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Abstract

We propose the labeled Cech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of Al marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FARI10.

1. Introduction

In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0—order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The
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topological features such as connected components, and
holes of various dimensions that persist across scales are
the ones that capture the underlying shape of the dataset.
In all existing approaches to persistent homology, the scale
parameter is a single global value that does not factor in the
local scaling of the dataset, making the inference of Betti
numbers from persistence brittle and difficult to automate.

Our main contributions are as follows:

1. We introduce a new simplicial complex construction
called the labeled Cech complex that captures decision
boundary topology. We provide theoretical conditions
on the decision boundary and the data samples near
the boundary that lead to the successful recovery of the
homology of the decision boundary.

2. We propose a computationally efficient construction of
decision boundary surfaces: the labeled Vietoris-Rips
complex. We illustrate the need for local scaling to
handle non-uniform sampling of data near the decision
boundary and address this need by proposing a simpli-
cial complex construction based on estimates of local
scale using a k-nearest neighbors method.

3. We evaluate the merits of the above approaches using
synthetic and real-world data experiments. Using syn-
thetic data experiments, we show that the proposed
approaches recover the homology even when there is
extreme local scaling. Using the real-world application
domains MNIST, FashionMNIST and CIFAR10, we
show how these approaches can be used to evaluate the
Decision Boundary Topological Complexity (DBTC)
of deep neural network classifiers. One of the key ad-
vantages of our approach is that it provides a principled
method to treat models and datasets in the same footing
by generating directly comparable DBTC measures for
both of them. These DBTC measures can then be used
for selecting an appropriate pre-trained model suited
to a novel dataset, without running the dataset through
any of the models. This is quite useful in model market
places (Bridgwater, 2018), where there can be privacy
and security concerns that preclude running customer
data on vendor models at the outset (See also Section
4). Our main finding in terms of model selection can be
summarized as follows: when choosing a pre-trained
classifier model for a novel dataset, one whose DBTC
matches that of the dataset yields good generalization.

We defer detailed background on persistent homology and
simplicial constructions for unlabeled point cloud data to
Section 3 (SM). Throughout this work we assume the la-
bels to be binary for simplicity; multi-class extensions can
consider decision boundaries in one-vs-one, one-vs-all and
Venn diagram constructions (Varshney & Willsky, 2010). In

our experiments, we consider homology groups of dimen-
sions 0 and 1 alone for computational efficiency, but the
theory and methods are general to any dimension.

2. Labeled Cech Complex and Recovery
Guarantees

In this section, we introduce the labeled Cech (LC) complex
and prove results on its use for recovering the homology of
a decision boundary. The high-level idea is as follows: to re-
cover the homology of a decision boundary, we must cover it
such that the cover is its deformation retract. The practically-
and computationally-oriented reader may safely proceed to
Section 3 after noting the definition of the decision boundary
and the proposed (computationally intractable) LC complex.

2.1. Decision Boundary Manifold

Decision boundaries are collections of potentially multiple
surfaces of dimension less than d in ambient spaces of di-
mension d, that divide a space into two classes. We define
the overall probability space Z with the measure given by
u. and the pdf pz. We assume two classes that can be
conditioned from this space using the selector C'; the pdfs
being px = pz|c(2]1) and py = pzc(2]0). We denote
the mixture probabilities as pc(0) = g and po(1) =1 — g,
such that pz(2) = pz|c(2[1)pc(1) + pzic(2|0)pc(0). By
the Neyman-Pearson rule, the decision boundary manifold
is defined by M = {2 € Z | py = px}.

Let us define the extent of the distribution where the two
classes are mixed by the set

D ={z € Zlpzc(|0) > 0,pzc(2[1) > 0}. (1)

This is the set where both distributions have some mass.

2.2. Labeled Cech Complex

The homology of a manifold can be recovered by an ap-
propriate random sampling and computing a Cech complex
on the random samples. The same idea can be extended
to the case of a decision boundary, which is a manifold at
the intersection of the two classes. We need a construction
which is homotopy equivalent to this manifold. To this end,
we introduce the labeled Cech complex.

Definition 1. An (e, v)-labeled Cech complex, is a simpli-
cial complex with a collection of simplices such that each
simplex o is formed on the points in the set S aided by
the reference set W, when the following conditions are
satisfied:

1. m B.(s;) # 0, where s; are the vertices of &.

