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Proof of Lemma 3

The proof follows the standard analysis of exponential weighting schemes: letWt =
∑K

i=1wi,t
using the algorithm update we can write

Wt+1

Wt
=

K∑
i=1

wi,t+1

Wt
=

K∑
i=1

wi,te
−η ˆ̀i,t

Wt
=

K∑
i=1

qi,te
−η ˆ̀i,t

≤
K∑
i=1

qi,t(1− η ˆ̀
i,t + η2(ˆ̀

i,t)
2) (using ex ≤ 1 + x+ x2 for x ≤ 1)

= 1− η
K∑
i=1

qi,t ˆ̀i,t + η2
K∑
i=1

qi,t(ˆ̀
i,t)

2

Taking logs and using ln(1− x) ≤ −x for all x and summing for t = 1, 2, ..., T yields

ln
WT+1

W1
≤ −η

T∑
t=1

K∑
i=1

qi,t ˆ̀i,t + η2
T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2

Moreover, for any fixed action k we have Wt ≥ wk,t, thus:

ln
WT+1

W1
≥ ln

wk,T+1

W1
= −η

T∑
t=1

ˆ̀
k,t − lnK

Putting together and rearranging gives:

T∑
t=1

K∑
i=1

qi,t ˆ̀i,t −
T∑
t=1

ˆ̀
k,t ≤

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2

�

Proof of Theorem 2

Since
ˆ̀
i,t =

ci,t − p
1− 2p

∈ { 1− p
1− 2p

,
−p

1− 2p
} = {−1− ε

2ε
,
1 + ε

2ε
},

we have that

−η ˆ̀
i,t ≤ ε

√
lnK

T

1− ε
2ε
≤

√
lnK
T

2
≤ 1

where the last equation uses T ≥ 1
4 lnK. Thus, we can apply Lemma 3 and obtain

T∑
t=1

K∑
i=1

qi,t ˆ̀i,t −
T∑
t=1

ˆ̀
k,t ≤

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2

1



Taking expectation on both sides and using that the estimator is unbiased (i.e., E[ˆ̀i,t] = `i,t)
yields,

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

Using the fact that Regret(T ) =
∑T

t=1

∑K
i=1 qi,t`i,t −mink∈A

∑T
t=1 `k,t, we have,

Regret(T ) ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

We bound the second moments of the estimate as follows,

E[(ˆ̀
i,t)

2] = p
(¯̀
i,t − p)2

(1− 2p)2
+ (1− p)(`i,t − p)2

(1− 2p)2
≤ 1

(1− 2p)2
=

1

ε2
,

where ¯̀
i,t = 1− `i,t. Putting it back together and plugging η = ε

√
lnK
T we obtain

Regret(T ) ≤ lnK

η
+
ηT

ε2
≤ 2

ε

√
T lnK

�

Proof of Theorem 4

By applying Lemma 3 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

Calculating the expectation of the estimator ˆ̀
i,t, and since `i,t ∈ {0, 1}, we have,

E[ˆ̀i,t] = (1− p)`i,t + p¯̀
i,t = (1− 2p)`i,t + p = |`i,t − p|

For the second moment we have (ˆ̀
i,t)

2 = c2i,t = ci,t ≤ 1. Putting things together we have

T∑
t=1

K∑
i=1

qi,t|`i,t − p| −
T∑
t=1

|`k,t − p| ≤
lnK

η
+ ηT (1)

Using the notation of L̂ON,T =
∑T

t=1

∑K
i=1 qi,t

ˆ̀
i,t, L̂k,T =

∑T
t=1

ˆ̀
k,t, LON,T =

∑T
t=1

∑K
i=1 qi,t`i,t,

and Lk,T =
∑T

t=1 `k,t, we can write inequality (1) as

E[L̂ON,T ]− E[L̂k,T ] ≤ lnK

η
+ ηT

Denote by Gt,b = {i ∈ A | `i,t = b} the set of actions with loss b ∈ {0, 1} in round t.
Denote by Qt =

∑
i∈Gt,1 qi,t the distribution mass the learner gives actions in Gt,1. Using

2



this notation we have LON,T =
∑T

t=1Qt. Now calculate the value of the estimated losses of
the online algorithm,

E[L̂ON,T ] =
T∑
t=1

K∑
i=1

qi,t|`i,t − p| =
T∑
t=1

[p
∑
i∈Gt,0

qi,t + (1− p)
∑
i∈Gt,1

qi,t]

