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Abstract

We build new test sets for the CIFAR-10 and Ima-

geNet datasets. Both benchmarks have been the

focus of intense research for almost a decade, rais-

ing the danger of overfitting to excessively re-used

test sets. By closely following the original dataset

creation processes, we test to what extent current

classification models generalize to new data. We

evaluate a broad range of models and find accu-

racy drops of 3% – 15% on CIFAR-10 and 11%

– 14% on ImageNet. However, accuracy gains

on the original test sets translate to larger gains

on the new test sets. Our results suggest that the

accuracy drops are not caused by adaptivity, but

by the models’ inability to generalize to slightly

“harder” images than those found in the original

test sets.

1. Introduction

The overarching goal of machine learning is to produce

models that generalize. We usually quantify generalization

by measuring the performance of a model on a held-out

test set. What does good performance on the test set then

imply? At the very least, one would hope that the model also

performs well on a new test set assembled from the same

data source by following the same data cleaning protocol.

In this paper, we realize this thought experiment by repli-

cating the dataset creation process for two prominent

benchmarks, CIFAR-10 and ImageNet (Deng et al., 2009;

Krizhevsky, 2009). In contrast to the ideal outcome, we find

that a wide range of classification models fail to reach their

original accuracy scores. The accuracy drops range from

3% to 15% on CIFAR-10 and 11% to 14% on ImageNet.

On ImageNet, the accuracy loss amounts to approximately

five years of progress in a highly active period of machine

learning research.

⇤Authors ordered alphabetically. Ben did none of the work.
1Department of Computer Science, University of California Berke-
ley, Berkeley, California, USA. Correspondence to: Benjamin
Recht <brecht@berkeley.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Conventional wisdom suggests that such drops arise because

the models have been adapted to the specific images in the

original test sets, e.g., via extensive hyperparameter tuning.

However, our experiments show that the relative order of

models is almost exactly preserved on our new test sets:

the models with highest accuracy on the original test sets

are still the models with highest accuracy on the new test

sets. Moreover, there are no diminishing returns in accuracy.

In fact, every percentage point of accuracy improvement

on the original test set translates to a larger improvement

on our new test sets. So although later models could have

been adapted more to the test set, they see smaller drops in

accuracy. These results provide evidence that exhaustive

test set evaluations are an effective way to improve image

classification models. Adaptivity is therefore an unlikely

explanation for the accuracy drops.

Instead, we propose an alternative explanation based on

the relative difficulty of the original and new test sets. We

demonstrate that it is possible to recover the original Im-

ageNet accuracies almost exactly if we only include the

easiest images from our candidate pool. This suggests that

the accuracy scores of even the best image classifiers are

still highly sensitive to minutiae of the data cleaning process.

This brittleness puts claims about human-level performance

into context (He et al., 2015; Karpathy, 2011; Russakovsky

et al., 2015). It also shows that current classifiers still do

not generalize reliably even in the benign environment of a

carefully controlled reproducibility experiment.

Figure 1 shows the main result of our experiment. Before

we describe our methodology in Section 3, the next section

provides relevant background. To enable future research, we

release both our new test sets and the corresponding code.1

2. Potential Causes of Accuracy Drops

We adopt the standard classification setup and posit the

existence of a “true” underlying data distribution D over

labeled examples (x, y). The overall goal in classification

1https://github.com/modestyachts/CIFAR-10

.1 and https://github.com/modestyachts/ImageN
etV2



Do ImageNet Classifiers Generalize to ImageNet?

Figure 1. Model accuracy on the original test sets vs. our new test sets. Each data point corresponds to one model in our testbed (shown

with 95% Clopper-Pearson confidence intervals). The plots reveal two main phenomena: (i) There is a significant drop in accuracy from

the original to the new test sets. (ii) The model accuracies closely follow a linear function with slope greater than 1 (1.7 for CIFAR-10

and 1.1 for ImageNet). This means that every percentage point of progress on the original test set translates into more than one percentage

point on the new test set. The two plots are drawn so that their aspect ratio is the same, i.e., the slopes of the lines are visually comparable.