S; €0

2. Vs; € 0, Jw € W such that, ||s; — w|| < 7.
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Here, B.(s;) denotes a ball of radius ¢ around the point
s;. This definition matches the usual Cech complex, but
introduces the additional constraint that a simplex is induced
only if all its vertices are close to some point in the reference
set . The second condition also implies that W is y-dense
in the vertices of the simplices of the (e, v)-LC complex.
Note that, if a set A is y—dense in B, it means that for every
b € B, there exists a € A, such that ||b — al| < 7.

2.3. Recovery Guarantees

Now, we derive sufficient sampling conditions so that the
LC complex is homotopy equivalent to the decision bound-
ary manifold and hence recovers it homology. The general
idea is that when sufficient samples are drawn near M, we
can cover M using balls of radius 7, and U deformation
retracts to M. The nerve of the covering will be homotopy
equivalent to M according to the Nerve Lemma (Borsuk,
1948). The intuition is that when we have dense enough
sampling, the nerve of the Cech complex is homotopy equiv-
alent to the manifold (Niyogi et al., 2008). If the sampling
is not sufficiently dense, we run into the danger of breach-
ing the ‘tubular neighborhood’ of the manifold since the €
in the Cech complex has to be large. In our LC complex,
points from one class will be used to construct the actual
complex, and the points from the other class will be used as
the reference set W, based on Definition 1.

Sketch of the theory: Lemma 1 shows the equivalence of
the LC complex to a particular Cech complex on unlabeled
data, helping us build our theory from existing results in
(Niyogi et al., 2008). Theorem 1 lower bounds the sample
size needed to cover two sets of sets, laying the ground for
our main sample complexity result. Theorem 2 provides
the sample complexity for a dense sampling of the decision
boundary manifold, and the main result in Theorem 3 gives
the sufficient conditions under which an LC complex on
the sampled points from the two classes will be homotopy
equivalent to the decision boundary.

Let us assume that:

o The decision boundary is a manifold M with condition
number 1/7. This means that the open normal bundle
about M of radius 7 is embedded in R?. In other
words, the normal bundle is non self-intersecting. In
more practical terms, a large 7 corresponds to a well-
conditioned manifold with low curvature (do Carmo,
1992).

e D is contained in the tubular neighborhood of radius r
around M, i.e., D C Tub,(M).

e Forevery 0 < s < r, the mass around a point p in M

(e)

is at least kg’ in both classes. There is sufficient mass

in both classes:

inf pio(Be(p)) > k{7 Vee{0,1}. @
peEM
Lemma 1. As € varies from 0 to oo, a filtration is induced
on the (e,v)-LC complex for a fixed ~.

Proof. Fixing v, we choose S, C S, such that W is -dense
in S, (See Defn. 1 for definitions of .S and W, and also
a note on y—density). Therefore, the (e,v)-LC complex
on S is equivalent to an e-Cech complex on S.,, and hence
varying e induces a filtration. O

Remark. The (e, )-Cech complex can be used to delineate
the decision boundary by choosing S to be the samples of
one class and IV to be the other class.

Given sufficient samples in .S and W, a union of e-balls on
S, will be homotopy equivalent to M, when € is chosen
such that there is a ‘good covering’. Since homotopy implies
same homology, this is how we use the LC complex to
identify the homology of the decision boundary.

Theorem 1. Let {A;}\, and {B; }?’:1 be two sets of
measurable sets. Let u, and p, be the probability mea-
sures on Ui”:l A; and U?’:l Bj, respectively, such that
pa(Ai) > oz, Vi€ {1,2,...,1,} and p1,,(B;) > oy, Vj €
{1,2,...,lp}. Let py and i, be the component measures of
fz, such that p. (F) = qua (F)+(1—q)py(F), gand 1—q
being the mixture probabilities. Let Z = {z1,22,...,2n}
be the set of n i.i.d. draws according to i, which can be
partitioned into two sets T and y which contain the samples
from the measures p, and ji,,. Then, if

n >
max (51 (log2l, +log 1), 5 (log 2%y +log 1))
(3

we are guaranteed with probability greater than 1 — § that

Vi,TNA; #0 and Vj,yn B; # 0. 4)

See Section 1 (SM) for proof.

