Efficient On-Device Models using Neural Projections

Sujith Ravi !

Abstract

Many applications involving visual and language
understanding can be effectively solved using
deep neural networks. Even though these tech-
niques achieve state-of-the-art results, it is very
challenging to apply them on devices with limited
memory and computational capacity such as mo-
bile phones, smart watches and IoT. We propose
a neural projection approach for training compact
on-device neural networks. We introduce projec-
tion networks that use locality-sensitive projec-
tions to generate compact binary representations
and learn small neural networks with computa-
tionally efficient operations. We design a joint
optimization framework where the projection net-
work can be trained from scratch or leverage exist-
ing larger neural networks such as feed-forward
NNs, CNNs or RNNs. The trained neural pro-
jection network can be directly used for infer-
ence on device at low memory and computation
cost. We demonstrate the effectiveness of this as a
general-purpose approach for significantly shrink-
ing memory requirements of different types of
neural networks while preserving good accuracy
on multiple visual and text classification tasks.

1. Introduction

Recent advances in deep neural networks have resulted
in powerful models that demonstrate high predictive ca-
pabilities on a wide variety of tasks from image classifica-
tion (Krizhevsky et al., 2012) to speech recognition (Hinton
et al., 2012) to sequence-to-sequence learning (Sutskever
et al., 2014) for natural language applications like language
translation (Bahdanau et al., 2014), semantic conversational
understanding (Kannan et al., 2016) and other tasks. These
networks are typically large, comprising multiple layers in-
volving many parameters, and trained on large amounts

lGoogle Research, Mountain View, California, USA. Corre-
spondence to: Sujith Ravi <sravi@google.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

of data to learn useful representations that can be used
to predict outputs at inference time. For efficiency rea-
sons, training these networks is often performed with high-
performance distributed computing involving several CPU
cores or graphics processing units (GPUs).

In a similar vein, applications running on devices such as
mobile phones, smart watches and other [oT devices are on
the rise. Increasingly, machine learning models are used to
perform real-time inference directly on these devices—e.g.,
speech recognition on mobile phones (Schuster, 2010), med-
ical devices to provide real-time diagnoses (Lee & Verma,
2013) and Smart Reply on watches (AndroidWear), among
others. However, unlike high-performance clusters running
on the cloud, these devices operate at low-power consump-
tion modes and have significant memory limitations. As
a result, running state-of-the-art deep learning models for
inference on these devices can be very challenging and of-
ten prohibitive due to the high computation cost and large
model size requirements that exceed device memory capac-
ity. Delegating the computation-intensive operations from
device to the cloud is not a feasible strategy in many real-
world scenarios due to connectivity issues (data cannot be
sent to the server) or privacy reasons (certain types of data
and processing needs to be restricted to a user’s personal
device). In such scenarios, one solution is to take an existing
trained neural network model and then apply compression
techniques like quantization (e.g., reducing floating point
precision (Courbariaux et al., 2014)) to reduce model size.
However, while these techniques are useful in some cases,
applying them post-learning to a complex neural network
tends to dilute the network’s predictive quality and does not
yield sufficiently high performance. An alternate strategy
is to train small models for on-device prediction tasks, but
these can lead to significant drop in accuracies (Chun & Ma-
niatis, 2009) which limits the usability of such models for
practical applications. In particular, feature or vocabulary
pruning techniques commonly applied to limit parameters
in models like recurrent neural networks, while yielding
lower memory footprint, can affect the predicitive capacity
of the network for language applications.

This motivates the learning of efficient on-device machine
learning models with low memory footprint that can be run
directly on device for inference at low computation cost.
The main contributions of the paper are:

Efficient On-Device Models using Neural Projections

e Neural projection approach to learn lightweight neural
network models for performing efficient inference on
device with low memory and computation cost.

e Joint learning framework that can leverage any existing
deep network (e.g., feed-forward, CNN or recurrent
neural network) to teach a lightweight projected model
in a joint optimization setup which is trained end-to-
end using backpropagation.

e Parameterized projection functions that permit efficient
computation; can be combined with other operations
like convolutions to yield flexible projection neural
network models of varying sizes that is configurable
based on the task or device capacity.

e Experimental evaluation demonstrating the effective-
ness of the projection approach in achieving significant
reduction in model sizes while providing competitive
performance on visual and language classification tasks
(Section 3).

e Novel extensions of the framework for semi-supervised
and graph learning settings; on-device projection mod-
els for real-world conversational application.

There have been a number of related works in the literature
that attempt to learn efficient models under limited size or
memory constraints. Some of these works employ tech-
niques ranging from simple dictionary lookups to feature
pruning (Stolcke, 2000) or hashing (Weinberger et al., 2009;
Shi et al., 2009; Ganchev & Dredze, 2008) to neural net-
work compression. In the past, researchers have proposed
different methods to achieve compact representations for
neural networks using reduced numerical precision (Cour-
bariaux et al., 2014), vector quantization (Gong et al., 2014),
binarization strategies for networks (Courbariaux & Bengio,
2016) or weight sharing (Denil et al., 2013; Chen et al.,
2015). Most of these methods aim to exploit redundancy
in the network weights by grouping connections using low-
rank decomposition or hashing tricks. In contrast, our work
proposes to learn a simple projection-based network that
efficiently encodes intermediate network representations
(i.e., hidden units) and operations involved, rather than the
weights. We also introduce a new training paradigm for
on-device models where the simple network is coupled and
jointly trained to mimic an existing deep network that is
flexible and can be customized by architecture or task. As
we show in Section 2.1, the specifics of the training process
can also include a choice to optimize towards soft targets
as in model distillation approaches (Hinton et al., 2015).
Dropouts (Srivastava et al., 2014) and other similar variants
commonly used in practice for deep learning attempt to re-
duce parameters during neural network training by dropping
unimportant neurons. However, they serve a different pur-
pose, namely for better regularization. (Wang et al., 2015)

offers a survey of binary hashing literature that is relevant to
the projection functions used in our work. The coupled net-
work training architecture proposed in this paper (described
in Section 2.1) also resembles, conceptually at a high level,
generative adversarial networks (GANs) (Goodfellow et al.,
2014) which are used in unsupervised learning settings to
reconstruct or synthesize data such photorealistic images.

