
manifold is the same as that of the input space, and not that
of the underlying data-manifold being used for comparison).

A.7. Cifar-10: It’s All Connected

We have seen that deep neural networks are biased towards
learning low frequency functions. This should have as a
consequence that isolated bubbles of constant prediction are
rare. This in turn implies that given any two points in the
input space and a network function that predicts the same
class for the said points, there should be a path connecting
them such that the network prediction does not change along
the path. In the following, we present an experiment where
we use a path finding method to find such a path between
all Cifar-10 input samples indeed exist.

Experiment 9. Using AutoNEB (Kolsbjerg et al., 2016),
we construct paths between (adversarial) Cifar-10 images
that are classified by a ResNet20 to be all of the same target
class. AutoNEB bends a linear path between points in some
space Rm so that some maximum energy along the path is
minimal. Here, the space is the input space of the neural
network, i.e. the space of 32 × 32 × 3 images and the
logit output of the ResNet20 for a given class is minimized.
We construct paths between the following points in image
space:

• From one training image to another,

• from a training image to an adversarial,

• from one adversarial to another.

We only consider pairs of images that belong to the same
class c (or, for adversarials, that originate from another class
6= c, but that the model classifies to be of the specified class
c). For each class, we randomly select 50 training images
and select a total of 50 random images from all other classes
and generate adversarial samples from the latter. Then,
paths between all pairs from the whole set of images are
computed.

The AutoNEB parameters are chosen as follows: We run
four NEB iterations with 10 steps of SGD with learning rate

in R3.

On the Spectral Bias of Neural Networks

(a) Depth = 3. (b) Depth = 4. (c) Depth = 5. (d) Depth = 6.

Figure 15. Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency, and colormap for magnitude) for a
network with varying depth, width = 16 and weight clip = 10. The spectrum of the target function is a constant 0.005 for all frequencies.

(a) Width = 16. (b) Width = 32. (c) Width = 64. (d) Width = 128.

Figure 16. Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency, and colormap for magnitude) for a
network with varying width, depth = 3 and weight clip = 10. The spectrum of the target function is a constant 0.005 for all frequencies.

(a) Weight Clip = 0.1. (b) Weight Clip = 0.15. (c) Weight Clip = 0.2. (d) Weight Clip = 2.

Figure 17. Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency, and colormap for magnitude) for a
network with varying weight clip, depth = 6 and width = 64. The spectrum of the target function is a constant 0.005 for all frequencies.

(a) Weight Clip = 0.1. (b) Weight Clip = 0.15. (c) Weight Clip = 0.2. (d) Weight Clip = 2.

Figure 18. Evolution with training iterations (y-axis) of the network prediction (x-axis for input, and colormap for predicted value) for a
network with varying weight clip, depth = 6 and width = 64. The target function is a δ peak at x = 0.5.

On the Spectral Bias of Neural Networks

Figure 19. Loss curves of two identical networks trained to regress white-noise under identical conditions, one on MNIST reconstructions
from a DAE with 64 encoder features (blue), and the other on 64-dimensional random vectors (green).

(automobile) -> airplane(frog)
(airplane) -> automobile(truck)
(airplane) -> bird(truck)
(automobile) -> cat(deer)
(frog) -> deer(horse)
(bird) -> dog(cat)
(bird) -> frog(horse)
(truck) -> horse(airplane)
(bird) -> ship(deer)
(deer) -> truck(horse)

Figure 20. Path between CIFAR-10 adversarial examples (e.g. “frog” and “automobile”, such that all images are classified as “airplane”).

0.001 and momentum 0.9. This computational budget is
similar to that required to compute the adversarial samples.
The gradient for each NEB step is computed to maximize
the logit output of the ResNet-20 for the specified target
class c. We use the formulation of NEB without springs
(Draxler et al., 2018).

The result is very clear: We can find paths between all pairs
of images for all CIFAR10 labels that do not cross a sin-
gle decision boundary. This means that all paths belong to
the same connected component regarding the output of the
DNN. This holds for all possible combinations of images
in the above list. Figure 21 shows connecting training to
adversarial images and Figure 20 paths between pairs of
adversarial images. Paths between training images are not
shown, they provide no further insight. Note that the paths

are strikingly simple: Visually, they are hard to distinguish
from the linear interpolation. Quantitatively, they are es-
sentially (but not exactly) linear, with an average length
(3.0± 0.3)% longer than the linear connection.