Lemma 2. For three sets S, W, and U, yf S is r-dense in
U and W is t-dense in U, there exists an S C S, such that
the following hold:

1. S is r-dense in U,
2. U is r-dense in 5’,
3. Wis (r +t)-dense in S.

Proof. If S is r-dense in U, for every u € Ua there exjsts
an s € S such that |u — s|| < r. Now, let S C S, § =
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{se€S||u-s| <rue U}, ie., for each element 5 € S,
we have at least one u € U such that ||u — §|| < r and
vice-versa. This proves item 1 and item 2. Since for each u,
we have at least one w € W, such that ||u — w|| < ¢. Hence,
by the triangle inequality, for each § € S, we have at least
one w € W such that ||s — w|| < (r +t). O

Theorem 2. Let N, /5 and N5 be the r/2 and s/2 cover-
ing numbers of the manifold M. Let G and H be two
sets of points in M of sizes N, ;5 and N5 such that
B, /2(9i),9i € G, and By )5(hj), h; € H are the r /2- and
s/2-covers. Let Z be generated by i.i.d. sampling from p.
whose two component measures satisfy the regularity prop-
erties in (2), and have mixing probabilities q and 1 — q for
q > 0. Let the two component samples be  and y. Then if

|Z|] > max (m (10g (QNT/Q) + log (%)) ,

iy 08 (2V2) +108(3)) ),

with probability greater than 1 — 0, T will be r-dense in M,
and y will be s-dense in M.

Proof. Letting A; = B, /5(g:), and B; = By /2(h;), apply
the previous Theorem. Hence, with probability greater than
1 — 4, each of A; and B, are occupied by at least one of
x; € T, and y; € y respectively. There it follows that for
any p € M, there is at least one z € T and y € ¥ such that
|lp —z|| <, and ||p — y|| < s. Thus, with high probability,
T is r-dense in M and 7 is s-dense in M. O

Now we extend Theorem 7.1 in Niyogi et al. (2008) to the
case of the LC complex and provide the main conditions
under which the homology of the decision boundary can be
recovered.

Theorem 3. Let N, /; and N5 be the r/2 and s5/2 cov-
ering numbers of the submanifold M of RY. Let Z be
generated by i.i.d. sampling from p, whose two component
measures satisfy the regularity properties in (2), and have
mixing probabilities q and 1 — q for ¢ > 0. Let the two
component samples be T and y. Then if

21 > max (o (1og (2N, 2) + log (3)).

r/2

i 08 (2V2) +108(3)) ),

with probability greater than 1—3, the (e, 7+ 5)-LC complex
will be homotopy equivalent to M, if: (a) r < (v/9 —/8)T,
and ()¢ ¢ (CEARTERT et e

Proof. From Lemma 2, we know that when Z is r-dense
in M, and 7 is s-dense in M, we have £ C T which is

also r-dense in M and 7 is (r + s)-dense in Z. Also, from
Lemma 1, the (¢, 7+ s)-LC complex on T with the reference
set y is equivalent to the e-Cech complex on z.

Since 7 is r-dense on M, it follows from Theorem 7.1 in
(Niyogi et al., 2008) that this e-Cech on = will be homotopy
equivalent to M if the conditions on r and € are satisfied.

O

3. Labeled Vietoris-Rips Complexes

In this section, we propose two computationally-tractable
constructions for simplicial complexes of the decision
boundary: one we name the plain labeled Vietoris-Rips
complex and the other we name the locally scaled labeled
Vietoris-Rips complex. We illustrate the need for the locally
scaled version.

3.1. Notation
Let us start with a labeled discrete sample
{(z1,¢1), ..., (2n,cn)} where z; € R? is the data

point and ¢; € {0, 1} is its class label. Given a data point
zi, we define its neighborhood as the set Ny(z;) where 0
is a scalar neighborhood parameter. The neighbors are
restricted to data points whose class c; is not the same
as ¢;. Our neighborhood construction is symmetric by
definition, hence z; € Ny(z;) < z; € Ny(z;). This results
in a bipartite graph Gj.