2. Neural Projection Networks

In this section, we present Neural Projection Networks and
a joint optimization framework for training projection net-
works with reduced model sizes. We first introduce the
objective function using a coupled full+projection network
architecture and then describe the projection mechanism
used in our work, namely locality sensitive hashing (LSH)
and how it is applied here.

2.1. ProjectionNets

Neural networks are a class of non-linear models that learn
a mapping from inputs Z; to outputs y;, where Z; represents
an input feature vector or sequence (in the case of recursive
neural networks) and y; is an output category for classifica-
tion tasks or a predicted sequence. Typically, these networks
consist of multiple layers of hidden units or neurons with
connections between a pair of layers. For example, in a
fully-connected feed-forward neural network, the number of
weighted connections or network parameters that are trained
is O(n?), where n is the number of hidden units per layer.

W, Wa,, W,

Trainer
Network c

) O&

Projection O/
Network | x;
(») =~

wer

Figure 1. Projection Network trained using feed-forward trainer.

We propose a new projection approach and joint optimiza-
tion framework for training compact on-device models for
inference. The architecture uses a trainer network coupled
with a projection network and trains them jointly. Figure 1
illustrates the Neural Projection Network architecture using
a feed-forward NN for the trainer network. The coupled
networks are jointly trained to optimize a combined loss

Efficient On-Device Models using Neural Projections

function:
LO,p) =M1 -Lo()+Aa-LP()+As-LP() (D)

where L4(.), £7(.) and LP(.) are the loss functions corre-
sponding to the two networks as defined below.

Lo(.) = D(ho(Z),)

1eN
L£r() = ZD(h”(@), ho(Z;))
ieEN
Lr() = Z D(hP(Z;), i))

N indicates the number of training instances in the dataset,
Z; represents the input feature vector in a feed-forward
network or sequence input in an RNN, and y; refers to
the ground-truth output classes used for network training.
hg(Z;) represents a parameterized representation of the hid-
den units in the frainer network that transforms Z; to an
output prediction y;. Similarly, hP(Z;) represents the pro-
Jection network parameters that transforms the input to cor-
responding predictions y?. We apply softmax activation at
the last layer of both networks to compute the predictions
y; and !

Decomposable Loss Function: D denotes a distance func-
tion that measures the prediction error used in the loss func-
tions. This is decomposed into three parts—trainer predic-
tion error, projection simulation error and projection predic-
tion error. Reducing the first leads to a better trainer network
and decreasing the latter in turn learns a better projection
network that is simpler but with approximately equivalent
predictive capacity. In practice, we use cross-entropy for
D(.) in all our experiments but this is configurable depend-
ing on the task and can be replaced with suitable choices
(e.g., ||-||2, KL divergence, etc.).

Optimization Choices: For the projection LP in Equation 2,
we follow a distillation-style approach (Hinton et al., 2015)
to optimize D(.) since it has been shown to yield better gen-
eralization ability than a model trained on just the labels ;.
A1, A2 and A3 are hyperparameters that affect the trade-off
between these different types of errors. These are tuned on
a small heldout development set and in our experiments, we
set them to Ay = 1.0, Ay = 0.1, A3 = 1.0. In some settings,
it is beneficial to fix the teacher and train only the smaller
network. Setting both \; and \; to 0 will train the small
projection network from scratch. When there is sufficiently
large training data, we observe that pre-training and fixing
the teacher (A1 = 0) produces slight improvement in perfor-
mance for the smaller model as well as faster convergence.
We also observe that joint training improves teacher net-
work when training data is limited and enables multi-sized
training, i.e., two projection networks with different sizes.

Trainer Network (¢). The trainer model is a full neural
network (feed-forward, RNN or CNN) whose choice is flex-
ible and depends on the task. Figure 1 shows a trainer using
feed-forward network but this can be swapped with CNNs
(Section 2.3) or LSTM RNNSs (Section 3.2) or other deep
neural networks. For the network shown in the figure, the
activations for hg(.) in layer ;11 is computed as follows:

= J(Welk+1 . Aglk + Belk+1) 3)

0lk+1

where ¢ is the ReLU activation function (Nair & Hinton,
2010) applied at each layer except the last and A indicates
the computed activation values for hidden units.

The number of weights/bias parameters Wy, By in this net-
work can be arbitrarily large since this will only be used
during training which can be effectively done using high-
performance distributed computing with CPUs or GPUs.

