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HyperGAN: Supplementary Material

A. Appendix
A.1. Generated Filter Examples

We show the first filter in 25 different networks generated
by the HyperGAN to illustrate their difference in Fig. 1. It
can be seen that qualitatively HyperGAN learns to generate
classifiers with a variety of filters.

(a) (b) (c) (d)

Figure 1. Convolutional filters from MNIST classifiers sampled
from HyperGAN. For each image we sample the same 5x5 filter
from 25 separate generated networks. From left to right: figures
a and b show the first samples of the first two generated filters for
layer 1 respectively. Figures c and d show samples of filters 1 and
2 for layer 2. We can see that qualitatively, HyperGAN learns to
generate classifiers with a variety of filters.

A.2. Outlier Examples

In Figure 2 we show images of examples which do not be-
have like most of their respective distribution. On top are
MNIST images which HyperGAN networks predict to have
high entropy. We can see that they are generally ambigu-
ous and do not fit with the rest of the training data. The
bottom row shows notMNIST examples which score with
low entropy according to HyperGAN. It can be seen that
these examples look like they could come from the MNIST
training distribution, making HyperGAN’s predictions rea-
sonable

(a)

(b)

Figure 2. Top: MNIST examples to which HyperGAN assigns
high entropy (outlier). Bottom: Not-MNIST examples which are
predicted with low entropy (inlier)

A.3. HyperGAN Network Details

In tables 1 and 2 we show how the latent points are trans-
formed through the generators to become a full layer of
parameters. For a MNIST based HyperGAN we generate
layers from small latent points of dimensionality 128. For
CIFAR-10 based HyperGANs we use a larger dimension-
ality of 256 for the latent points.

Table 1. MNIST HyperGAN Target Size

Layer Latent size Output Layer Size

Conv 1 128 x 1 32 x 1 x 5 x 5
Conv 2 128 x 1 32 x 32 x 5 x 5
Linear 128 x 1 512 x 10

Table 2. CIFAR-10 HyperGAN Target Size

Layer Latent Size Output Layer Size

Conv 1 256 x 1 16 x 3 x 3 x 3
Conv 2 256 x 1 32 x 16 x 3 x 3
Conv 3 256 x 1 32 x 64 x 3 x 3
Linear 1 256 x 1 256 x 128
Linear 2 256 x 1 128 x 10

A.4. Diversity with Neither Mixer nor Discriminator

We run experiments on both MNIST and CIFAR-10 where
we remove both the mixer and the discriminator. Tables
4 and 3 show statistics of the networks generated by Hy-
perGAN using only independent Gaussian samples to the
generators. In this setting, HyperGAN learns to generate
only a very small distribution of parameters.

HyperGAN w/o (Q, D) - CIFAR-10

Conv1 Conv2 Conv3 Linear1 Linear2

Mean 1.87 16.83 9.35 10.66 20.35
σ 0.11 2.44 1.02 0.16 0.76

Standard Training - CIFAR-10

Conv1 Conv2 Conv3 Linear1 Linear2

Mean 5.13 15.19 16.15 11.79 2.45
σ 1.19 4.40 4.28 2.80 0.13

Table 3. Statistics on the layers of networks sampled from Hy-
perGAN without the mixing network or discriminator, compared
to 10 standard networks trained from different random initializa-
tions
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HyperGAN w/o (Q, D) - MNIST Standard Training - MNIST

Conv1 Conv2 Linear Conv1 Conv2 Linear

Mean 10.79 106.39 14.81 27.05 160.51 5.97
σ 0.58 0.90 0.79 0.31 0.51 0.06

Table 4. Statistics on the layers of a population of networks sampled from HyperGAN, compared to 10 standard networks trained from
different random initializations. Without the mixing network or the discriminator, HyperGAN suffers from a lack of diversity

A.5. HyperGAN Diversity on Adversarial Examples

As an ablation study, in Fig. 3 we show the diversity of the
HyperGAN predictions against adversarial examples gen-
erated to fool one network. It is shown that while those
examples can fool 50% − 70% of the networks generated
by HyperGAN, they usually never fool all of them.

Figure 3. Diversity of predictions on adversarial examples.
FGSM and PGD examples are created against a network gener-
ated by HyperGAN, and tested on 500 more generated networks.
FGSM transfers better than PGD, though both attacks fail to cover
the distribution learned by HyperGAN

A.6. Black Box Adversarial Examples

In addition to the white box attacks performed in section
4, we show here the results of HyperGAN on black box
attacks. In the black box setting that we consider, the at-
tack only has access to the argmax of the softmax prob-
abilities. We test HyperGAN against a powerful decision
attack called the Boundary Attack. The Boundary Attack
begins from a large adversarial perturbation, then reduces
the magnitude of the perturbation while retaining an adver-
sarial prediction. We use the foolbox toolbox as before,
with a step size of 0.01 and a step multiplier of 1.5. We re-
port defense robustness in terms of number of calls (model
evaluations) required by the attack to fool the classifier. We
measure at [100, 500, 1000, 2000, 5000] calls, and see
that HyperGAN performs similarly well as on white box
attacks.

It is important to note that the size of the perturbation de-
creases with more calls. We therefore expect that robust-
ness decreases as calls increase.

Table 5. HyperGAN performance on Black box attacks

Ensemble Size 100 500 1000 2000 5000

5 nets 1.85 1.79 1.75 1.73 1.55
10 nets 1.88 1.79 1.76 1.76 1.63
100 nets 1.92 1.80 1.75 1.76 1.70

1000 nets 1.98 1.81 1.78 1.75 1.72

A.7. Effectiveness of Prior Matching

In our work we encourage diversity by regularizing the
mixer posteriorQ(z|s) to be well-distributed according to a
high entropy distribution (a isotropic Gaussian in practice).
We do so by sampling points from Q(z|s) and estimate
their distance from a prior P with a discriminator D. Reg-
ularizing the intermediate representation differs from stan-
dard variational inference, where samples from the pos-
terior (generator outputs) are regularized to stay close to
the prior. As stated in section 1, by regularizing the in-
put samples, we retain flexibility in our generators to learn
a more complex distribution over parameters than a uni-
modal high-dimensional Gaussian. To validate the effec-
tiveness of the regularization we perform a normality test
on 1000 samples from Q(z|s), drawn for each layer for a 3
layer target model.

Table 6. Normality test on points from Q(z|s)
Layer Mean Std

Conv 1 0.085 1.01
Conv 2 0.014 1.20
Linear 0.091 0.73

We show the results from the normality test in table 6. We
can see that the induced distribution is approximately nor-
mal with means close to 0. Furthermore, the mixer outputs
distributions with different variance for each layer. The
distribution with the highest variance corresponding to the
second convolutional layer is what we expect, given that the
representations of the final convolutional layer in a CNN
are the most diverse.