We use Betti numbers to describe the topology of the de-
cision boundary. The i Betti number j3; is the rank of
the homology group H; of dimension ¢ and is a count of
connected components, holes, or cavities of dimension 4.

3.2. Two Complexes

To induce a simplicial complex with simplices of order
greater than one from the bipartite graph GG, we connect all
2-hop neighbors.! Since the original edges are only between
points in opposing classes, all 2-hop neighbors belong to the
same class. Consider the examples in Figure 1. In the first
example, we start with three points in a two-dimensional
space where all points are within € of each other. Two share
a class label and are thus not initially connected by an edge.
The initial graph A has two line segment simplices. After
including the graph walk, an intraclass edge is introduced.
Now A has a triangle simplex. The second example is
similar, but has four points in three-dimensional space, with
three of the four points sharing a class label. Here we form
a tetrahedron after introducing the length two graph walk
edges.

This new graph is defined to be one-skeleton of the decision

"We find two hops to be sufficient. Larger hops may be consid-
ered, but could introduce spurious cycles.
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Figure 1. (a) A simplicial complex with two 2-simplices from a
bipartite graph between circle and square classes generated using
length-2 walks (dotted lines), (b) a complex created with one 3-
simplex using the same approach.

boundary complex. We create a simplicial complex from
this one-skeleton using the standard Vietoris-Rips induction
(Zomorodian, 2010): a simplex of dimension 7 + 1 is induc-
tively included in the complex if all its r-dimensional faces
are included. We call this the labeled Vietoris-Rips (LVR)
complex V.

Our construction is such that, by definition, for 85 > 6,
there is an inclusion Gy, O Gy,. Given this inclusion
relationship in the bipartite graphs, we obtain a filtration as
we vary 0, i.e., for 82 > 01, Vo, O Vy,. We provide two
approaches for creating the LVR complex and its filtration.

Plain LVR (P-LVR) Complex: We set # to be the ra-
dius parameter ¢ and define Np(z;) as the set of points
{2j}e; e ||z—=; | <o- Persistent homology is obtained by
varying the radius parameter e.

Locally Scaled LVR (LS-LVR) Complex: We set 6 to
be k, the multiplier to the local scale and define Ny(z;)
as the set of points {2;}c; £c, |22 | <wy/pip;» Where p; is
the local scale of z;. This is defined to be the radius of
the smallest sphere centered at z; that encloses at least k
points from the opposite class. In this complex, persistent
homology is obtained by varying the local scale multiplier,
k. LS-LVR construction is based on the generalization of
CKkNN graph introduced in (Berry & Sauer, 2019) to labeled
data. Similar weighted simplicial constructions where the
radius of the ball around a point depends on the point itself
have been discussed in (Bell et al., 2017), where the authors
show stability with respect to persistence diagrams (PDs) for
small perturbations of the point cloud. Local scaling helps
in making the persistent homology computation invariant to
the sampling density, as illustrated in the next section.

After the LVR filtrations have been obtained, persistent ho-
mology of the decision boundaries can be estimated using
standard approaches (Edelsbrunner & Harer, 2008; Zomoro-
dian & Carlsson, 2005), and represented using barcodes or

25 ° 25
S, ot
20 o e . ."‘ ° 20
° o o’
0 L) L)
)
Y o’
» N .
o o [
5 o* 5
iF- :
0 5 10 15 20 25 o 5 10 15 20 25
(a) (b)

Figure 2. (a) A 2-class dataset with red and blue classes, and (b)
the LS-LVR decision boundary complex at £ = 1.005.

persistence diagrams (Edelsbrunner & Morozov, 2012).

3.3. Illustration of Homology Group Recovery

We illustrate these two approaches for constructing deci-
sion boundary complexes and estimating their persistent
homology using a two-dimensional, two-class dataset given
in Figure 2(a). The two decision boundaries are homotopy
equivalent to two circles that separate the classes, and hence
the true Betti numbers of the decision boundaries for this
data are: Sy = 2, and 31 = 2. The sampling is non-uniform,
with the smaller disk and annulus having more density than
the larger ones.