Projection Network (p). The projection model is a simple
network that encodes a set of efficient-to-compute opera-
tions which will be performed directly on device for infer-
ence. The model itself defines a set of efficient “projection”
functions IP(#;) that project each input instance ; to a dif-
ferent space {2p and then performs learning in this space to
map it to corresponding outputs y?. Figure 1 illustrates a
simple projection network with few operations. The inputs
Z; are transformed using a series of T" projection functions
P!, ...,PT, followed by a single layer of activations.

ff = [Pl(fi), ...,PT(fi) I; j’f e {0, 1}T~d @)
yf = softmax(W? ff + BP))

The projection transformations use pre-computed parame-
terized functions, i.e., they are not trained during the learn-
ing process, and their outputs are concatenated to form the
hidden units for subsequent operations. During training,
the simpler projection network learns to choose and apply
specific projection operations P/ (via activations) that are
more predictive for a given task. It is possible to stack ad-
ditional layers connected to the bit-layer in this network to
achieve non-linear combinations of projections. Note that
projections can also be coupled with other operations like
convolutions, as we show later (Sections 2.3, 3.1). It is also
possible to make the projection parameters trainable and
add it to any layer in the network by replacing the binary
functions discussed below with approximate, differentiable
equivalents but we leave this for future work.

The projection model is jointly trained with the trainer
and learns to mimic predictions made by the full trainer
network which has far more parameters and hence more
predictive capacity. Once learning is completed, the trans-
form functions IP(.) and corresponding trained weights WP,
B? from the projection network are extracted to create a
lightweight model that is pushed to device. At inference

Efficient On-Device Models using Neural Projections

time, the lightweight model and corresponding operations
is applied to a given input Z; to generate predictions v .

The choice of the type of projection matrix PP as well as
representation of the projected space (2p in our setup has a
direct effect on the computation cost and model size. We pro-
pose to leverage an efficient randomized projection method
using a modified version of locality sensitive hashing (LSH)
to define P(.). In conjunction, we use a bit representation
{0, 1}d for Qp, i.e., the network’s hidden units themselves
are represented using projected d-bit vectors. This yields
a drastically lower memory footprint compared to the full
network both in terms of number and size of parameters.
We highlight a few key properties of this approach below:

e There is no requirement for committing to a preset
vocabulary or feature space unlike typical methods. For
example, LSTM RNN models typically apply pruning
and use smaller, fixed-size vocabularies in the input
encoding step to reduce model complexity.

e The proposed learning method scales efficiently to
large data sizes and high dimensional spaces. This
is especially useful for natural language applications
involving sparse high dimensional feature spaces. For
dense feature spaces (e.g., image pixels), existing op-
erations like fully-connected layers (or even convolu-
tions) can be efficiently approximated for prediction
without relying on a large number of parameters. Such
operations can also be applied in conjunction with the
projection functions to yield more complex projection
networks while constraining the memory requirements.

e Computation of P(x;) is independent of the training
data size.

e We ensure that IP(.) is efficient to compute on-the-fly
for inference on device.

Next, we describe the projection method and associated
operations in more detail.

2.2. Locality Sensitive Projection Network

The projection network described earlier relies on a set of
transformation functions P that project the input &; into
hidden unit representations {2p. The projection operations
outlined in Equation 4 can be performed using different
types of functions. One possibility is to use feature embed-
ding matrices pre-trained using word2vec (Mikolov et al.,
2013) or similar techniques and model PP as a embedding
lookup for features in &; followed by an aggregation opera-
tion such as vector averaging. However, this requires storing
the embedding matrices which incurs additional memory
complexity.

Instead, we employ an efficient randomized projection
method for this step. We use locality sensitive hashing
(LSH) (Charikar, 2002) to model the underlying projection
operations. LSH is typically used as a dimensionality re-
duction technique for applications like clustering (Manning
et al., 2008). Our motivation for using LSH within Projec-
tion Nets is that it allows us to project similar inputs Z; or
intermediate network layers into hidden unit vectors that
are nearby in metric space. This allows us to transform the
inputs and learn an efficient and compact network represen-
tation that is only dependent on the inherent dimensionality
(i.e., observed features) of the data rather than the number
of instances or the dimensionality of the actual data vector
(i.e., overall feature or vocabulary size). We achieve this
with binary hash functions (Charikar, 2002) for PP.

Theorem 1 For Z;,%; € R"™ and vectors Py, drawn from
a spherically symmetric distribution on R" the relation
between signs of inner products and the angle £(%;,%;)
between vectors can be expressed as follows:

L(Zi, Tj) = 7 Pr{sgn[(Zy, Pr)] # sgn[(Z;, Pr)]} (6)

This property holds from simple geometry (Charikar, 2002),
i.e., whenever a row vector from the projection matrix P
falls inside the angle between the unit vectors in the direc-
tions of &; and &;, they will result in opposite signs. Any
projection vector that is orthogonal to the plane containing
Z;Z; will not have an effect. Since inner products can be
used to determine parameter representations that are nearby,
(@, %) = 12| - ||1Z5]] - cos&(&;, &;), therefore we can
model and store the network hidden activation unit vectors
in an efficient manner by using the signature of a vector in
terms of its signs.

Computing Projections. Following the above property,
we use binary hashing repeatedly and apply the projec-
tion vectors in P to transform the input Z; to a binary
hash representation denoted by Py (Z;) € {0,1}, where
[Pr(%;)] := sgn[(Z;,Px)]. This results in a d-bit vector
representation, one bit corresponding to each projection row
Pr_1. 4.

The projection matrix P is fixed prior to training and infer-
ence. Note that we never need to explicitly store the random
projection vector PP, since we can compute them on the fly
using hash functions over feature indices with a fixed row
seed rather than invoking a random number generator. In
addition, this also permits us to perform projection opera-
tions that are linear in the observed feature size rather than
the overall feature size which can be prohibitively large
for high-dimensional data, thereby saving both memory
and computation cost. In other words, the projection net-
work can efficiently model high-dimensional sparse inputs
and large vocabulary sizes common for text applications
(Section 3.2) instead of relying on feature pruning or other

Efficient On-Device Models using Neural Projections

pre-processing heuristics employed to restrict input sizes in
standard neural networks for feasible training. The binary
representation is significant since this results in a signifi-
cantly compact representation for the projection network
parameters that in turn reduces the model size considerably
compared to the trainer network.