=

T∑
t=1

[p(1−Qt) + (1− p)Qt] =

T∑
t=1

[p+ (1− 2p)Qt]

= (1− 2p)LON,T + pT

Similarly, for the term E[L̂k,T ] we have,

E[L̂k,T ] =

T∑
t=1

|`k,t − p| =
∑

t|`t,k=0

p+
∑

t|`t,k=1

(1− p)

= p(T − Lk,T ) + (1− p)Lk,T = (1− 2p)Lk,T + pT

Putting all together,

E[L̂ON,T ]− E[L̂k,T ] = (1− 2p)LON,T + pT − [(1− 2p)Lk,T + pT ] = (1− 2p)[LON,T − Lk,T ]

Dividing by both sides of inequity by (1− 2p) and using η =
√

lnK
T we obtain that

Regret(T ) = LON,T −min
k∈A

Lk,T ≤
1

1− 2p
(
lnK

η
+ ηT ) =

2

ε

√
T lnK

�

Proof of Theorem 5

We first prove for K ≥ 27. To prove the theorem we first define the following adversarial
loss assignment strategy:

• the adversary initially picks uniformly a best action i? (∀i Pr[i? = i] = 1
K )

• at round t: the adversary draws losses for the actions from the following distributions:

1. for i?: `i?,t ∼ B(12 − δ)
2. for i 6= i?: `i,t ∼ B(12)

where δ = min{ 1
6ε

√
lnK
T , 12}. Now we calculate the distribution of the ε-noisy feedback

ci,t. Starting with the best action we have

Pr[ci?,t = 1] = Pr[`i?,t = 1]Pr[Rε = 0] + Pr[`i?,t = 0]Pr[Rε = 1]

= (
1

2
− δ)1 + ε

2
+ (

1

2
+ δ)

1− ε
2

=
1

2
− εδ
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For i 6= i? we have

Pr[ci,t = 1] = Pr[`i,t = 1]Pr[Rε = 0] + Pr[`i,t = 0]Pr[Rε = 1]

=
1

2

1 + ε

2
+

1

2

1− ε
2

=
1

2

Thus, we have: ci?,t ∼ B(12 − εδ) and ci,t ∼ B(12) for i 6= i?.
The following is a standard claim regarding the minimum of i.i.d binomial random

variables.

Lemma 1 Let X1, ..., XK−1 be i.i.d random variables with distribution B(n, p) such that
p ∈ (14 ,

1
2), n ≥ 2 lnK and K ≥ e27. Then with probability of at least 1

2 we have

min{X1, ..., XK−1} ≤ np−
√
p

9
n lnK

Proof Denote by Y = min{X1, ..., XK−1} then by interdependency we can write

Pr[Y ≤ np− t] = 1− Pr[∀i ∈ {1, 2, ...,K − 1} Xi ≥ np− t]
= 1− (Pr[X1 ≥ np− t])K−1

(2)

Now we want to bound Pr[X1 ≥ np− t]. Rearranging, and using Lemma 5.2 of Klein and
Young (1999), for t ≤ 1

2pn we can bound

Pr[X1 ≥ np− t] = Pr[X1 − np ≥ −t] = 1− Pr[X1 − np ≤ −t]

≤ 1− exp(−9t2

np
) = 1− 1

K

where in the last equation we take t =
√

p
9n lnK ≤ 1

2pn. Plugging it back in (2) we obtain

Pr[Y ≤ np−
√
p

9
n lnK] ≥ 1− (1− 1

K
)K−1 ≥ 1

2

Denoting by Ci,T =
∑T

t=1 ci,t, the sum of the noisy feedback of action i. Note that
this is binomial random variable. In addition, for i? we have Ci?,T ∼ B(T, 12 − εδ) and for
i 6= i? we have Ci,T ∼ B(T, 12). By applying Lemma 1 on the noisy-feedbacks we show the
following corollary.

Corollary 2 With probability at least 1
4 there exist action j 6= i? such that Cj,T < Ci?,T .