We compute the persistent homology using the P-LVR and
LS-LVR complexes. With P-LVR, we vary the radius pa-
rameter € from 0 to 10, and with LS-LVR, we vary the
local scale multiplier x from 0.5 to 1.5. The local scale p
is computed with £ = 5 neighbors. Figure 2(b) shows a
LS-LVR complex at scale 1.005 that accurately recovers
the Betti numbers of the decision boundary. Note that the
varying sampling densities of the two regions in the decision
boundary (small and big circles) get normalized due to local
scaling.

Figure 3 shows the PDs as well as the Betti numbers for
different scales using the two complexes.” The LS-LVR con-
struction recovers both 3y and /31 accurately for « slightly
greater than 1 and persists until & is slightly less than 1.2.
Around this value, one of the holes closes and a little later
the other hole collapses as well. The resulting two simply
connected components persist until £ = 1.5.

In contrast, for the P-LVR complex, the Hy and H; groups
first come to life at € = 0.9 for the smaller decision bound-

2Note that the PD for Hy groups shows all the groups, whereas
the Betti numbers in Figures 3(b) and 3(d) only show the number
of non-trivial homology groups. Non-trivial Hy groups are defined
to be those that have more than one data point i.e., the number of
simply connected components with size more than 1. Including
trivial homology groups is meaningless when computing the topol-
ogy of decision boundaries since decision boundaries are defined
only across classes.
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Figure 3. For the data in Figure 2. (a) Persistence diagram and (b) Betti numbers as a function of scale using P-LVR, and (c) persistence
diagram and (d) Betti numbers using LS-LVR. The axes of the persistence diagrams are birth time and life time = death time-birth time.

ary component. The H; group vanishes almost immediately.
At e = 0.38, the Hy and H; groups for the larger decision
boundary component come to life, persisting for 0.12. The
overall topology (59 = 2, 51 = 2) is not captured at any one
scale due to varying sizes of homological features as well
as non-uniform sampling. The widely varying life times for
homological features make it hard to choose a threshold for
estimating the correct number of homology groups. This
is not a problem with LS-LVR since the H; groups appear
clustered together in the PD. Another benefit of LS-LVR is
that non-noisy homology groups appear around x = 1, the
natural local scale of the data. This does not hold true for the
P-LVR complex. The actual complexes for various scales
with the two constructions are given in Section 4 (SM).

4. Experiments

We perform experiments with synthetic and high-
dimensional real-world datasets to demonstrate: (a) the ef-
fectiveness of our approach in recovering homology groups
accurately, and (b) the utility of this method in discovering
the Decision Boundary Topological Complexity (DBTC)
of neural networks and their potential use in choosing pre-
trained models for a new dataset.

Marketplace for pre-trained models is an upcoming trend
in the machine learning/Al industry (Bridgwater, 2018). In
this setting, pre-trained models are available from vendors,
and the customers are expected to choose an appropriate
model for their dataset from this model marketplace. The
data may be sensitive, and the models may have proprietary
technology, so it may not be possible for customers to run
their datasets on vendor models. Our model selection ap-
plication is a natural fit here, since we will extract DBTC
measures for customer data and vendor models and match
them up to find the best model for the data.

4.1. Implementation Notes

In all experiments, to limit the number of simplices, we
upper bound the number of neighbors used to compute the
neighborhood graph to 20. We adopt several approaches
to make our implementations efficient. We describe them

briefly:

e We use e-neighborhood graphs to compute the LVR
complexes, but to limit the number of simplices, we
restrict the number of nearest neighbors for any point
to 20. We then symmetrize the graph and use it for
obtaining the P-LVR and LS-LVR constructions.

e The neighborhood graphs are computed efficiently us-
ing Cython code interfaced to the main Python package
that we developed.

e We estimate the distance matrices for the LVR con-
structions and use the efficient Ripser package (Bauer,
2016) and its Python interface (Nathaniel Saul, 2019)
to obtain the persistence diagrams.

e The entire pipeline (neighborhood graph construction
and LVR estimation) to estimate the Betti numbers 3
and (31 for two classes runs in less than 1 minute for
about 1000 points per class (the standard size of our
test datasets). The program runs in a single core using
less than 500MB of RAM in a standard computer.