Note that other techniques like quantization or weight shar-
ing (Courbariaux et al., 2014) can be stacked on top of this
method to provide small further gains in terms of memory
reduction as we show in Section 3.2.

Projection Parameters. In practice, we employ 7T’ differ-
ent projection functions P/=!-7" as shown in Figure 1, each
resulting in a d-bit vector that is concatenated to form the
projected activation units 77 in Equation 4. T and d vary de-
pending on the projection network parameter configuration
specified for P and can be tuned to trade-off between predic-
tion quality and model size. Note that the choice of whether
to use a single projection matrix of size 1" - d or I" separate
matrices of d columns depend on the type of projection
employed (dense or sparse), described in Section 2.4.

2.3. ProjectionCNN and Deeper Projection Networks

Softmax Softmax
FC[1024] FC [256]

FC (1024

FC [1024] ‘FC[T’d/Z] | ‘FC[T*dIZI
Maxpool-2
Concat

3x3 Conv @32

Maxpool-2
5x5 Conv @64

Maxpool-2

55 Conv @32

Maxpool-2

3x3 Conv @16

Channel-wise Projection
[T*d/c] xe

height Image height Image
(H) . (H)
&
&
& NS
widh & O widn & O
w) w)

&

&

CNN (5-layer)
architecture

ProjectionCNN (4-layer)
architecture

Figure 2. Model architectures for image classification. Left: Base-
line CNN (5-layer) model. Right: ProjectionCNN (4-layer) model
using channel-wise projections. Depth of the network and projec-
tion parameters (1" = 64, d = 8) can be configured depending on
task. Each Conv, Projection and FC layer is followed by batchnorm
and ReLU in both models.

For complex tasks, we design deeper projection network
variants by combining projections stacked with other non-
linear operations. We also extend the proposed framework to
handle more than one type of trainer or projection network
and even simultaneously train several models at multiple

resolutions using this architecture. Figure 2 illustrates our
design for a ProjectionCNN neural network architecture
for image classification and compares it to a standard con-
volution model. The new model is constructed by applying
channel-wise projections combined with simpler, faster con-
volutions (3x3 with fewer filters) and other operations to
yield compact yet powerful projection networks.

2.4. Training and Inference

We use the compact bit units to represent the projection
network as described earlier. During training, this network
learns to move the gradients for points that are nearby to
each other in the projected bit space (2p in the same direction.
The direction and magnitude of the gradient is determined
by the trainer network which has access to a larger set of pa-
rameters and more complex architecture. The two networks
are trained jointly using backpropagation. Despite the joint
optimization objective, training can progress efficiently with
stochastic gradient descent with distributed computing on
high-performance CPUs or GPUs.

Once trained, the two networks are de-coupled and serve
different purposes. The trainer model can be deployed
anywhere a standard neural network is used. The simpler
projection network model weights along with transform
functions P(.) are extracted to create a lightweight model
that is pushed to device. This model is used directly “on”
device at inference time by applying the same operations in
Equations 4, 5 (details described in Sections 2.1, 2.2) to a
new input Z; and generate predictions y~.

Complexity. The time complexity for projection during
inference is O(n-T - d), where n is the observed feature size
(not overall vocabulary size) which is linear in input size,
d is the number of LSH bits specified for each projection
vector P, and 7T is the number of projection functions used
in P. The model size (in terms of number of parameters)
and memory storage required for the projection inference
stepis O(T - d - C), where C'is the number of outputs (e.g.,
classes) or hidden units in the next layer in a multi-layer
projection network.

As an alternative to the bit vector representation (2p, the
projection matrix [P can instead be used to generate a sparse
representation of hidden units in the projection network.
Each d-bit block can be encoded as an integer instead of a
bit vector. This results in a larger parameter space overall
O(T-2%) but can still be beneficial to applications where the
actual number of learned parameters is tiny and inference
can be performed via efficient sparse lookup operations.

3. Experiments

In this section we demonstrate the effectiveness of the pro-
posed approach with several experiments on different bench-

Efficient On-Device Models using Neural Projections

mark datasets and classification tasks involving visual recog-
nition and language understanding. The experiments are run
in TensorFlow (Abadi et al., 2015).

Evaluation. For each task, we compute the performance
of each model in terms of precision@1, i.e., accuracy % of
the top predicted output class. Models were trained using
multiple runs, each experiment was run for a fixed number
of (400k) time steps with a batch size of 200 for the visual
tasks and 100 for the text classification task. The observed
variance across runs wrt accuracy was small, around +0.1%.

We also compute the Compression Ratio achieved by vari-
ous models, i.e., ratio of # parameters in the baseline deep
network compared to the proposed model. The model size
ratios reported here are based on number of free parameters
and not wrt actual model size stored on disk.

3.1. Visual Classification from Images

Tasks. We apply our neural projection approach and com-
pare against baseline systems on benchmark image clas-
sification datasets—MNIST, Fashion-MNIST (Xiao et al.,
2017) and CIFAR-10.