The red shaded region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.

is to find a model f̂ that minimizes the population loss

LD(f̂) = E
(x,y)⇠D

h

I[f̂(x) 6= y]
i

. (1)

Since we usually do not know the distribution D, we instead

measure the performance of a trained classifier via a test set

S drawn from the distribution D:

LS(f̂) =
1

|S|

X

(x,y)2S

I[f̂(x) 6= y] . (2)

We then use this test error LS(f̂) as a proxy for the popu-

lation loss LD(f̂). If a model f̂ achieves a low test error,

we assume that it will perform similarly well on future ex-

amples from the distribution D. This assumption underlies

essentially all empirical evaluations in machine learning

since it allows us to argue that the model f̂ generalizes.

In our experiments, we test this assumption by collecting a

new test set S0 from a data distribution D0 that we carefully

control to resemble the original distribution D. Ideally, the

original test accuracy LS(f̂) and new test accuracy LS0(f̂)
would then match up to the random sampling error. In

contrast to this idealized view, our results in Figure 1 show

a large drop in accuracy from the original test set S set to

our new test set S0. To understand this accuracy drop in

more detail, we decompose the difference between LS(f̂)

and LS0(f̂) into three parts (dropping the dependence on f̂

to simplify notation):

LS � LS0 = (LS � LD)
| {z }

Adaptivity gap

+(LD � LD0)
| {z }

Distribution Gap

+ (LD0 � LS0)
| {z }

Generalization gap

.

We now discuss to what extent each of the three terms can

lead to accuracy drops.

Generalization Gap. By construction, our new test set

S0 is independent of the existing classifier f̂ . Hence the

third term LD0 � LS0 is the standard generalization gap

commonly studied in machine learning. It is determined

solely by the random sampling error.

A first guess is that this inherent sampling error suffices

to explain the accuracy drops in Figure 1 (e.g., the new

test set S0 could have sampled certain “harder” modes of

the distribution D more often). However, random fluctu-

ations of this magnitude are unlikely for the size of our

test sets. With 10,000 data points (as in our new ImageNet

test set), a Clopper-Pearson 95% confidence interval for

the test accuracy has size of at most ±1%. Increasing the

confidence level to 99.99% yields a confidence interval of

size at most ± 2%. Moreover, these confidence intervals

become smaller for higher accuracies, which is the rele-

vant regime for the best-performing models. Hence random

chance alone cannot explain the accuracy drops observed in

our experiments.2

Adaptivity Gap. We call the term LS�LD the adaptivity

gap. It measures how much adapting the model f̂ to the

test set S causes the test error LS to underestimate the

population loss LD. If we assumed that our model f̂ is

independent of the test set S, this terms would follow the

2We remark that the sampling process for the new test set S0

could indeed systematically sample harder modes more often than
under the original data distribution D. Such a systematic change
in the sampling process would not be an effect of random chance
but captured by the distribution gap described below.
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same concentration laws as the generalization gap LD0�LS0

above. But this assumption is undermined by the common

practice of tuning model hyperparameters directly on the

test set, which introduces dependencies between the model

f̂ and the test set S. In the extreme case, this can be seen

as training directly on the test set. But milder forms of

adaptivity may also artificially inflate accuracy scores by

increasing the gap between LS and LD beyond the purely

random error.

Distribution Gap. We call the term LD � LD0 the distri-

bution gap. It quantifies how much the change from the

original distribution D to our new distribution D0 affects

the model f̂ . Note that this term is not influenced by ran-

dom effects but quantifies the systematic difference between

sampling the original and new test sets. While we went to

great lengths to minimize such systematic differences, in

practice it is hard to argue whether two high-dimensional

distributions are exactly the same. We typically lack a pre-

cise definition of either distribution, and collecting a real

dataset involves a plethora of design choices.

2.1. Distinguishing Between the Two Mechanisms

For a single model f̂ , it is unclear how to disentangle the

adaptivity and distribution gaps. To gain a more nuanced

understanding, we measure accuracies for multiple models

f̂1, . . . , f̂k. This provides additional insights because it

allows us to determine how the two gaps have evolved over

time.