B. The Continuous Piecewise Linear
Structure of Deep ReLU Networks

We consider the class of ReLU network functions f : Rd 7→
R defined by Eqn. 1. Following the terminology of (Raghu
et al., 2016; Montufar et al., 2014), each linear region of
the network then corresponds to a unique activation pat-
tern, wherein each hidden neuron is assigned an activation
variable ε ∈ {−1, 1}, conditioned on whether its input is
positive or negative. ReLU networks can be explictly ex-
pressed as a sum over all possible activation patterns, as in

On the Spectral Bias of Neural Networks

airplane (cat)
automobile (truck)

bird (horse)
cat (airplane)

deer (bird)
dog (frog)
frog (deer)

horse (dog)
ship (automobile)

truck (ship)

Figure 21. Each row is a path through the image space from an adversarial sample (right) to a true training image (left). All images are
classified by a ResNet-20 to be of the class of the training sample on the right with at least 95% softmax certainty. This experiment shows
we can find a path from adversarial examples (right, Eg. ”(cat)”) that are classified as a particular class (”airplane”) are connected to
actual training samples from that class (left, ”airplane”) such that all samples along that path are also predicted by the network to be of the
same class.

the following lemma.

Lemma 3. Given L binary vectors ε(1), · · · ε(L) with ε(k) ∈
{−1, 1}dk , let T (k)

ε(k) : Rdk−1 → Rdk the affine function

defined by T (k)

ε(k)(u)i = (T (k)(u))i if (εk)i = 1, and 0
otherwise. ReLU network functions, as defined in Eqn. 1,
can be expressed as

f(x) =
∑

ε(1),···ε(L)

1Pf,ε(x)
(
T (L+1) ◦ T (L)

ε(L) ◦ · · · ◦ T
(1)

ε(1)

)
(x)

(22)
where 1P denotes the indicator function of the subset P ⊂
Rd, and Pf,ε is the polytope defined as the set of solutions
of the following linear inequalities (for all k = 1, · · · , L):

(εk)i (T (k) ◦ T (k−1)

ε(k−1) ◦ · · · ◦ T
(1)

ε(1))(x)i ≥ 0, i = 1, · · · dk
(23)

f is therefore affine on each of the polytopes Pf,ε, which
finitely partition the input space Rd to convex polytopes.
Remarkably, the correspondence between ReLU networks
and CPWL functions goes both ways: Arora et al. (2018)
show that every CPWL function can be represented by a
ReLU network, which in turn endows ReLU networks with
the universal approximation property.

Finally, in the standard basis, each affine map T (k) :
Rdk−1 → Rdk is specified by a weight matrix W (k) ∈
Rdk−1 × Rdk and a bias vector b(k) ∈ Rdk . In the linear
region Pf,ε, f can be expressed as fε(x) = Wεx+bε, where

in particular

Wε = W (L+1)W (L)
εL · · ·W

(1)
ε1 ∈ R1×d, (24)

whereW (k)
ε is obtained fromW (k) by setting its jth column

to zero whenever (εk)j = −1.

C. Fourier Analysis of ReLU Networks
C.1. Proof of Lemma 1

Proof. Case 1: The function f has compact support.
The vector-valued function kf(x)eik·x is continuous ev-
erywhere and has well-defined and continuous gradients
almost everywhere. So by Stokes’ theorem (see e.g Spivak
(2018)), the integral of its divergence is a pure boundary
term. Since we restricted to functions with compact support,
the theorem yields∫

∇x ·
[
kf(x)e−ik·x

]
dx = 0 (25)

The integrand is (k · (∇xf)(x) − ik2f(x))e−ik·x, so we
deduce,

f̂(k) =
1

−ik2
k ·
∫

(∇xf)(x) e−ik·x (26)

Now, within each polytope of the decomposition (22), f
is affine so its gradient is a constant vector, ∇xfε = WT

ε ,
which gives the desired result (1).

On the Spectral Bias of Neural Networks

Case 2: The function f does not have compact support.
Without the assumption of compact support, the function f
is not squared-integrable. The Fourier transform therefore
only exists in the sense of distributions, as defined below.