We first compare the performance of different approaches us-
ing the original MNIST handwritten digit dataset (MNIST).
The dataset contains 60k instances for training and 10k in-
stances for testing. We hold out 5k instances from the train-
ing split as dev set for tuning system parameters. Fashion-
MNIST is a recent real-world dataset with similar grayscale
style images and splits as MNIST but it is a much harder
task. CIFAR-10 dataset contains colour images with 50k for
training, 10k for testing.

Baselines and Method. We compare projection neural net-
works (ProjectionNet, ProjectionCNN) at different model
sizes with full-sized deep neural network counterparts for
each task. The deep network architecture varies depending
on the task type. For MNIST, we use a feed-forward NN
architecture (3 layers, 1000 hidden units per layer) with
L2-regularization as one of the baselines and trainer net-
work for ProjectionNet. For Fashion-MNIST and CIFAR-10
tasks, we employ deeper convolution baselines and Projec-
tionCNN networks.

Results. Table 1 shows results of the baseline and com-
parison to ProjectionNet models with varying sizes (7', d).
The results demonstrate that a small ProjectionNet with 13x
fewer parameters comes close with 97.1% accuracy whereas
a tiny ProjectionNet with a remarkably high compression ra-
tio of 388x is able to achieve a high accuracy of 92.3% com-
pared to 98.9% for the baseline that is significantly larger
in memory footprint. Moreover, ProjectionNet models are
able to achieve even further reduction in model size (upto
2000x-3500x) while yielding around 70-80% precision for
top-1 and 90-94% precision among top-3 predictions.

Going deeper with projections: Furthermore, going
deeper with the projection network architecture (i.e., adding
more layers) improves prediction performance even though
it adds more parameters, overall size still remains signifi-
cantly small compared to the baseline model. For example,
a single-layer ProjectionNet with 7" = 60, d = 10 produces
an accuracy of 91.1% whereas a 2-layer deep ProjectionNet
with the same projection layer followed by a fully connected
layer FC (128 hidden units) improves the accuracy consider-
ably to 96.3%, yielding a gain of +5.2%. A stacked Projec-
tionNet with slightly more parameters further improves the
accuracy to 97.1%, very close to the baseline performance
at a 13x size reduction.

Combining convolutions with projections: We also
trained a much larger baseline network with deep convolu-
tion layers (CNN). We used this network to learn a much
smaller model using a new ProjectionCNN architecture, a
convolutional variant of the projection model (Figure 2).
The new model is constructed by applying convolution and
projection operations in parallel to capture spatial and sim-
ilarity information followed by fusing the corresponding
outputs at each layer. This enables the network to jointly
learn and combine convolutions and projections especially
at the higher layers with non-linear activations. In Table 1,
we show that ProjectionCNN yields a more powerful ar-
chitecture, in fact it outperforms the NN baseline (99.4%
vs 98.9%) at 4x model size reduction. Moreover it comes
very close to the much bigger CNN baseline (99.6%) while
yielding a 8x reduction in parameters. ProjectionCNN also
outperforms previous best results from several other com-
pression techniques (Chen et al., 2015) on the same dataset
(0.6% error vs 1.22-2.19%).

Different training objectives: The training objective can
be varied by removing specific loss components from Equa-
tion 1. We observe that using the joint architecture helps
significantly and results in the best performance, especially
for tiny models. The ProjectionNet [T = 60, d = 12] from
Table 1 achieves 92.3%. The same ProjectionNet trained
without the full joint objective does worse, ~91% when
trained using LP alone or using only Ly + LP. We also
trained smaller baseline neural networks with fewer layers
and parameters for comparison and observed that Projec-
tionNets achieve far higher compression ratios at similar
performance levels. The same trend follows when compar-
ing against other simpler regularized linear baseline methods
which perform far worse and produce accuracies compara-
ble or worse than projection networks trained in isolation
without the joint architecture. We notice that on more com-
plex problems involving large output space, pre-training the
trainer network and then performing joint training helps the
projection net converge faster to a good performance.

Comparison with other compression baselines: In addi-

Efficient On-Device Models using Neural Projections

Table 1. Classification Results (precision@1) for vision tasks using Neural Projection Nets and baselines.

Model Compression Ratio | MNIST | Fashion | CIFAR-10
(wrt baseline) MNIST
NN (3-layer) (Baseline: feed-forward) 1 98.9 89.3 -
CNN (5-layer) (Baseline: convolutional) (Figure 2, Left) 0.52* 99.6 93.1 83.7
Random Edge Removal (Ciresan et al., 2011) 8 97.8 - -
Low Rank Decomposition (Denil et al., 2013) 8 98.1 - -
Compressed NN (3-layer) (Chen et al., 2015) 8 98.3 - -
Compressed NN (5-layer) (Chen et al., 2015) 8 98.7 - -
Dark Knowledge (Hinton et al., 2015; Ba & Caruana, 2014) - 98.3 - -
HashNet (best) (Chen et al., 2015) 8 98.6 - -
NASNet-A (7 cells, 400k steps) (Zoph et al., 2018) - - - 90.5
(our approach) Joint (frainer = NN)
[T=8d=10] 3453 70.6
[T=10,d=12] 2312 76.9
. [T=60,d=10] 466 91.1
ProjectionNet [T=60,d=12 | 388 9.3
[T=60,d=10] + FC [128] 36 96.3
[T=60,d=12] + FC [256] 15 96.9
[T=70,d=12] + FC [256] 13 97.1 86.6
ProjectionCNN (4-layer) ;z'l’; ?ggf;:fl:‘) le,fvlfure 2. Right) 8 99.4 927 78.4
(our approach)
L (Conv3-64, Conv3-128, Conv3-256, P [T=60, d=7], FC [128 x 256])
ProjectionCNN (6-layer) ¢ 1 v niner = None) 4 82.3
Joint (trainer = NASNet) 4 84.7

tion to the standard baseline models described above, we
compare our approach against other strong compression
baselines from the literature that use different techniques
like weight sharing for compression (Chen et al., 2015).
They use a similar baseline (3-layer NN with 1k units per
layer) as the one listed in Table 1 (row 1). ProjectionCNN
also outperforms previous best results from several other
compression techniques (Chen et al., 2015) on the same
dataset—0.6% error versus 1.22-2.19% achieved by their
best-performing methods. Table 1 shows a detailed compari-
son of our approach against existing compression techniques
on the same task.