For both CIFAR-10 and ImageNet, the classification models

come from a long line of papers that incrementally improved

accuracy scores over the past decade. A natural assumption

is that later models have experienced more adaptive over-

fitting since they are the result of more successive hyperpa-

rameter tuning on the same test set. Their higher accuracy

scores would then come from an increasing adaptivity gap

and reflect progress only on the specific examples in the

test set S but not on the actual distribution D. In an ex-

treme case, the population accuracies LD(f̂i) would plateau

(or even decrease) while the test accuracies LS(f̂i) would

continue to grow for successive models f̂i.

However, this idealized scenario is in stark contrast to our

results in Figure 1. Later models do not see diminishing re-

turns but an increased advantage over earlier models. Hence

we view our results as evidence that the accuracy drops

mainly stem from a large distribution gap. After presenting

our results in more detail in the next section, we will further

discuss this point in Section 5.

3. Summary of Our Experiments

We now give an overview of the main steps in our repro-

ducibility experiment. Appendices C and D describe our

methodology in more detail. We begin with the first deci-

sion, which was to choose informative datasets.

3.1. Choice of Datasets

We focus on image classification since it has become the

most prominent task in machine learning and underlies a

broad range of applications. The cumulative progress on

ImageNet is often cited as one of the main breakthroughs

in computer vision and machine learning (Malik, 2017).

State-of-the-art models now surpass human-level accuracy

by some measure (He et al., 2015; Russakovsky et al., 2015).

This makes it particularly important to check if common

image classification models can reliably generalize to new

data from the same source.

We decided on CIFAR-10 and ImageNet, two of the most

widely-used image classification benchmarks (Hamner,

2017). Both datasets have been the focus of intense research

for almost ten years now. Due to the competitive nature of

these benchmarks, they are an excellent example for test-

ing whether adaptivity has led to overfitting. In addition to

their popularity, their carefully documented dataset creation

process makes them well suited for a reproducibility exper-

iment (Deng et al., 2009; Krizhevsky, 2009; Russakovsky

et al., 2015).

Each of the two datasets has specific features that make it

especially interesting for our replication study. CIFAR-10

is small enough so that many researchers developed and

tested new models for this dataset. In contrast, ImageNet

requires significantly more computational resources, and

experimenting with new architectures has long been out of

reach for many research groups. As a result, CIFAR-10 has

likely experienced more hyperparameter tuning, which may

also have led to more adaptive overfitting.

On the other hand, the limited size of CIFAR-10 could also

make the models more susceptible to small changes in the

distribution. Since the CIFAR-10 models are only exposed

to a constrained visual environment, they may be unable to

learn a robust representation. In contrast, ImageNet captures

a much broader variety of images: it contains about 24⇥
more training images than CIFAR-10 and roughly 100⇥
more pixels per image. So conventional wisdom (such as

the claims of human-level performance) would suggest that

ImageNet models also generalize more reliably .

As we will see, neither of these conjectures is supported

by our data: CIFAR-10 models do not suffer from more

adaptive overfitting, and ImageNet models do not appear to

be significantly more robust.

3.2. Dataset Creation Methodology

One way to test generalization would be to evaluate existing

models on new i.i.d. data from the original test distribution.

For example, this would be possible if the original dataset

authors had collected a larger initial dataset and randomly
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split it into two test sets, keeping one of the test sets hidden

for several years. Unfortunately, we are not aware of such a

setup for CIFAR-10 or ImageNet.

In this paper, we instead mimic the original distribution as

closely as possible by repeating the dataset curation process

that selected the original test set3 from a larger data source.