Proof Applying Lemma 1 on the K − 1 actions with ci,t ∼ B(12) we obtain that with
probability at least 1

2 there exist action j 6= i? such that

Cj,T ≤
T

2
−
√
p

9
T lnK <

T

2
− 1

6

√
T lnK,

where the second inequality uses p > 1/4.
For the best action i? we have E[Ci?,T ] = T

2 − εδT .
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• if δ = 1
6ε

√
lnK
T we have

E[Ci?,T ] =
T

2
− 1

6

√
T lnK

Using the fact that for binomial distribution, B(n, q), the median is bnqc or dnqe we
have that with probability at least 1

2

Ci?,T ≥
T

2
− 1

6

√
T lnK

• if δ = 1
2 we have that the distribution for the ε-noisy feedback of the best action,

ci?,t is B(1−ε2 ), therefore

E[Ci?,T ] =
T

2
− ε

2
T

δ = 1
2 implies ε ≤ 1

3

√
lnK
T (as δ = min{ 1

6ε

√
lnK
T , 12}) thus,

ε

2
T ≤ T

2

1

3

√
lnK

T
=

1

6

√
T lnK

Therefore, we still have that with probability at least 1
2

Ci?,T ≥
T

2
− 1

6

√
T lnK

Putting things together we obtain that with probability at least 1
4 we have

Ci?,T > Cj,T

The following lemma states that the action that has smaller observed noisy-loss has a
higher probability to be the best action.

Lemma 3 Let C1,T , . . . , CK,T be a realization of the noisy-feedbacks, such that Cj1,T <
Cj2,T , where j1, j2 ∈ A. Then,

Pr[i? = j1 | C1,T , . . . , CK,T ] > Pr[i? = j2 | C1,T , . . . , CK,T ]

Proof Using Bayes’ theorem we have for action j ∈ A that

Pr[i? = j | C1,T , . . . , CK,T ] =
Pr[C1,T , . . . , CK,T | i? = j] Pr[i? = j]

Pr[C1,T , . . . , CK,T ]

=
Pr[Cj,T | i? = j](12

T
)K−1 1

K

Pr[C1,T , . . . , CK,T ]
=

Pr[Cj,T | i? = j]

Z

=
1

Z
(
1− ε

2
)Cj,T (

1 + ε

2
)T−Cj,T
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where Z =
( 1
2

T
)K−1 1

K
Pr[C1,T ,...,CK,T ]

is a constant (not depend on j). Therefore, if Cj1,T < Cj2,T then

Pr[i? = j1 | C1,T , . . . , CK,T ] > Pr[i? = j2 | C1,T , . . . , CK,T ]

Using the lemma we can show the following corollary.

Corollary 4 consider an algorithm for “predicting the best action” problem: that is, the
algorithm input is a realization C1,T , . . . , CK,T , i.e., for one action i? we have Ci?,T ∼
B(T, 12 − εδ) and for j 6= i? we have Cj,T ∼ B(T, 12) and the output is an action IT - a
prediction for which action is optimal. Then for any algorithm we have,

Pr[IT 6= i?] ≥ 1

4

where the probability is taken over the randomness of the algorithm, the losses, the noise
and the draw of i?.

Proof Lemma 3 implies that the optimal algorithm will predict

IT = arg min
j∈A

{C1,T , . . . , CK,T }

From Corollary 2 we have that for the optimal algorithm

Pr[IT 6= i?] ≥ 1

4

Putting it all together we can now prove the theorem.
Proof of Theorem 5: For any round t we would think of the algorithm as algorithm for
“predicting the best action” problem. Using this we can think of t as the the time horizon
and by applying Corollary 4 conclude that for every t we have

Pr[It 6= i?] ≥ 1

4

Therefore the expectation of the regret, when the expectation is taken over the losses,
the noise and the draw of i? (note that the regret itself includes the randomness of the
algorithm) satisfies,

E[Regret(T )] =
T∑
t=1

Pr[It 6= i?]δ ≥ 1

4
Tδ,

where δ = min{ 1
6ε

√
lnK
T , 12} concludes the proof.
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Proof sketch for K < 27:
The proof is similar to the case of K ≥ 27. For 2 ≤ K < 27 we need only to prove that

Regret(T ) = Ω(min{1

ε

√
T , T})

We use the same adversarial strategy as before, but with δ = min{δ = γ 1
ε

√
1
T ,

1
2} where

γ > 0 is a constant. Taking any action i, such that `i,t ∼ B(12) (therefore also ci,t ∼ B(12)),
we have that Ci,T ∼ Bin(T, 12). We use the following lemma, which is a well-known fact
about Bin(T, 12) distribution.