Also, for tasks like semantic text classification (described in
Section 3.2) involving LSTMs, even smaller neural network
models require keeping vocabulary matrices O(V - d) with
tens of thousands of words/phrases and >100 dimensions
per row (V' >> n by 1000x in Section 2.4).

Relation to distillation and similar approaches: In Ta-
ble 1, we also compare our method with other teacher-
student (T-S) training approaches like distillation (Hinton
et al., 2015) which build on top of earlier work (Ba & Caru-
ana, 2014) and show that matching logits (soft targets) is
a special case of distillation. Section 2.1 (Equation 2) de-
scribes how we follow a distillation-style approach to opti-
mize the joint loss component D(.) but the student network
is modeled using a novel projection architecture. More
importantly, we compared our method against optimized
variants of distilled models from the literature that were
trained in T-S setup (Dark Knowledge in Table 1) where the
student uses other compression techniques (baseline details
in (Chen et al., 2015)) and our ProjectionCNN approach

achieves the best results in terms of accuracy %.

Finally, we note that quantization (low-precision computing)
and related techniques provide orthogonal benefits and can
be combined with our method to achieve further optimiza-
tion (i.e., to compress weight values in addition to reducing
#parameters). For example, we can get an additional 4x size-
reduction by using 8-bit integers instead of floating-point to
store weight values as shown in Section 3.2.

More complex image tasks and huge architectures: We
also performed experiments with larger convolutional nets
for more complex image tasks. We observe the same trends
using neural projection approach on Fashion-MNIST task.
The task is much harder where the baseline NN model yields
only 89.3% (compared to 98.9% on MNIST) and CNN
(5-layer) model gets 93.1% (vs. 99.6% on MNIST). Our
ProjectionCNN network achieves 92.7% significantly out-
performing the NN baseline and very competitive with the
deep CNN model but with the benefit of 8x compression.

On CIFAR-10 image classification task, a 5-layer CNN
model yields 83.7% accuracy. Even though it is an unfair
comparison, we also include a more complex deep con-
volutional network, NASNet (Zoph et al., 2018), that was
designed using large-scale architecture search using 1000s
of GPU hours and optimized on the same dataset, produces
90.5% after 400k training steps. In contrast, a much leaner
and significantly faster ProjectionCNN network achieves
82.3% when trained from scratch by itself which improves
to 84.7% with joint training and outperforms the baseline at
4x size-reduction. Projection architectures can yield similar
benefits for other complex neural networks like Inception
and ResNet variants.

Efficient On-Device Models using Neural Projections

3.2. Semantic Intent Classification from Text

Next, we compare the performance of our neural projection
approach against baselines on text classification tasks.

Tasks. We evaluate our models and report precision@1 on
multiple text classification tasks.

o SmartReply Intent is a real-world semantic intent
classification task for automatically generating short
email responses (Kannan et al., 2016). The goal is
to discover and map short response messages to se-
mantic intents. We use the same task and dataset as
prior works (Bui et al., 2018)! with 20 intent classes,
5483 samples (3832 for training, 560 for validation and
1091 for testing). Each sample corresponds to a short
response message text paired with a semantic intent
category that was manually verified by human anno-
tators. For example, “That sounds awesome!” and
“Sounds fabulous” are labeled as sounds_good intent.

Intent = <TIME> works

‘ Monday sounds great.

Perfect, see you then.

Intent = how is it going?

‘ Howdy, everything going well?

‘ 1am doing well, how about you?

e ATIS is a benchmark corpus used in the speech and
dialog community (Tur et al., 2010) for understanding
different types of intents (18 classes) expressed during
flight reservations.

Baselines and Method. We use an RNN sequence model
with multilayer LSTM architecture (2 layers, 100 dimen-
sions) as the baseline for the Smart Reply Intent task. For
this task, we compare against previous works (Bui et al.,
2018; Kannan et al., 2016) that use the same baselines as
well as Smart Reply model (LSTM) used in real-world ap-
plications. The only difference is (Kannan et al., 2016)
uses LSTM for end-to-end generation and response rank-
ing whereas our task is classification into response intents.
Other systems include—Random baseline ranks the intent
categories randomly and Frequency baseline ranks them
in order of their frequency in the training corpus. For the
ATIS task, we compare our approach with a recent attention-
based RNN model (Liu & Lane, 2016). We use unigram
and bigram text features in our approach to build projection
models. For these language tasks, we observed that projec-
tion networks achieved high performance even without a
trainer model, so we set \; = Ay = 0 during training.

Results. We show in Table 2 that ProjectionNet achieves
very high precision@1, significantly outperforming baseline
systems. On both language tasks, the model even outper-
forms RNNs but with significant reduction in memory foot-
print (compression ratio > 10) and computation compared
to LSTM unrolling steps.

"For details regarding SmartReply and how the semantic intent
clusters are generated, refer (Kannan et al., 2016).