While this introduces the difficulty of disentangling the

adaptivity gap from the distribution gap, it also enables us

to check whether independent replication affects current

accuracy scores. In spite of our efforts, we found that it is

astonishingly hard to replicate the test set distributions of

CIFAR-10 and ImageNet. At a high level, creating a new

test set consists of two parts:

Gathering Data. To obtain images for a new test set, a

simple approach would be to use a different dataset, e.g.,

Open Images (Krasin et al., 2017). However, each dataset

comes with specific biases (Torralba and Efros, 2011). For

instance, CIFAR-10 and ImageNet were assembled in the

late 2000s, and some classes such as car or cell_phone

have changed significantly over the past decade. We avoided

such biases by drawing new images from the same source as

CIFAR-10 and ImageNet. For CIFAR-10, this was the larger

Tiny Image dataset (Torralba et al., 2008). For ImageNet, we

followed the original process of utilizing the Flickr image

hosting service and only considered images uploaded in

a similar time frame as for ImageNet. In addition to the

data source and the class distribution, both datasets also

have rich structure within each class. For instance, each

class in CIFAR-10 consists of images from multiple specific

keywords in Tiny Images. Similarly, each class in ImageNet

was assembled from the results of multiple queries to the

Flickr API. We relied on the documentation of the two

datasets to closely match the sub-class distribution as well.

Cleaning Data. Many images in Tiny Images and the

Flickr results are only weakly related to the query (or not at

all). To obtain a high-quality dataset with correct labels, it

is therefore necessary to manually select valid images from

the candidate pool. While this step may seem trivial, our

results in Section 4 will show that it has major impact on

the model accuracies.

The authors of CIFAR-10 relied on paid student labelers

to annotate their dataset. The researchers in the ImageNet

project utilized Amazon Mechanical Turk (MTurk) to han-

dle the large size of their dataset. We again replicated both

annotation processes. Two graduate students authors of

this paper impersonated the CIFAR-10 labelers, and we

employed MTurk workers for our new ImageNet test set.

3For ImageNet, we repeat the creation process of the valida-
tion set because most papers developed and tested models on the
validation set. We discuss this point in more detail in Appendix
D.1. In the context to this paper, we use the terms “validation set”
and “test set” interchangeably for ImageNet.

For both datasets, we also followed the original labeling

instructions, MTurk task format, etc.

After collecting a set of correctly labeled images, we sam-

pled our final test sets from the filtered candidate pool. We

decided on a test set size of 2,000 for CIFAR-10 and 10,000

for ImageNet. While these are smaller than the original

test sets, the sample sizes are still large enough to obtain

95% confidence intervals of about ±1%. Moreover, our aim

was to avoid bias due to CIFAR-10 and ImageNet possibly

leaving only “harder” images in the respective data sources.

This effect is minimized by building test sets that are small

compared to the original datasets (about 3% of the overall

CIFAR-10 dataset and less than 1% of the overall ImageNet

dataset).

3.3. Results on the New Test Sets

After assembling our new test sets, we evaluated a broad

range of image classification models spanning a decade of

machine learning research. The models include the sem-

inal AlexNet (Krizhevsky et al., 2012), widely used con-

volutional networks (He et al., 2016a; Huang et al., 2017;

Simonyan and Zisserman, 2014; Szegedy et al., 2016), and

the state-of-the-art (Cubuk et al., 2018; Liu et al., 2018).

For all deep architectures, we used code previously pub-

lished online. We relied on pre-trained models whenever

possible and otherwise ran the training commands from

the respective repositories. In addition, we also evaluated

the best-performing approaches preceding convolutional

networks on each dataset. These are random features for

CIFAR-10 (Coates et al., 2011; Rahimi and Recht, 2009)

and Fisher vectors for ImageNet (Perronnin et al., 2010).4

We wrote our own implementations for these models, which

we also release publicly.5

Overall, the top-1 accuracies range from 83% to 98% on

the original CIFAR-10 test set and 21% to 83% on the

original ImageNet validation set. We refer the reader to

Appendices D.4.3 and C.3.2 for a full list of models and

source repositories.

Figure 1 in the introduction plots original vs. new accuracies,

and Table 1 in this section summarizes the numbers of key

models. The remaining accuracy scores can be found in

Appendices C.3.3 and D.4.4. We now briefly describe the

4We remark that our implementation of Fisher vectors yields
top-5 accuracy numbers that are 17% lower than the published
numbers in ILSVRC 2012 (Russakovsky et al., 2015). Unfortu-
nately, there is no publicly available reference implementation of
Fisher vector models achieving this accuracy score. Hence our
implementation should not be seen as an exact reproduction of the
state-of-the-art Fisher vector model, but as a baseline inspired by
this approach. The main goal of including Fisher vector models
in our experiment is to investigate if they follow the same overall
trends as convolutional neural networks.