Implementations of the approaches proposed in
this work are available at: https://github.
com/nrkarthikeyan/topology—-decision—
boundaries

4.2. Synthetic Data: Homology Group Recovery

The first experiment demonstrates the effectiveness of our
approach in recovering homology groups of complex syn-
thetic data with wide variations in sizes of topological fea-
tures (Figure 4). The decision boundary is homotopy equiv-
alent to 25 circles (5 = 25, 51 = 25). From Figures 5(c)
and 5(d), it is clear that the LS-LVR complex shows similar
persistence for all the 25 H; groups irrespective of their
varying sizes in the dataset. Observe the clumping in the
PD, and the presence of a lone noisy H; group with almost
zero life time. The P-LVR complex also recovers the 25 H;
groups, but does so at different times (Figures 5(a) and 5(b)).
From the PD, we can see that there are five rough clumps
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Figure 4. A 2-class dataset with 5y = 25,31 = 25. Notice the
wide variation in sizes of topological features.

of H; groups, around birth times {1, 2,3, 4,5}, each con-
taining five H; groups. The birth times correspond to the
radii of the five groups of decision boundaries in Figure 4.
The staggered recovery of topology with the P-LVR com-
plex makes it hard to fix a noise threshold on life times to
estimate the correct Betti numbers.

4.3. Real-World Data: Complexity Estimation and
Model Selection

We demonstrate how topological complexity can be used
to guide selecting appropriate pre-trained models for a
new dataset. We use only LS-LVR complexes for esti-
mating topological complexities. We consider three ap-
plication domains for our evaluation: MNIST (Lecun &
Cortes, 2009), FashionMNIST (Xiao et al., 2017) and CI-
FAR10 (Krizhevsky & Hinton, 2009). All three appli-
cations have 10 classes and 50,000 training and 10, 000
test images. Each instance of MNIST and FashionM-
NIST is a 28 x 28 grayscale image, whereas each instance
of CIFARIO is a 32 x 32 color image. We construct
(120) = 45 binary classification datasets from each appli-
cation domain, one for each combination of two classes.
We then train individual binary classifiers for these 45
datasets per application using the standard CNN architec-
ture provided in https://github.com/pytorch/
examples/tree/master/mnist for MNIST and
FashionMNIST, and the VGG CNN - configuration D for
CIFAR10 (Simonyan & Zisserman, 2014).

4.3.1. ESTIMATING THE DBTC OF DATA AND MODELS

The DBTC measures that are described here provide a
way to treat data and models in an equal footing hence
providing a way to compare them easily. The DBTC
of a pre-trained model f;(-) can be obtained using the

test data features (z;.) and the labels predicted by the

model ( (f(z;,.)) . This labeled dataset, which is a sample-

level representation of the model, is given as Zi(m) =

{(zi,1, fi(%1)), - -y (%ings fi(2in,))} and it characterizes
the decision boundary. For a novel dataset, given by
Z(d) _ {(zin,¢i1), - (Zini» Cin, )} the DBTC can be

directly estimated using the input features (2;,.) and the true
labels (c;,.). Now, we can compare the DBTCs of the novel
dataset to that of the models to evaluate the suitability of the
pre-trained model to the novel dataset. For some dataset or
model indexed by 1, let us denote the Betti numbers for H
and H; at scale k as [y . (7), and (1 (%) respectively. We
will also denote the persistence diagrams for Hy and H; as
P()(Z) and P1 (Z)

We provide five different measures for quantifying the
DBTC of the decision boundaries in Zi(m) or Zi(d): (a) The
total lifetime of H groups given by > 3o ., (b) the total
lifetime of Hy groups given by >, (1 x, (c) the D,, diver-
gence (Berisha et al., 2016) between the two classes, (d)
the Hy persistence, P, and, (e) the H; persistence, P;. The
homology-based measures (a, b, d, e) are obtained from the
LS-LVR complexes, and the D,, divergence between the
two component class distributions can be efficiently esti-
mated by constructing a minimum spanning tree on ZZ.(m) or

Zi(d) (Berisha et al., 2016). The first two measures ZK Bo,x
and ), 31, are also referred to as degree-0 total persis-
tence in Cohen-Steiner et al. (2010), and the persistence
diagrams (d and e) are well-known measures to quantify ho-
mology. Since the measures (a), (b), (c) are scalars, for two
decision boundaries, they can be compared by computing
the absolute of differences. For the persistence diagrams,
comparison is performed using sliced Wasserstein distance
discussed in Carriere et al. (2017).