Lemma 5 Let C ∼ Bin(T, 12) then there exist a constant γ > 0 such that with probability
1/4 we have

C ≤ T

2
− γ
√
T

The lemma follows since for any k, we have that Pr[C = k] < λ/
√
T , for some constant

λ > 0.
Let γ be the constant of Lemma 5 and denote α = Pr[Ci,T ≤ T

2 −γ
√
T ], where α ≥ 1/4.

As before, the total feedback of the best action Ci?,T is distributed Bin(T, 12 − εδ). Thus,
we have E[Ci?,T ] = T

2 − εδT .

• if δ = γ 1
ε

√
1
T we have

E[Ci?,T ] =
T

2
− γ
√
T

Using the fact that for binomial distribution, B(n, q), the median is bnqc or dnqe we
have that with probability at least 1

2

Ci?,T ≥
T

2
− γ
√
T

• if δ = 1
2 we have that the distribution for the ε-noisy feedback of the best action,

ci?,t is B(1−ε2 ), therefore

E[Ci?,T ] =
T

2
− ε

2
T

δ = 1
2 implies ε ≤ 2γ

√
1
T (as δ = min{γ 1

ε

√
1
T ,

1
2}) thus,

ε

2
T ≤ Tγ

√
1

T
= γ
√
T

Therefore, we still have that with probability at least 1
2

Ci?,T ≥
T

2
− γ
√
T

Putting all together with probability α
2 ≥ 1/8 we have that Ci,T < Ci?,T .

From here the proof is similar to the proof for the case of K ≥ 27 and yields,

E[Regret(T )] ≥ α

2
δT,

where δ = min{δ = γ 1
ε

√
1
T ,

1
2}.
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Proof of Theorem 6

By applying Lemma 3 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] (3)

Conditioning on pi,t ≤ 1−θ
2 , the estimator ˆ̀

i,t is biased, however, we can bound the deviation.
Specifically,

E[ˆ̀i,t] = θ ∗ 0 + (1− θ)E[ˆ̀i,t | pi,t ≤
1− θ

2
] = (1− θ)`i,t

This implies that

`i,t − θ ≤ E[ˆ̀i,t] ≤ `i,t

To bound the second moment we have

E[(ˆ̀
i,t)

2] = θ ∗ 0 + (1− θ)E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ E[(ˆ̀

i,t)
2 | pi,t ≤

1− θ
2

]

We bound the conditional expectation above as follows,

E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] = pi,t

(¯̀
i,t − pi,t)2

(1− 2pi,t)2
+ (1− pi,t)

(`i,t − pi,t)2

(1− 2pi,t)2

≤ 1

(1− 2pi,t)2
=

1

ε2i,t

Computing the expectation, given that the marginal is U(0, 1), we have,

E[(ˆ̀
i,t)

2] ≤ E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ Eε∼U(0,1) [

1

ε2
1ε≥θ]

=

∫ 1

θ

1

ε2
dε = −[

1

ε
]1θ =

1

θ
− 1 ≤ 1

θ

Bounding the expressions in inequality (3) we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≥
T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t − θT

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t
1

θ
=

lnK

η
+
ηT

θ

Rearranging the terms gives us,

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+
ηT

θ
+ θT

Substituting η = ( lnKT )2/3 and θ = ( lnKT )1/3 concludes the proof. �
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Proof of Theorem 7

Let θ = ( lnKT )1/3. Initially, the adversary choose an action i? uniformly at random, and
it will be the best action. Then, for each round t after observing εt, the adversary assigns
losses as follow:

1. If εt ≥ θ then `i,t = 0 for every action i.

2. Otherwise (εt < θ) the adversary draw a loss for each action as follows: for action i?

the loss is drawn from B(12−
1
6) and for any other action j 6= i? it is drawn from B(12).