5https://github.com/modestyachts/nondeep
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CIFAR-10

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf 98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0

6 shake_shake_64d_cutout 97.1 [96.8, 97.4] 93.0 [91.8, 94.1] 4.1 5 1

16 wide_resnet_28_10 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 14 2

23 resnet_basic_110 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 24 -1

27 vgg_15_BN_64 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 27 0

30 cudaconvnet 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11.0 30 0

31 random_features_256k_aug 85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12.5 31 0

ImageNet Top-1

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 72.2 [71.3, 73.1] 10.7 3 -2

4 nasnetalarge 82.5 [82.2, 82.8] 72.2 [71.3, 73.1] 10.3 1 3

21 resnet152 78.3 [77.9, 78.7] 67.0 [66.1, 67.9] 11.3 21 0

23 inception_v3_tf 78.0 [77.6, 78.3] 66.1 [65.1, 67.0] 11.9 24 -1

30 densenet161 77.1 [76.8, 77.5] 65.3 [64.4, 66.2] 11.8 30 0

43 vgg19_bn 74.2 [73.8, 74.6] 61.9 [60.9, 62.8] 12.3 44 -1

64 alexnet 56.5 [56.1, 57.0] 44.0 [43.0, 45.0] 12.5 64 0

65 fv_64k 35.1 [34.7, 35.5] 24.1 [23.2, 24.9] 11.0 65 0

Table 1. Model accuracies on the original CIFAR-10 test set, the original ImageNet validation set, and our new test sets. ∆ Rank is the

relative difference in the ranking from the original test set to the new test set in the full ordering of all models (see Appendices C.3.3 and

D.4.4). For example, ∆Rank = −2 means that a model dropped by two places on the new test set compared to the original test set. The

confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints, references for the models can be found in Appendices

C.3.2 and D.4.3.

two main trends and discuss the results further in Section 5.

A Significant Drop in Accuracy. All models see a large

drop in accuracy from the original test sets to our new test

sets. For widely used architectures such as VGG (Simonyan

and Zisserman, 2014) and ResNet (He et al., 2016a), the

drop is 8% on CIFAR-10 and 11% on ImageNet. On CIFAR-

10, the state of the art (Cubuk et al., 2018) is more robust

and only drops by 3% from 98.4% to 95.5%. In contrast,

the best model on ImageNet (Liu et al., 2018) sees an 11%

drop from 83% to 72% in top-1 accuracy and a 6% drop

from 96% to 90% in top-5 accuracy. So the top-1 drop on

ImageNet is larger than what we observed on CIFAR-10.

To put these accuracy numbers into perspective, we note that

the best model in the ILSVRC6 2013 competition achieved

89% top-5 accuracy, and the best model from ILSVRC

2014 achieved 93% top-5 accuracy. So the 6% drop in

top-5 accuracy from the 2018 state-of-the-art corresponds

to approximately five years of progress in a very active

period of machine learning research.

6ILSVRC is the ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al., 2015).

Few Changes in the Relative Order. When sorting the

models in order of their original and new accuracy, there

are few changes in the respective rankings. Models with

comparable original accuracy tend to see a similar decrease

in performance. In fact, Figure 1 shows that the original ac-

curacy is highly predictive of the new accuracy and that the

relationship can be summarized well with a linear function.

On CIFAR-10, the new accuracy of a model is approxi-

mately given by the following formula:

accnew = 1.69 · accorig � 72.7% .

On ImageNet, the top-1 accuracy of a model is given by

accnew = 1.11 · accorig � 20.2% .

Computing a 95% confidence interval from 100,000

bootstrap samples gives [1.63, 1.76] for the slope and

[�78.6,�67.5] for the offset on CIFAR-10, and [1.07, 1.19]
and [�26.0,�17.8] respectively for ImageNet.