Table 2. Classification Results (precision@ 1) for language tasks
using Neural Projection Nets and baselines.

Model Compression || Smart Reply | ATIS
(wrt RNN) Intent

Random (Kannan et al., 2016) - 52 -

Frequency (Kannan et al., 2016) - 9.2 72.2

LSTM (Kannan et al., 2016) 1 96.8 -

Attention RNN 1 - 91.1

(Liu & Lane, 2016)

ProjectionNet (our approach) >10 97.7 91.3

[T=70,d=14]—FC [256 x 128]

Quantized Projection Network. We also learn mobile-
optimized versions of ProjectionNet models that can run
inference on TensorFlow Lite (TFLite) open-source library.
We apply quantized training with 8-bit operations similar
to (Jacob et al., 2017) to learn a compressed ProjectionNet
with an additional 4x reduction in model size and improved
latency. On ATIS, quantized ProjectionNet reduces the size
from 1.1M to a tiny 285KB footprint and still yields 91.0%.
We also measured the average computation latency for this
model—on a Pixel phone, it requires < 5 milliseconds.

4. Beyond Neural Projections

A few possible future extensions to the framework are dis-
cussed at the end of Section 2. Recent works have also
demonstrated the effectiveness of tailoring projection-based
approaches to solve other natural language tasks (Ravi &
Kozareva, 2018; Sankar et al., 2019).

Going beyond deep learning, we extend this framework to
train lightweight models in semi-supervised or unsupervised
learning scenarios and ProjectionGraphs with structured
loss functions defined using a graph or probabilistic graphi-
cal model instead of a deep network.

The proposed projection-based learning architectures have
been used to power on-device conversational mod-
els (Ravi, 2017) for real-world applications such as Smart
Reply (Kannan et al., 2016) on smartwatches and mobile
devices.

5. Conclusion

We introduced a new Neural Projection approach to train
lightweight neural network models for performing efficient
inference on device at low computation and memory cost.
We demonstrated the flexibility of this approach to variations
in model sizes and deep network architectures. Experimen-
tal results on visual and language classification tasks show
the effectiveness of this method in achieving significant
model size reductions and efficient inference while provid-
ing competitive performance. The projection-based machine
learning models have already been applied to and proven
useful for powering real-world on-device applications such
as smart messaging.

Efficient On-Device Models using Neural Projections

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software
available from tensorflow.org.

AndroidWear. Android Wear 2.0:
most of every minute.
google/products/android-wear/

Make the

android-wear-20-make-most—-every-minute/.

Ba, L. J. and Caruana, R. Do deep nets really need to be
deep? In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume
2, pp. 2654-2662, 2014.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.

CoRR, abs/1409.0473, 2014. URL http://arxiv.

org/abs/1409.0473.

Bui, T. D., Ravi, S., and Ramavajjala, V. Neural graph
learning: Training neural networks using graphs. In Pro-
ceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, 2018.

Charikar, M. S. Similarity estimation techniques from
rounding algorithms. In Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing, pp.
380-388, 2002. URL http://doi.acm.org/10.
1145/509907.509965.

Chen, W., Wilson, J. T., Tyree, S., Weinberger, K. Q.,
and Chen, Y. Compressing neural networks with the
hashing trick. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Ma-
chine Learning, volume 37, pp. 2285-2294. JMLR.org,
2015. URL http://dl.acm.org/citation.
cfm?id=3045118.3045361.

Chun, B.-G. and Maniatis, P. Augmented smartphone appli-
cations through clone cloud execution. In Proceedings of
the 12th Conference on Hot Topics in Operating Systems,
HotOS, pp. 8-8,2009. URL http://dl.acm.org/
citation.cfm?id=1855568.1855576.

Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M.,
and Schmidhuber, J. High-performance neural networks

https://blog.

for visual object classification. CoRR, 2011. URL http:
//arxiv.org/abs/1102.0183.

Courbariaux, M. and Bengio, Y. Binarynet: Training deep
neural networks with weights and activations constrained
to +1 or -1. CoRR, abs/1602.02830, 2016. URL http:
//arxiv.org/abs/1602.02830.

Courbariaux, M., Bengio, Y., and David, J. Low precision
arithmetic for deep learning. CoRR, abs/1412.7024, 2014.
URL http://arxiv.org/abs/1412.7024.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and
de Freitas, N. Predicting parameters in deep learn-
ing. In Proceedings of the 26th International Confer-
ence on Neural Information Processing Systems (NIPS),
pp. 2148-2156, 2013. URL http://dl.acm.org/
citation.cfm?id=2999792.2999852.

Gancheyv, K. and Dredze, M. Small Statistical Models by
Random Feature Mixing. In Proceedings of the ACL-
08: HLT Workshop on Mobile Language Processing,
2008. URL http://clair.eecs.umich.edu/
aan/paper.php?paper_id=W08-0804.

Gong, Y., Liu, L., Yang, M., and Bourdev, L. D. Com-
pressing deep convolutional networks using vector quan-
tization. CoRR, abs/1412.6115, 2014. URL http:
//arxiv.org/abs/1412.6115.

Goodfellow, 1. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative Adversarial Networks. ArXiv e-prints, 2014.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N,, et al. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82-97,
2012.

Hinton, G., Vinyals, O., and Dean, J. Distilling the Knowl-
edge in a Neural Network. ArXiv e-prints, 2015.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A. G., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. CoRR, abs/1712.05877, 2017.
URL http://arxiv.org/abs/1712.05877.

Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins,
A., Miklos, B., Corrado, G., Lukacs, L., Ganea, M.,
Young, P., and Ramavajjala, V. Smart reply: Automated
response suggestion for email. In Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2016.

http://tensorflow.org/
https://blog.google/products/android-wear/android-wear-20-make-most-every-minute/
https://blog.google/products/android-wear/android-wear-20-make-most-every-minute/
https://blog.google/products/android-wear/android-wear-20-make-most-every-minute/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://doi.acm.org/10.1145/509907.509965
http://doi.acm.org/10.1145/509907.509965
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://dl.acm.org/citation.cfm?id=1855568.1855576
http://dl.acm.org/citation.cfm?id=1855568.1855576
http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1412.7024
http://dl.acm.org/citation.cfm?id=2999792.2999852
http://dl.acm.org/citation.cfm?id=2999792.2999852
http://clair.eecs.umich.edu/aan/paper.php?paper_id=W08-0804
http://clair.eecs.umich.edu/aan/paper.php?paper_id=W08-0804
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1712.05877

Efficient On-Device Models using Neural Projections

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems,
pp.- 1097-1105, 2012.

Lee, K. H. and Verma, N. A low-power processor with
configurable embedded machine-learning accelerators
for high-order and adaptive analysis of medical-sensor
signals. IEEE Journal of Solid-State Circuits, 48(7):1625—
1637, 2013.

Liu, B. and Lane, I. Attention-based recurrent neural net-
work models for joint intent detection and slot filling. Pro-
ceedings of The 17th Annual Meeting of the International
Speech Communication Association (INTERSPEECH),
2016.

Manning, C. D., Raghavan, P., and Schiitze, H. Introduction
to Information Retrieval. Cambridge University Press,
New York, NY, USA, 2008.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Effi-
cient estimation of word representations in vector space.
CoRR, abs/1301.3781, 2013. URL http://arxiv.
org/abs/1301.3781.

MNIST. The MNIST database of handwritten digits. http:
//yann.lecun.com/exdb/mnist/.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML),
pp. 807-814. Omnipress, 2010. URL http://www.
icml2010.0rg/papers/432.pdf.

Ravi, S. On-device conversational modeling with tensorflow
lite. https://ai.googleblog.com/2017/11/
on-device-conversational-modeling-with.
html, 2017.

Ravi, S. and Kozareva, Z. Self-governing neural networks
for on-device short text classification. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 887-893, 2018. URL https:
//www.aclweb.org/anthology/D18-1105.

Sankar, C., Ravi, S., and Kozareva, Z. Transferable neural
projection representations. In Proceedings of the 2019
Annual Conference of the North American Chapter of the
Association for Computational Linguistics, 2019.

Schuster, M. Speech recognition for mobile devices at
google. In Proceedings of the 11th Pacific Rim In-
ternational Conference on Trends in Artificial Intelli-
gence, pp. 8-10, 2010. URL http://dl.acm.org/
citation.cfm?id=1884293.1884297.

Shi, Q., Petterson, J., Dror, G., Langford, J., Smola,
A., and Vishwanathan, S. Hash kernels for struc-
tured data. J. Mach. Learn. Res., 10:2615-2637,
2009. URL http://dl.acm.org/citation.
cfm?id=1577069.1755873.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. Dropout: A simple way
to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929-1958, Jan-
vary 2014. URL http://dl.acm.org/citation.
cfm?id=2627435.2670313.

Stolcke, A. Entropy-based pruning of backoff language
models. CoRR, ¢s.CL/0006025, 2000. URL http://
arxiv.org/abs/cs.CL/0006025.

Sutskever, 1., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Advances in
Neural Information Processing Systems, pp. 3104-3112,
2014.

TFLite. TensorFlow Lite. https://www.tensorflow.
org/lite/.

Tur, G., Hakkani-Tur, D., and Heck, L. P. What is left to
be understood in ATIS? In Proceedings of 2010 IEEE
Spoken Language Technology Workshop (SLT), pp. 19-24,
2010.

Wang, J., Liu, W., Kumar, S., and Chang, S. Learn-
ing to hash for indexing big data - A survey. CoRR,
abs/1509.05472, 2015. URL http://arxiv.org/
abs/1509.05472.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A.,
and Attenberg, J. Feature hashing for large scale
multitask learning. In Proceedings of the 26th An-
nual International Conference on Machine Learning, pp.
1113-1120, 2009. URL http://doi.acm.org/10.
1145/1553374.1553516.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. CoRR, abs/1708.07747,2017. URL http:
//arxiv.org/abs/1708.07747.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In CVPR, pp. 8697-8710. IEEE Computer Society, 2018.

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf
https://ai.googleblog.com/2017/11/on-device-conversational-modeling-with.html
https://ai.googleblog.com/2017/11/on-device-conversational-modeling-with.html
https://ai.googleblog.com/2017/11/on-device-conversational-modeling-with.html
https://www.aclweb.org/anthology/D18-1105
https://www.aclweb.org/anthology/D18-1105
http://dl.acm.org/citation.cfm?id=1884293.1884297
http://dl.acm.org/citation.cfm?id=1884293.1884297
http://dl.acm.org/citation.cfm?id=1577069.1755873
http://dl.acm.org/citation.cfm?id=1577069.1755873
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/cs.CL/0006025
http://arxiv.org/abs/cs.CL/0006025
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
http://arxiv.org/abs/1509.05472
http://arxiv.org/abs/1509.05472
http://doi.acm.org/10.1145/1553374.1553516
http://doi.acm.org/10.1145/1553374.1553516
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