Let S be the Schwartz space over Rd of rapidly decaying test
functions which together with its derivatives decay to zero as
x→∞ faster than any power of x. A tempered distribution
is a continuous linear functional on S. A function f that
doesn’t grow faster than a polynomial at infinity can be
identified with a tempered distribution Tf as:

Tf : S → R, ϕ 7→ 〈f, ϕ〉 =

∫
Rd
f(x)ϕ(x)dx (27)

In the following, we shall identify Tf with f . The Fourier
transform f̃ of the tempered distribution is defined as:

〈f̃ , ϕ〉 := 〈f, ϕ̃〉 (28)

where ϕ̃ is the Fourier transform of ϕ. In this sense, the
standard notion of the Fourier transform is generalized to
functions that are not squared-integrable.

Consider the continuous piecewise-linear ReLU network
f : Rd → R. Since it can grow at most linearly, we interpret
it as a tempered distribution on Rd. Recall that the linear
regions Pε are enumerated by ε. Let fε be the restriction of f
to Pε, making fε(x) = WT

ε x. The distributional derivative
of f is given by:

∇xf =
∑
ε

∇xfε · 1Pε =
∑
ε

WT
ε 1Pε (29)

where 1Pε is the indicator over Pε and we used ∇xfε =
WT
ε . It then follows from elementary properties of Schwartz

spaces (see e.g. Chapter 16 of Serov (2017)) that:

[∇̃xf](k) = −ikf̃(k) (30)

=⇒ f̃(k) =
1

−ik2
k · [∇̃xf](k) (31)

Together with Eqn 29 and linearity of the Fourier transform,
this gives the desired result (1).

C.2. Fourier Transform of Polytopes

C.2.1. THEOREM 1 OF DIAZ ET AL. (2016)

Let F be a m dimensional polytope in Rd, such that 1 ≤
m ≤ d. Denote by k ∈ Rd a vector in the Fourier space,
by φk(x) = −k · x the linear phase function, by F̃ the
Fourier transform of the indicator function on F , by ∂F the
boundary of F and by volm the m-dimensional (Hausdorff)
measure. Let ProjF (k) be the orthogonal projection of k on
to F (obtained by removing all components of k orthogonal

to F). Given a m− 1 dimensional facet G of F , let NF (G)
be the unit normal vector to G that points out of F . It then
holds:

1. If ProjF (k) = 0, then φk(x) = Φk is constant on F , and
we have:

F̃ = volF (F)eiΦk (32)

2. But if ProjF (k) 6= 0, then:

F̃ = i
∑
G∈∂F

ProjF (k) ·NF (G)

‖ProjF (k)‖2
G̃(k) (33)

C.2.2. DISCUSSION

The above theorem provides a recursive relation for com-
puting the Fourier transform of an arbitrary polytope. More
precisely, the Fourier transform of a m-dimensional poly-
tope is expressed as a sum of fourier transforms over the
m− 1 dimensional boundaries of the said polytope (which
are themselves polytopes) times aO(k−1) weight term (with
k = ‖k‖). The recursion terminates if ProjF (k) = 0, which
then yields a constant.

To structure this computation, Diaz et al. (2016) introduce
a book-keeping device called the face poset of the poly-
tope. It can be understood as a weighted directed acyclic
graph (DAG) with polytopes of various dimensions as its
nodes. We start at the root node which is the full dimen-
sional polytope P (i.e. we initially set m = n). For all of
the codimension-one boundary faces F of P , we then draw
an edge from the root P to node F and weight it with a term
given by:

WF,G = i
ProjF (k) ·NF (G)

‖ProjF (k)‖2
(34)

and repeat the process iteratively for each F . Note that the
weight term is O(k−1) where ProjF (k) 6= 0. This process
yields tree paths T : F0 = P → F1 → ... → F|T | where
each Fi+1 ∈ ∂Fi has one dimension less than Fi. For a
given path and k, the terminal node for this path, FnT , is the
first polytope for which ProjFnT (k) = 0. The final Fourier
transform is obtained by multiplying the weights along each
path and summing over all tree paths:

1̃P (k) =
∑
T

|T |−1∏
i=0

WFi,Fi+1volF|T |(F|T |)e
iΦk (35)

where Φ(T) = k · xT0 for an arbitrary point xT0 in F|T |.