Denote by T ′ the number of bad rounds. Since E[T ′] = θT and the fact that for Binomial
distribution, B(n, p), the median is bnpc or dnpe we conclude that with probability at least
1/2 we have T ′ ≥ θT . Condition on this event we assume that T ′ = θT (if T ′ > θT we take
the first θT rounds to be T ′) we reduce the bad rounds to the constant noise setting in the
following way:
In the bad rounds we have εt ∼ U(0, θ). If we assume that in the bad rounds we have εt = θ,
namely a constant noise, then we only reduced the noise in the model. We call the model
with εt = θ and T = T ′ the reduced model. Therefore, a lower bound for the regret in the
reduced model is also a lower bound for a model where εt ∼ U(0, θ).
Our reduced model is the Full Information with Constant Noise model with T = T ′

and ε = θ. Denote by Regret(T ′, θ) the regret in the Full Information with Constant
Noise model with horizon T ′ and noise parameter θ. Now, we can apply Theorem 5 on the
reduced model and obtain that

Regret(T ′, θ) ≥ 1

24θ

√
T ′ lnK

where γ > 0 is a constant. Setting T ′ = θT = T 2/3(lnK)1/3 we obtain that

Regret(θT, θ) ≥ 1

θ

√
θT lnK =

1

24
T 2/3(lnK)1/3

Putting it back in the original model yields,

Regret(T ) ≥ Pr[T ′ ≥ θT ]Regret(θT, θ) ≥ 1

2

1

24
T 2/3(lnK)1/3

(We note that the number 1
6 in the distribution B(12 −

1
6) the adversary uses, comes from

the δ = 1
6ε

√
lnK
T we use in the proof of Theorem 5 with ε = θ and T = T ′). �

Proof of Theorem 8

We apply Lemma 3, and taking expectation on both sides, obtain,

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] (4)

Conditioning on pi,t ≤ 1−θ
2 , the estimator ˆ̀

i,t is biased, and we have

E[ˆ̀i,t] = F (θ) ∗ 0 + (1− F (θ))E[ˆ̀i,t | pi,t ≤
1− θ

2
] = (1− F (θ))`i,t

9



This implies that

`i,t − F (θ) ≤ E[ˆ̀i,t] ≤ `i,t

To bound the second moment we have

E[(ˆ̀
i,t)

2] = F (θ) ∗ 0 + (1− F (θ))E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ E[(ˆ̀

i,t)
2 | pi,t ≤

1− θ
2

]

We bound the above conditional expectation as follows,

E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] = pi,t

(¯̀
i,t − pi,t)2

(1− 2pi,t)2
+ (1− pi,t)

(`i,t − pi,t)2

(1− 2pi,t)2

≤ 1

(1− 2pi,t)2
=

1

ε2i,t

Bounding each side of inequality (4) we have

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≥
T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t − F (θ)T

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[
1

ε2
1ε≥θ]

Rearranging it all yield

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+ ηTg(θ) + F (θ)T

�

Proof of Corollary 9

Using Theorem 8 and the assumption we can write

Regret(T ) ≤ 2
√
g(θ)T lnK + θαT

since g(θ) = E[ 1
ε2
1ε≥θ] ≤ 1

θ2
, we have,

Regret(T ) ≤ 2

θ

√
T lnK + θαT

taking θ = ( 2
α)

1
1+α ( lnKT )

1
2(1+α) gives

Regret = O(T
2+α
2+2α (lnK)

α
2(1+α) )

�
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Proof of Corollary 10

Applying Theorem 8 gives

Regret(T ) ≤ 2
√
g(θ)T lnK + F (θ)T (5)

To bound g(θ) we calculate

g(θ) = E[
1

ε2
1ε≥θ]

∫ 1

θ

1

ε2
λ

1− e−λ
e−λεdε ≤ λ

1− e−λ

∫ 1

θ

1

ε2
dε

=
λ

1− e−λ
(
1

θ
− 1) ≤ λ

1− e−λ
1

θ
≤ λ

θ

Bounding the second term we use the inequality 1− e−x ≤ x for x > 0 and obtain

F (θ) =
λ

1− e−λ
(1− e−λθ) ≤ λ2θ

Putting it back in (5) we have

Regret(T ) ≤ 2

√
1

θ
lnK + λ2θT

setting θ = 1
λ( lnKT )1/3 yields,

Regret(T ) ≤ 3λT 2/3(lnK)1/3

�

Proof of Theorem 11

Let the number of actions be K = 2. Assume that initially the adversary picks the best
action uniformly (that is, with probability 1

