Fast Rates for a kNN Classifier Robust to Unknown Asymmetric Label Noise

A. Proof of Theorem 5.1

The proof of Theorem 5.1 is as follows.

Proof. Define the input set of disagreement with margin 6:
1 1
Ae(n;ncorr) = ({’I}(l‘) < 5 - 0} N {ncorr(x) > 5 + }) (13)

0
U ({n(x) > 2+ e} n {w(m) <g- 9}) . (14)

We can write Ao (7, corr) as a union of such sets: Ag (1) = (g~ As(n), and hence
gl_{% {1 (Ao (n,meorr)) } = 1 (Ao (1, Neorr)) > 0.
Now, take some 6 > 0 s.t. Ag(7, Ncorr) > 0. Lemma A.1 below will show that

E(D:Pumy) + € (8Pl ) = 0+ 11 (Aa (1, 7corr)) > 0. (15)

Since g{) is consistent with Pyrgin = Prest = Py ... We have lim,, & ((;Aﬁn, P(u,ncm)) = 0. Hence, from eq. (15) it
follows that limsup,,_, . € ((Z)n, IP’(,M,)) > 0 - 11 (Ag(, Meorr)) > 0. That is, ¢ is inconsistent when trained with train

distribution P, , . and tested on distribution P(, ,,). O

It remains to prove the lemma used in the proof above.

Lemma A.1. Let i1 be a Borel probability measure on X. Givenn : X — [0,1] and 6 > 0 consider the set Ag(n, Neorr) S X
as defined in eq. (14). Then given any classifier ¢ : X — {0,1} we have & ((b; ]P(u,n)) + & (qb; P(u,nm)) >0
1 (Ao (1; Neorr) ).

Proof. Recall that, for any regression function 77 : X — [0, 1] the excess risk can be written as: £ (d); P u-ﬁ)) =

[ @ = 3|2 { (7@ - 3) (et - ) <0} auco (16)

Now if z € Ag(n, Neorr) then (n(z) — ) (neor(z) — 2) < 0 so for both possible values ¢(z) € {0,1} we have

1= 2) (909 5) <o) e { (it =) (o1 -3) <0} =

Moreover, if € Ay(n, Ncorr) then min{}n(w) — %’ , |77corr(x) — %‘} > @ and so

‘n(x) - ;‘ 1 {(n(x) - ;) (¢(a;) - ;) < 0} + | eone () — ;’ 1 { (nm(x) - ;) <¢(m) _ ;) < 0} > 0. (17)

Integrating with respect to p and applying (16) to both IP(, ,,y and P(, ,, .y gives the conclusion of the lemma. O
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B. Proof of Lemma 3.1
Proof. Given d,a € [—1,1],b,b > 0 with |b — b| < b/2, and a/b € [0, 1],

|2 . 4 )
- (dfa)+%~(bfb)’§5(|&fa\+’%’o|bfb|) gg-max{\&—a\,\b—b\}, (18)

1
b

SHES
SHES

where we have used the fact that b > b/2. By the definition of 7)(x) together with eq. (1) we have

_ 7’]corr(x) — Po

~ ) _ ncorr(z) — Po and n(x) _ )
1—po—pm

T) = ~ ~
il 1 —po—p1
Now take & = Tjeorr () — Po, @ = Neorr(T) — Po, b=1- Po — p1 and b = 1 — pg — py. Given the assumptions that
po+p1 < 1,s0b > 0and max {|po — pol, |1 — p1|} < (1 — po — p1) /4 this implies

A R R 1
|b—b] =2 -max {|[po — pol,[p1 — p1|} < 5'(1*]30*]91) = bR

which also implies b > /2 > 0. Hence, by (18) we deduce

- max {|(Neorr () = Po) = (Teorr () = po)| ; [(1 = Po — p1) = (1 —po — p1)[}

8 . A ~
< 17 : max{'ncorr(x) - ncorr(‘r)| ) |p0 - P0| s |P1 - pl‘} .
—Po—P1

This completes the proof of Lemma 3.1. O