To write this as a weighted sum of indicator functions, as
in Lemma 2, let Tn denote the set of all tree paths T of
length n, i.e. |T | = n. For a tree path T , let S(T) be the
orthogonal to the terminal node Fn, i.e the vectors k such

On the Spectral Bias of Neural Networks

that ProjFn(k) = 0. The sum over T in Eqn (35) can be
split as:

1̃P =

d∑
n=0

1Gn
kn

∑
T∈Tn

1S(T)

n−1∏
i=0

W̄FTi ,F
T
i+1

volFTn (FTn)eiΦ
(T)
k

(36)
where W̄F,G = kWF,G and Gn =

⋃
T∈Tn S(T). In words,

Gn is the set of all vectors k that are orthogonal to some
n-codimensional face of the polytope. We identify:

Dq =
∑
T∈Tn

1S(T)

n−1∏
i=0

W̄FTi ,F
T
i+1

volFTn (FTn)eiΦ
(T)
k (37)

and D0(k) = vol(P) to obtain Lemma 2. Observe that Dn

depends on k only via the phase term eiΦ
(T)
k , implying that

Dn = Θ(1) (k →∞).

Informally, for a generic vector k, all paths terminate at
the zero-dimensional vertices of the original polytope, i.e.
dim(Fn) = 0, implying the length of the path n equals the
number of dimensions d, yielding a O(k−d) spectrum. The
exceptions occur if a path terminates prematurely, because
k happens to lie orthogonal to some d− r-dimensional face
Fr in the path, in which case we are left with a O(k−r)
term (with r < d) which dominates asymptotically. Note
that all vectors orthogonal to the d− r dimensional face Fr
lie on a r-dimensional subspace of Rd. Since a polytope
has a finite number of faces (of any dimension), the k’s for
which the Fourier transform is O(k−r) (instead of O(k−d))
lies on a finite union of closed subspaces of dimension r
(with r < d). The Lebesgue measure of all such lower
dimensional subspaces for all such r is 0, leading us to the
conclusion that the spectrum decays as O(k−d) for almost
all k’s.

C.3. On Theorem 1

Equation 6 can be obtained by swapping the (finite) sum
over ε in Lemma 1 with that over the paths T in Eqn 36. In
particular, we have:

f̃ =

d∑
n=0

1Hn
kn+1

∑
ε

WεD
ε
n1Gεn (38)

Now, the sum
∑
εWεD

ε
n(k̂)IGεn(k) is supported on the

union:
Hn =

⋃
ε

Gεn (39)

Identifying:

Cn(·, θ) =
∑
ε

WεD
ε
n1Gεn (40)

where Cn(·, θ) = O(1) (k → ∞), we obtain Theorem 1.
Further, if Nf is the number of linear regions of the network

and Lf = maxε ‖Wε‖, we see that Cn = O(LfNf). In-
deed, in Appendix A.5, we empirically find that relaxing the
constraint on the weight clip (which can be identified with
Lf) enabled the network to fit higher frequencies, implying
that the O(Lf) bound can be tight.

C.4. Spectral Decay Rate of the Parameter Gradient

Proposition 1. Let θ be a generic parameter of the network
function f . The spectral decay rate of ∂f̃/∂θ is O(kf̃).

Proof. For a fixed k̂, observe from Eqn 38 and Eqn 37
that the only terms dependent on k are the pure powers
k−n−1 and the phase terms eiΦ

(T)
k , where Φ

(T)
k = kk̂·xq(T)

0 .
However, the term x

q(T)
0 is in general a function of θ, and

consequently the partial derivative of eiΦ
(T)
k w.r.t θ yields a

term that is proportional to k. This term now dominates the
asymptotic behaviour as k →∞, adding an extra power of
k to the total spectral decay rate of f̃ .

Therefore, if f = O(k−∆−1) where ∆ is the codimension
of the highest dimensional polytope k̂ is orthogonal to, we
have that ∂f/∂θ = O(k−∆).

C.5. Convergence Rate of a Network Trained on
Pure-Frequency Targets

In this section, we derive an asymptotic bound on the con-
vergence rate under the assumption that the target function
has only one frequency component.