2 action 1 will be the best action and with
probability 1

2 action 2 will be the best action). Let i? ∈ {1, 2} be a random variable denoting
the best action and j = 3 − i? denote the worse action. On round t, after observing the
noise parameters p1,t and p2,t, the adversary selects the losses as follow:

1. For the best action, i?, the loss is drawn at every round independently from a Bernoulli
r.v. with parameter 1/4, i.e., `i?,t ∼ B(14)

2. For the worse action j: if pj,t < 1/4 then the loss is `j,t = 0, otherwise the loss is
`j,t = 1.

For the learner, observing the feedback ci,t = `i,t⊕ ri,t, the loss of each action is a Bernoulli
random variable. We will show that both actions will have the same probability of 1, namely
3/8, and therefore indistinguishable by the learner.

Now we calculate the expected value of the observed feedback, ci,t = `i,t ⊕ ri,t, for
each action in a single round. We note that this expectation is taken over the draw of
εi,t ∼ U(0, 1), the draw Ri,t ∼ B(

1−εi,t
2 ) and the draw of the losses `i,t. We also note that if

ε ∼ U(0, 1) then p ∼ U(0, 12).

11



The expected loss of best action, `i?,t is drawn independently from the noise parameter
εi?,t and the Bernoulli noise Ri,t. Therefore, we have

E[ci?,t] = Ep[ER[E`[`i?,t ⊕Ri?,t] | p]] = Ep[ER[
1

4
(1⊕Ri?,t) +

3

4
(0⊕Ri?,t) | p]]

=
1

4
Ep[pi?,t · 0 + (1− pi?,t) · 1] +

3

4
Ep[pi?,t · 1 + (1− pi?,t) · 0]

=
1

4
· 3

4
+

3

4
· 1

4
=

3

8

For the worse action, action j, we have

E[cj,t] = E[`j,t ⊕Rj,t] =
1

2
E[0⊕Rj,t | pj,t < 1/4] +

1

2
E[1⊕Rj,t |

1

4
≤ pj,t <

1

2
]

=
1

2
E[pj,t | pj,t <

1

4
] +

1

2
E[1− pj,t |

1

4
≤ pj,t <

1

2
]

=
1

2
· 1

8
+

1

2
(1− 3

8
) =

3

8

This implies that the feedback of both the best and worse action is a Bernoulli random vari-
able with parameter 3

8 , i.e., B(38). This clearly implies that the learner cannot distinguish
between the two actions, and therefore, half the time it will select the worse action. The
best action has an expected loss of T

4 while the worse action has a loss of T
2 . This implies

that the expected regret would be at least T
8 . �

Proof of Theorem 12

By applying Lemma 3 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

Calculating the expectation of the estimator ˆ̀
i,t, and since `i,t ∈ {0, 1}, we have,

E[ˆ̀i,t] = qi,t
1

qi,t
E[ci,t] = E[ci,t] = (1− p)`i,t + p¯̀

i,t = (1− 2p)`i,t + p = |`i,t − p|

For the second moment, since ci,t ≤ 1 we have

E[(`i,t)
2] = qi,t

1

q2i,t
E[ci,t] ≤

1

qi,t

Putting things together we have

T∑
t=1

K∑
i=1

qi,t|`i,t − p| −
T∑
t=1

|`k,t − p| ≤
lnK

η
+ ηTK (6)

Using the notation of L̂ON,T =
∑T

t=1

∑K
i=1 qi,t

ˆ̀
i,t, L̂k,T =

∑T
t=1

ˆ̀
k,t, LON,T =

∑T
t=1

∑K
i=1 qi,t`i,t,

and Lk,T =
∑T

t=1 `k,t, we can write inequality (6) as

E[L̂ON,T ]− E[L̂k,T ] ≤ lnK

η
+ ηTK

12



Denote by Gt,b = {i ∈ A | `i,t = b} the set of actions with loss b ∈ {0, 1} in round t.
Denote by Qt =