On both datasets, the slope of the linear fit is greater than 1.

So models with higher original accuracy see a smaller drop

on the new test sets. In other words, model robustness

improves with increasing accuracy. This effect is less pro-

nounced on ImageNet (slope 1.1) than on CIFAR-10 (slope
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1.7). In contrast to a scenario with strong adaptive overfit-

ting, neither dataset sees diminishing returns in accuracy

scores when going from the original to the new test sets.

3.4. Experiments to Test Follow-Up Hypotheses

Since the drop from original to new accuracies is concern-

ingly large, we investigated multiple hypotheses for explain-

ing this drop. Appendices C.2 and D.3 list a range of follow-

up experiments we conducted, e.g., re-tuning hyperparam-

eters, training on part of our new test set, or performing

cross-validation. However, none of these effects can explain

the size of the drop. We conjecture that the accuracy drops

stem from small variations in the human annotation process.

As we will see in the next section, the resulting changes in

the test sets can significantly affect model accuracies.

4. Understanding the Impact of Data

Cleaning on ImageNet

A crucial aspect of ImageNet is the use of MTurk. There

is a broad range of design choices for the MTurk tasks and

how the resulting annotations determine the final dataset.

To better understand the impact of these design choices,

we assembled three different test sets for ImageNet. All

of these test sets consist of images from the same Flickr

candidate pool, are correctly labeled, and selected by more

than 70% of the MTurk workers on average. Nevertheless,

the resulting model accuracies vary by 14%. To put these

numbers in context, we first describe our MTurk annotation

pipeline.

MTurk Tasks. We designed our MTurk tasks and user

interface to closely resemble those originally used for Im-

ageNet. As in ImageNet, each MTurk task contained a

grid of 48 candidate images for a given target class. The

task description was derived from the original ImageNet

instructions and included the definition of the target class

with a link to a corresponding Wikipedia page. We asked

the MTurk workers to select images belonging to the target

class regardless of “occlusions, other objects, and clutter or

text in the scene” and to avoid drawings or paintings (both

as in ImageNet). Appendix D.4.1 shows a screenshot of our

UI and a screenshot of the original UI for comparison.

For quality control, we embedded at least six randomly

selected images from the original validation set in each

MTurk task (three from the same class, three from a class

that is nearby in the WordNet hierarchy). These images

appeared in random locations of the image grid for each

task. In total, we collected sufficient MTurk annotations

so that we have at least 20 annotated validation images for

each class.

The main outcome of the MTurk tasks is a selection fre-

quency for each image, i.e., what fraction of MTurk workers

selected the image in a task for its target class. We recruited

at least ten MTurk workers for each task (and hence for

each image), which is similar to ImageNet. Since each task

contained original validation images, we could also estimate

how often images from the original dataset were selected by

our MTurk workers.

Sampling Strategies. In order to understand how the

MTurk selection frequency affects the model accuracies,

we explored three sampling strategies.

• MatchedFrequency: First, we estimated the selec-

tion frequency distribution for each class from the anno-

tated original validation images. We then sampled ten

images from our candidate pool for each class accord-

ing to these class-specific distributions (see Appendix

D.1.2 for details).

• Threshold0.7: For each class, we sampled ten im-

ages with selection frequency at least 0.7.

• TopImages: For each class, we chose the ten images

with highest selection frequency.

In order to minimize labeling errors, we manually reviewed

each dataset and removed incorrect images. The average

selection frequencies of the three final datasets range from

0.93 for TopImages over 0.85 for Threshold0.7 to 0.73

for MatchedFrequency. For comparison, the original val-

idation set has an average selection frequency of 0.71 in

our experiments. Hence all three of our new test sets have

higher selection frequencies than the original ImageNet val-

idation set. In the preceding sections, we presented results

on MatchedFrequency for ImageNet since it is closest to

the validation set in terms of selection frequencies.