Proposition 2. Let λ : [0, 1]→ R be a target function sam-
pled in its domain at N uniformly spaced points. Suppose
that its Fourier transform after sampling takes the form:
λ̃(k) = A0δk,k0 , where δ is the Kronecker delta. Let f be
a neural network trained with full-batch gradient descent
with learning rate η on the Mean Squared Error, and denote
by ft the state of the network at time t. Let h(·, t) = ft − λ
be the residual at time t. We have that:∣∣∣∣∣∂h̃(k0, t)

∂t

∣∣∣∣∣ = O(k−1
0) (41)

Proof. Consider that:∣∣∣∣∣∂h̃(k0)

∂t

∣∣∣∣∣ =

∣∣∣∣∣∂f̃(k0)

∂θ

∣∣∣∣∣
∣∣∣∣∂θ∂t

∣∣∣∣ (42)

=

∣∣∣∣∣η ∂f̃∂θ
∣∣∣∣∣
∣∣∣∣∣∂L[f̃ , λ̃]

∂θ

∣∣∣∣∣ (43)

where L is the sampled MSE loss and the first term is
O(k−1

0) as can be seen from Proposition 1. With Parce-

On the Spectral Bias of Neural Networks

val’s Theorem, we obtain:

L[f, λ] =

N−1∑
x=0

|f(x)− λ(x)|2 =

N/2−1∑
k=−N/2

|f̃(k)− λ̃(k)|2

= L[f̃ , λ̃] (44)

For the magnitude of parameter gradient, we obtain:∣∣∣∣∣∂L[f̃ , λ̃]

∂θ

∣∣∣∣∣ = 2

∣∣∣∣∣∣
N/2−1∑
k=−N/2

Re[f̃(k)− λ̃(k)]
∂f̃(k)

∂θ

∣∣∣∣∣∣
≤ 2

N/2−1∑
k=−N/2

|f̃(k)− λ̃(k)|

∣∣∣∣∣∂f̃(k)

∂θ

∣∣∣∣∣
≤ 2

∣∣∣∣∣A0
∂f̃(k0)

∂θ

∣∣∣∣∣+ 2

N/2−1∑
k=−N/2

∣∣∣∣∣f̃(k)
∂f̃(k)

∂θ

∣∣∣∣∣
(45)

where in the last line we used that λ̃ is a Kronecker-δ in
the Fourier domain. Now, the second summand does not
depend on k0, but the first summand is again O(k−1

0).

C.6. Proof of the Lipschtiz bound

Proposition 3. The Lipschitz constant Lf of the ReLU net-
work f is bound as follows (for all ε):

‖Wε‖ ≤ Lf ≤
L+1∏
k=1

‖W (k)‖ ≤ ‖θ‖L+1
∞
√
d

L∏
k=1

dk (46)

Proof. The first equality is simply the fact that Lf =
maxε ‖Wε‖, and the second inequality follows trivially from
the parameterization of a ReLU network as a chain of func-
tion compositions19, together with the fact that the Lipschitz
constant of the ReLU function is 1 (cf. (Miyato et al., 2018),
equation 7). To see the third inequality, consider the defini-
tion of the spectral norm of a I × J matrix W :

‖W‖ = max
‖h‖=1

‖Wh‖ (47)

Now, ‖Wh‖ =
√∑

i |wi · h|, where wi is the i-th row of
the weight matrix W and i = 1, ..., I . Further, if ‖h‖ = 1,
we have |wi · h| ≤ ‖wi‖‖h‖ = ‖wi‖. Since ‖wi‖ =√∑

j |wij | (with j = 1, ..., J) and |wij | ≤ ‖θ‖∞, we find

that ‖wi‖ ≤
√
J‖θ‖∞. Consequently,

√∑
i |wi · h| ≤√

IJ‖θ‖∞ and we obtain:

‖W‖ ≤
√
IJ‖θ‖∞ (48)

19Recall that the Lipschitz constant of a composition of two or
more functions is the product of their respective Lipschtiz con-
stants.

Now for W = W (k), we have I = dk−1 and J = dk. In
the product over k, every dk except the first and the last
occur in pairs, which cancels the square root. For k = 1,
dk−1 = d (for the d input neurons) and for k = L + 1,
dk = 1 (for a single output neuron). The final inequality
now follows.