∑
i∈Gt,1 qi,t the distribution mass the learner gives actions in Gt,1. Using

this notation we have LON,T =
∑T

t=1Qt. Now calculate the value of the estimated losses of
the online algorithm,

E[L̂ON,T ] =
T∑
t=1

K∑
i=1

qi,t|`i,t − p| =
T∑
t=1

[p
∑
i∈Gt,0

qi,t + (1− p)
∑
i∈Gt,1

qi,t]

=
T∑
t=1

[p(1−Qt) + (1− p)Qt] =
T∑
t=1

[p+ (1− 2p)Qt]

= (1− 2p)LON,T + pT

Similarly, for the term E[L̂k,T ] we have,

E[L̂k,T ] =

T∑
t=1

|`k,t − p| =
∑

t|`t,k=0

p+
∑

t|`t,k=1

(1− p)

= p(T − Lk,T ) + (1− p)Lk,T = (1− 2p)Lk,T + pT

Putting all together,

E[L̂ON,T ]− E[L̂k,T ] = (1− 2p)LON,T + pT − [(1− 2p)Lk,T + pT ] = (1− 2p)[LON,T − Lk,T ]

Dividing by both sides of inequity by (1− 2p) and using η =
√

lnK
TK we obtain that

Regret(T ) = LON,T −min
k∈A

Lk,T ≤
1

1− 2p
(
lnK

η
+ ηTK) =

2

ε

√
TK lnK

�

Proof of Theorem 13

We first define K different problem instances, one per action. Let β ∈ (0, 1) be a parameter.
We denote by Ji the problem instance where action i loss is drawn from the distribution
B(1−β2 ) while the other actions loss is drawn from the distribution B(12). For problem
instance Ji, we refer action i as the best action. The proof will show that in some sense
those instances are indistinguishable for any algorithm.

For the proof, we will think of the online algorithm as a leaner making “prediction” for
the best action at each round t. The main part of the proof is to show that if T is not large
enough the algorithm has to have a constant mistake rate.

We denote by Pr[It = i|Ji] the probability that in instance Ji, at round t the algorithm
selects action i (the best action in instance Ji). The following lemma shows that for many
actions the algorithm will make a mistake.

Lemma 6 Consider a deterministic algorithm for the Bandit with Constant Noise problem
with noise p = 1−ε

2 . There exist a constant γ such that if t < γ K
ε2β2 then there exist at least

dK2 e actions i such that

Pr[It = i|Ji] <
3

4

13



Proof Consider the feedback distribution for each problem instance Jj and action i. First,
if `i,t ∼ B(12) then ci,t ∼ B(12) (the noise does not have any influence). For the best action,

i.e., j, we have cj,t ∼ B(1−εβ2 ) since

Pr[cj,t = 1] = Pr[`j,t = 1]Pr[Rε = 0] + Pr[`j,t = 0]Pr[Rε = 1]

= (
1− β

2
)(

1 + ε

2
) + (

1 + β

2
)(

1− ε
2

) =
1− εβ

2

Applying Lemma 2.10 of Slivkins (2017) on the feedbacks ci,t completes the proof.

Corollary 7 Choose the best action i? uniformly from A and use instance Ji?. For any
algorithm, for any round t < γ K

ε2β2 , we have Pr[It 6= i?] ≥ 1/8.

Proof For a deterministic algorithm the corollary follows since by Lemma 6 with probability
at least 1

2 the selected i? is such that Pr[It 6= i?|Ji? ] ≥ 1
4 . Since a randomized algorithm is a

distribution over deterministic algorithms that claim hold also for randomized algorithms.

Proof of Theorem 13: Let β = min{
√
γ
ε

√
K
T , 1}. By Corollary 7, we have that in each

round t

Pr[It 6= i?] ≥ 1

8

Denote by ∆t = E[`It,t] − E[`i?,t] the regret of round t. Note that if It 6= i? then ∆t =
1
2 −

1−β
2 = β

2 . Therefore, the expected regret at round t is

E[∆t] = Pr[It 6= i?]
β

2

Summing over the rounds we have,

Regret(T ) =

T∑
t=1

E[∆t] ≥
1

16
βT

Since β = min{
√
γ
ε

√
K
T , 1}, we have

Regret(T ) ≥ min{
√
γ

16

1

ε

√
TK,

1

16
T}

Proof of Theorem 14

By applying Lemma 3 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] (7)
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Conditioning on pi,t ≤ 1−θ
2 , the estimator ˆ̀

i,t is unbiased, since

E[ˆ̀i,t | pt ≤
1− θ

2
] = qi,t[

1

qi,t

p¯̀
i,t + (1− p)`i,t − p

1− 2p
] = `i,t .