Results. Table 2 shows that the MTurk selection fre-

quency has significant impact on both top-1 and top-5 ac-

curacy. In particular, TopImages has the highest average

MTurk selection frequency and sees a small increase of

about 2% in both average top-1 and top-5 accuracy com-

pared to the original validation set. This is in stark contrast

to MatchedFrequency, which has the lowest average se-

lection frequency and exhibits a significant drop of 12%

and 8%, respectively. The Threshold0.7 dataset is in the

middle and sees a small decrease of 3% in top-1 and 1% in

top-5 accuracy.

In total, going from TopImages to MatchedFrequency

decreases the accuracies by about 14% (top-1) and 10%

(top-5). For comparison, note that after excluding AlexNet

(and the SqueezeNet models tuned to match AlexNet (Ian-

dola et al., 2016)), the range of accuracies spanned by all

remaining convolutional networks is roughly 14% (top-1)

and 8% (top-5). So the variation in accuracy caused by

the three sampling strategies is larger than the variation in

accuracy among all post-AlexNet models we tested.

Figure 2 plots the new vs. original top-1 accuracies on

Threshold0.7 and TopImages, similar to Figure 1 for

MatchedFrequency before. For easy comparison of top-1
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Sampling Strategy Average MTurk

Selection Freq.

Average Top-1 Accuracy

Change

Average Top-5 Accuracy

Change

MatchedFrequency 0.73 -11.8% -8.2%

Threshold0.7 0.85 -3.2% -1.2%

TopImages 0.93 +2.1% +1.8%

Table 2. Impact of the three sampling strategies for our ImageNet test sets. The table shows the average MTurk selection frequency in the

resulting datasets and the average changes in model accuracy compared to the original validation set. We refer the reader to Section 4 for

a description of the three sampling strategies. All three test sets have an average selection frequency of more than 0.7, yet the model

accuracies still vary widely. For comparison, the original ImageNet validation set has an average selection frequency of 0.71 in our MTurk

experiments. The changes in average accuracy span 14% and 10% in top-1 and top-5, respectively. This shows that details of the sampling

strategy have large influence on the resulting accuracies.

and top-5 accuracy plots on all three datasets, we refer the

reader to Figure 1 in Appendix D.4.4. All three plots show

a good linear fit.

5. Discussion

Due to space constraints, we defer a discussion of related

work to Appendix A. Furthermore, Appendix B contains

a theoretical model for the accurate linear fit observed in

Figures 1 and 2. Here, we return to the main question from

Section 2: What causes the accuracy drops? As before, we

distinguish between two possible mechanisms.

5.1. Adaptivity Gap

In its prototypical form, adaptive overfitting would manifest

itself in diminishing returns observed on the new test set

(see Section 2.1). However, we do not observe this pattern

on either CIFAR-10 or ImageNet. On both datasets, the

slope of the linear fit is greater than 1, i.e., each point of

accuracy improvement on the original test set translates to

more than 1% on the new test set. This is the opposite of the

standard overfitting scenario. So at least on CIFAR-10 and

ImageNet, multiple years of competitive test set adaptivity

did not lead to diminishing accuracy numbers.

While our experiments rule out the most dangerous form of

adaptive overfitting, we remark that they do not exclude all

variants. For instance, it could be that any test set adaptiv-

ity leads to a roughly constant drop in accuracy. Then all

models are affected equally and we would see no diminish-

ing returns since later models could still be better. Testing

for this form of adaptive overfitting likely requires a new

test set that is truly i.i.d. and not the result of a separate

data collection effort. Finding a suitable dataset for such an

experiment is an interesting direction for future research.

The lack of adaptive overfitting contradicts conventional

wisdom in machine learning. We now describe two mecha-

nisms that could have prevented adaptive overfitting:

The Ladder Mechanism. Blum and Hardt introduced the

Ladder algorithm to protect machine learning competitions

against adaptive overfitting (Blum and Hardt, 2015). The

core idea is that constrained interaction with the test set can

allow a large number of model evaluations to succeed, even

if the models are chosen adaptively. Due to the natural form

of their algorithm, the authors point out that it can also be

seen as a mechanism that the machine learning community

implicitly follows.