C.7. The Fourier Transform of a Function Composition

Consider Equation 14. The general idea is to investigate the
behaviour of Pγ(l,k) for large frequencies l on manifold
but smaller frequencies k in the input domain. In particular,
we are interested in the regime where the stationary phase
approximation is applicable to Pγ , i.e. when l2 + k2 →∞
(cf. section 3.2. of (Bergner et al.)). In this regime, the
integrand in Pγ(k, l) oscillates fast enough such that the
only constructive contribution originates from where the
phase term u(z) = k · γ(z) − l · z does not change with
changing z. This yields the condition that ∇zu(z) = 0,
which translates to the condition (with Einstein summation
convention implied and ∂ν = ∂/∂xν):

lν = kµ∂νγµ(z) (49)

Now, we impose periodic boundary conditions20 on the com-
ponents of γ, and without loss of generality we let the period
be 2π. Further, we require that the manifold be contained
in a box21 of some size in Rd. The µ-th component γµ can
now be expressed as a Fourier series:

γµ(z) =
∑

p∈Zm
γ̃µ[p]e−ipρzρ

∂νγµ(z) =
∑

p∈Zm
−ipν γ̃µ[p]e−ipρzρ (50)

Equation 50 can be substituted in equation 49 to obtain:

ll̂ν = −ik
∑

p∈Zm
pν k̂µγ̃µ[p]e−ipρzρ (51)

where we have split kµ and lν in to their magnitudes k
and l and directions k̂ν and l̂µ (respectively). We are now
interested in the conditions on γ under which the RHS can
be large in magnitude, even when k is fixed. Recall that γ is
constrained to a box – consequently, we can not arbitrarily
scale up γ̃µ. However, if γ̃µ[p] decays slowly enough with
increasing p, the RHS can be made arbitrarily large (for
certain conditions on z, l̂µ and k̂ν).

20This is possible whenever γ is defined on a bounded domain,
e.g. on [0, 1]m.

21This is equivalent to assuming that the data lies in a bounded
set.

On the Spectral Bias of Neural Networks

D. Volume of High-Frequency Parameters in
Parameter Space

For a given neural network, we now show that the volume of
the parameter space containing parameters that contribute
ε-non-negligibly to frequency components of magnitude k′

above a certain cut-off k decays with increasing k. For no-
tational simplicity and without loss of generality, we absorb
the direction k̂ of k in the respective mappings and only
deal with the magnitude k.

Definition 1. Given a ReLU network fθ of fixed depth,
width and weight clip K with parameter vector θ, an ε > 0
and Θ = B∞K (0) a L∞ ball around 0, we define:

Ξε(k) = {θ ∈ Θ|∃k′ > k, |f̃θ(k′)| > ε}

as the set of all parameters vectors θ ∈ Ξε(k) that con-
tribute more than an ε in expressing one or more frequencies
k′ above a cut-off frequency k.

Remark 1. If k2 ≥ k1, we have Ξε(k2) ⊆ Ξε(k1) and
consequently vol(Ξε(k2)) ≤ vol(Ξε(k1)), where vol is the
Lebesgue measure.

Lemma 4. Let 1εk(θ) be the indicator function on Ξε(k).
Then:

∃κ > 0 : ∀k ≥ κ, 1εk(θ) = 0

Proof. From theorem 1, we know that22 |f̃θ(k)| =
O(k−∆−1) for an integer 1 ≤ ∆ ≤ d. In the worse case
where ∆ = 1, we have that ∃M <∞ : |f̃θ(k)| < M

k2 . Now,

simply select a κ >
√

M
ε such that Mκ2 < ε. This yields that

|f̃θ(κ)| < M
κ2 < ε, and given that Mκ2 ≤ M

k2 ∀ k ≥ κ, we find
|f̃θ(k)| < ε ∀ k ≥ κ. Now by definition 1, θ 6∈ Ξε(κ), and
since Ξε(k) ⊆ Ξε(κ) (see remark 1), we have θ 6∈ Ξε(k),
implying 1εk(θ) = 0 ∀ k ≥ κ.

Remark 2. We have 1εk(θ) ≤ |f̃θ(k)| for large enough k
(i.e. for k ≥ κ), since |f̃θ(k)| ≥ 0.

Proposition 1. The relative volume of Ξε(k) w.r.t. Θ is
O(k−∆−1) where 1 ≤ ∆ ≤ d.