However, overall the estimator is biased,

E[ˆ̀i,t] = θ ∗ 0 + (1− θ)E[ˆ̀i,t | pi,t ≤
1− θ

2
] = (1− θ)`i,t

This implies that

`i,t − θ ≤ E[ˆ̀i,t] ≤ `i,t

To bound the second moment we have

E[(ˆ̀
i,t)

2] = θ ∗ 0 + (1− θ)E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ E[(ˆ̀

i,t)
2 | pi,t ≤

1− θ
2

]

The conditional expectation of the second moment is bounded as follows,

E[(ˆ̀
i,t)

2 | pt ≤
1− δ

2
] =

1

qi,t
[pt

(¯̀
i,t − pt)2

(1− 2pt)2
+ (1− pt)

(`i,t − pt)2

(1− 2pt)2
] ≤ 1

qi,t

1

(1− 2pt)2
=

1

qi,t

1

ε2t

Since the marginal of the noise distribution D is uniform, we have,

E[(ˆ̀
i,t)

2] ≤ E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ Eε∼U(0,1) [

1

qi,t

1

ε2
1ε≥θ]

=
1

qi,t

∫ 1

θ

1

ε2
dε = − 1

qi,t
[
1

ε
]1θ =

1

qi,t
(
1

θ
− 1) ≤ 1

qi,t

1

θ

(8)

Bounding each side of inequality (7) we have

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≥
T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t − θT

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t[
1

qi,t

1

θ
] =

lnK

η
+
ηTK

θ

(9)

Rearranging it all yield

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+
ηTK

θ
+ θT

Substituting η = (lnK)2/3

K1/3T 2/3 and θ = K1/3(lnK)1/3

T 1/3 concludes the proof. �
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Proof of Theorem 15

Let θ = (KT )1/3. Initially, the adversary choose an action i? uniformly at random, and it
will be the best action. Then, for each round t after observing εt, the adversary assigns

losses as follow: fix β =
√
γ
θ

√
K
T =

√
γ(KT )1/6 and at round t do

1. if εt ≥ θ then `i,t = 0 for every action i.

2. Otherwise (εt < θ) the adversary draw a loss for each action as follows: for action i?

the loss is drawn from B(12−β) and for any other action j 6= i? it is drawn from B(12).

Denote by T ′ the number of bad rounds. Since E[T ′] = θT and the fact that for Binomial
distribution, B(n, p), the median is bnpc or dnpe we conclude that with probability at least
1/2 we have T ′ ≥ θT . Condition on this event we assume that T ′ = θT (if T ′ > θT we take
the first θT rounds to be T ′) we reduce the bad rounds to the constant noise setting in the
following way:
In the bad rounds we have εt ∼ U(0, θ). If we assume that in the bad rounds we have εt = θ,
namely a constant noise, then we only reduced the noise in the model. We call the model
with εt = θ and T = T ′ the reduced model. Therefore, a lower bound for the regret in the
reduced model is also a lower bound for a model where εt ∼ U(0, θ).
Our reduced model is the Bandit with Constant Noise model with T = T ′ and ε = θ.
Denote by Regret(T ′, θ) the regret in the Bandit with Constant Noise model with
horizon T ′ and noise parameter θ. Now, we can apply Theorem 13 on the reduced model
and obtain that

Regret(T ′, θ) ≥ γ 1

θ

√
T ′K

where γ > 0 is a constant. Setting T ′ = θT = T 2/3K1/3 we obtain that

Regret(θT, θ) ≥ 1

θ

√
θTK = γT 2/3K1/3

Putting it back in the original model yields,

Regret(T ) ≥ Pr[T ′ ≥ θT ] ∗Regret(θT, θ) ≥ γ

2
T 2/3K1/3

(We note here that the choice of β is according to the proof of Theorem 13 with ε =
θ and T = T ′ = θT ). �
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