4.3.2. MATCHING NOVEL DATASETS TO PRE-TRAINED
MODELS

Let us start with an example of how we can use these mea-
sures to match novel datasets to pre-trained models. Our
novel dataset is MNIST handwritten digit O vs. handwritten
digit 4, whose DBTC measure (b) - lifetime of H; groups -
is 91. Then we look for pre-trained model complexities that
are similar. Not surprisingly, the closest is the pre-trained
model 0 vs. 4, which has a model complexity 91. The 0
vs. 9 pre-trained model has a similar complexity of 112. If
we select the 0 vs. 4 model, we achieve 99.95% accuracy
on 0 vs. 4 data, and if we select the O vs. 9 model, we also
achieve a high accuracy of 96.08%. If we select a model
that is not well-matched to the data complexity, for example
the 0 vs. 5 model with complexity 300, we achieve a low
accuracy on 0 vs. 4 data of 63.41%. The DBTC measures
(a) and (b) for datasets and models, and accuracies are listed
in Section 5 (SM) and Section 6 (SM), respectively.
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Figure 6. Accuracy improvement or reduction in choosing pre-
trained classifiers with topological complexity close to the dataset
versus complexity far from the dataset. Complexity measures used:
(a) Total persistence for Hy groups, (b) Total persistence for H;
groups, (c) D, divergence, (d) Persistence diagrams of Ho groups,
(e) Persistence diagrams of H; group. The black lines show the
95% confidence interval.

Now let us conduct an experiment to see whether the exam-
ple above holds in general. Treating each of the 45 datasets
as the novel dataset, we select 5 pre-trained models that are
the closest and 5 models that are the farthest in topologi-
cal complexity. We evaluate these classifiers on the novel
dataset and obtain the average difference in classification
accuracy between the closest and farthest classifiers. If the
difference in accuracy is significantly greater than zero, it
means that using classifiers that have similar DBTC as the
dataset is beneficial. If the difference in accuracy is close
to zero, it shows that there is no benefit in using DBTC to
guide the choice of the classifier. If it is significantly less
than zero, it means that classifiers which do not have similar
DBTC are better suited for the novel dataset.

Armed with this intuition, we can interpret Figure 6. The
bars show the average accuracy difference obtained by re-
peating the above experiment on the 45 two-class datasets in
each of CIFAR10, MNIST and FashionMNIST. The black
lines show the 95% confidence interval using a one-sample
t-test. If the black line is completely above (below) 0, with a
p-value less than 0.05, the null hypothesis that the accuracy

difference is less than or equal to (greater than or equal to)
0 can be rejected. If the black line intersects 0, we cannot
reject the null hypothesis that the accuracy difference is 0,
at a significance level of 0.05. From the bars, we see that
pre-trained classifier models that have similar DBTC as the
novel dataset show higher performance in that dataset on
the novel dataset for all three complexity measures. This
confirms our main claim that choosing classifier models that
have similar DBTC as the novel dataset is beneficial. Fur-
thermore, the DBTC measure (e) - PD for H; groups - is the
best for model selection task. The baseline D), divergence
measure also shows a strong performance.

5. Conclusion

In this paper, we have investigated the use of topological
data analysis in the study of labeled point clouds of data
encountered in supervised classification. In contrast to Guss
& Salakhutdinov (2018), which simply applies known, stan-
dard, persistent homology inference methods to different
classes of data separately and does not scale to high di-
mensions, we introduce new techniques and constructions
for characterizing decision boundaries and apply them to
several commonly used datasets in deep learning. We pro-
pose and theoretically analyze the labeled Cech complex,
deriving conditions on recovering the decision boundary’s
homology with high probability based on the number of
samples and the condition number of the decision boundary
manifold.

Furthermore, we have proposed the computationally-
tractable labeled Vietoris-Rips complex and extended it
to account for variation in the local scaling of data across
a feature space. We have used this complex to provide a
complexity quantification of pre-trained models and datasets
that is able to correctly identify the complexity level below
which a pre-trained model will suffer in its ability to gener-
alize to a given dataset. This use has increasing relevance
as model marketplaces become the norm.
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