Proof. The volume is given by the integral over the indicator
function, i.e.

vol(Ξε(k)) =

∫
θ∈Θ

1εk(θ)dθ

For a large enough k, we have from remark 2, the mono-
tonicity of the Lebesgue integral and theorem 1 that:

22Note from Theorem 1 that ∆ implicitly depends only on the
unit vector k̂.

vol(Ξε(k)) =

∫
θ∈Θ

1εk(θ)dθ

≤
∫
θ∈Θ

|f̃θ(k)|dθ = O(k−∆−1)vol(Θ)

=⇒ vol(Ξε(k))

vol(Θ)
= O(k−∆−1)

E. Kernel Machines and KNNs
In this section, in light of our findings, we want to compare
DNNs with K-nearest neighbor (k-NN) classifier and kernel
machines which are also popular learning algorithms, but
are, in contrast to DNNs, better understood theoretically.

E.1. Kernel Machines vs DNNs

Given that we study why DNNs are biased towards learn-
ing smooth functions, we note that kernel machines (KM)
are also highly Lipschitz smooth (Eg. for Gaussian ker-
nels all derivatives are bounded). However there are crutial
differences between the two. While kernel machines can
approximate any target function in principal (Hammer &
Gersmann, 2003), the number of Gaussian kernels needed
scales linearly with the number of sign changes in the target
function (Bengio et al., 2009). Ma & Belkin (2017) have
further shown that for smooth kernels, a target function can-
not be approximated within ε precision in any polynomial
of 1/ε steps by gradient descent.

Deep networks on the other hand are also capable of ap-
proximating any target function (as shown by the univer-
sal approximation theorems Hornik et al. (1989); Cybenko
(1989)), but they are also parameter efficient in contrast to
KM. For instance, we have seen that deep ReLU networks
separate the input space into number of linear regions that
grow polynomially in width of layers and exponentially in
the depth of the network (Montufar et al., 2014; Raghu et al.,
2016). A similar result on the exponentially growing ex-
pressive power of networks in terms of their depth is also
shown in (Poole et al., 2016). In this paper we have fur-
ther shown that DNNs are inherently biased towards lower
frequency (smooth) functions over a finite parameter space.
This suggests that DNNs strike a good balance between
function smoothness and expressibility/parameter-efficiency
compared with KM.

E.2. K-NN Classifier vs. DNN classifier

K-nearest neighbor (KNN) also has a historical importance
as a classification algorithm due to its simplicity. It has
been shown to be a consistent approximator (Devroye et al.,
1996), i.e., asymptotically its empirical risk goes to zero as

On the Spectral Bias of Neural Networks

K →∞ and K/N → 0, where N is the number of training
samples. However, because it is a memory based algorithm,
it is prohibitively slow for large datasets. Since the smooth-
ness of a KNN prediction function is not well studied, we
compare the smoothness between KNN and DNN. For vari-
ous values of K, we train a KNN classifier on a k = 150
frequency signal (which is binarized) defined on the L = 20
manifold (see section 4), and extract probability predictions
on a box interval in R2. On this interval, we evaluate the 2D
FFT and integrate out the angular components (where the
angle is parameterized by ϕ) to obtain ζ(k):

ζ(k) =
d

dk

∫ k

0

dk′k′
∫ 2π

0

dϕ|f̃(k′, ϕ)| (52)

Finally, we plot ζ(k) for various K in figure 22e. Further-
more, we train a DNN on the very same dataset and overlay
the radial spectrum of the resulting probability map on the
same plot. We find that while DNN’s are as expressive as
a K = 1 KNN classifier at lower (radial) frequencies, the
frequency spectrum of DNNs decay faster than KNN classi-
fier for all values of K considered, indicating that the DNN
is smoother than the KNNs considered. We also repeat
the experiment corresponding to Fig. 9 with KNNs (see
Fig. 22) for various K’s, to find that unlike DNNs, KNNs
do not necessarily perform better for larger L’s, suggesting
that KNNs do not exploit the geometry of the manifold like
DNNs do.

On the Spectral Bias of Neural Networks

(a) K = 5. (b) K = 10.

(c) K = 15. (d) K = 20.

(e) Frequency spectrum

Figure 22. (a,b,c,d): Heatmaps of training accuracies (L-vs-k) of KNNs for various K. When comparing with figure 9, note that the
y-axis is flipped. (e): The frequency spectrum of KNNs with different values of K, and a DNN. The DNN learns a smoother function
compared with the KNNs considered since the spectrum of the DNN decays faster compared with KNNs.