Limited Model Class. Adaptivity is only a problem if we

can choose among models for which the test set accuracy dif-

fers significantly from the population accuracy. Importantly,

this argument does not rely on the number of all possible

models (e.g., all parameter settings of a neural network), but

only on those models that could actually be evaluated on the

test set. For instance, the standard deep learning workflow

only produces models trained with SGD-style algorithms

on a fixed training set, and requires that the models achieve

high training accuracy (otherwise we would not consider

the corresponding hyperparameters). Hence the number of

different models arising from the current methodology may

be small enough so that uniform convergence holds.

Our experiments offer little evidence for favoring one ex-

planation over the other. One observation is that the convo-

lutional networks shared many errors on CIFAR-10, which

could be an indicator that the models are rather similar. But

to gain a deeper understanding into adaptive overfitting, it is

likely necessary to gather further data from more machine

learning benchmarks, especially in scenarios where adaptive

overfitting does occur naturally.

5.2. Distribution Gap

The lack of diminishing returns in our experiments points

towards the distribution gap as the primary reason for the ac-

curacy drops. Moreover, our results on ImageNet show that

changes in the sampling strategy can indeed affect model

accuracies by a large amount, even if the data source and

other parts of the dataset creation process stay the same.

So in spite of our efforts to match the original dataset cre-

ation process, the distribution gap is still our leading hy-

pothesis for the accuracy drops. This demonstrates that it
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Figure 2. Model accuracy on the original ImageNet validation set vs. accuracy on two variants of our new test set. We refer the reader to

Section 4 for a description of these test sets. Each data point corresponds to one model in our testbed (shown with 95% Clopper-Pearson

confidence intervals). On Threshold0.7, the model accuracies are 3% lower than on the original test set. On TopImages, which contains

the images most frequently selected by MTurk workers, the models perform 2% better than on the original test set. The accuracies on

both datasets closely follow a linear function, similar to MatchedFrequency in Figure 1. The red shaded region is a 95% confidence

region for the linear fit from 100,000 bootstrap samples.

is surprisingly hard to accurately replicate the distribution

of current image classification datasets. The main difficulty

likely is the subjective nature of the human annotation step.

There are many parameters that can affect the quality of

human labels such as the annotator population (MTurk vs.

students, qualifications, location & time, etc.), the exact task

format, and compensation. Moreover, there are no exact def-

initions for many classes in ImageNet (e.g., see Appendix

D.4.8). Understanding these aspects in more detail is an im-

portant direction for designing future datasets that contain

challenging images while still being labeled correctly.

The difficulty of clearly defining the data distribution, com-

bined with the brittle behavior of the tested models, calls

into question whether the black-box and i.i.d. framework

of learning can produce reliable classifiers. Our analysis of

selection frequencies in Figure 15 (Appendix D.4.7) shows

that we could create a new test set with even lower model ac-

curacies. The images in this hypothetical dataset would still

be correct, from Flickr, and selected by more than half of

the MTurk labelers on average. So in spite of the impressive

accuracy scores on the original validation set, current Ima-

geNet models still have difficulty generalizing from “easy”

to “hard” images.

6. Conclusion & Future Work

The expansive growth of machine learning rests on the aspi-

ration to deploy trained systems in a variety of challenging

environments. Common examples include autonomous ve-

hicles, content moderation, and medicine. In order to use

machine learning in these areas responsibly, it is important

that we can both train models with sufficient generalization

abilities, and also reliably measure their performance. As

our results show, these goals still pose significant hurdles

even in a benign environment.

Our experiments are only a first step in addressing this relia-

bility challenge. One important question is whether other

machine learning tasks are also resilient to adaptive overfit-

ting, but similarly brittle under natural variations in the data.

Another direction is developing methods for more compre-

hensive yet still realistic evaluations of machine learning

systems. Of course, the overarching goal is to develop learn-

ing algorithms that generalize reliably. While this is often

a vague goal, our new test sets offer a well-defined instan-

tiation of this challenge that is beyond the reach of current

methods. Generalizing from our “easy” to slightly “harder”

images will hopefully serve as a starting point towards a

future generation of more reliable models.
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