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Abstract
We present and study models of adversarial on-
line learning where the feedback observed by the
learner is noisy, and the feedback is either full
information feedback or bandit feedback. Specif-
ically, we consider binary losses xored with the
noise, which is a Bernoulli random variable. We
consider both a constant noise rate and a vari-
able noise rate. Our main results are tight regret
bounds for learning with noise in the adversarial
online learning model.

1. Introduction
Online learning is a general framework for sequential
decision-making under uncertainty. In each round, a learner
chooses an action from a set of K available actions and suf-
fers a loss associated with that action and observes “some”
feedback about the losses. The losses in each round are
arbitrary, possibly adversarial, and the goal of the learner is
to minimize the cumulative loss over a fix time horizon T .
We measure the performance of the learner using the regret
which is the expected difference between the cumulative
loss of the learner and that of the best fixed action.

Traditionally, there are two main types of feedback: full-
information feedback and the Bandit feedback. In the full-
information feedback, often referred to as prediction with
expert advice, in each round the learner observes the losses
of all actions. In the Bandit feedback the learner only ob-
serves the loss associated with the action played.

Both models have been extensively studied and received sig-
nificant practical and theoretical interest. The regret bound
for the full information model is Θ(

√
T lnK) (see (Little-

stone & Warmuth, 1994; Freund & Schapire, 1997; Kalai &
Vempala, 2005)), and for the bandit model is Θ(

√
KT ) (see

(Auer et al., 2002; Audibert & Bubeck, 2009; Cesa-Bianchi
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& Lugosi, 2006; Bubeck & Cesa-Bianchi, 2012)).

Both models assume that the observed feedback is exact,
namely that we always get the correct ground-truth. In some
real life scenarios, the feedback (ground-truth) might be
corrupted by noise, which is the focus of our work.

For a motivating example, consider an Internet website that
presents one out of K ads to each user, and its goal is to
maximize the number of clicked ads. In real world scenarios,
we might observe an incorrect feedback regarding the real-
ization of the click. This can happen for many reasons: (1)
network connection (from the user to the advertising server,
which is different from the content server), (2) browser is-
sues, including privacy setting, (3) misidentification of the
user (due to multiple users using the same IP address, or
blocking cookies). All those can be modeled as a Bernoulli
noise.

Another important aspect for this web advertising example
to consider are invalid clicks, which can be either malicious
clicks (done by robots, etc) or unintentional clicks. We
would like to maximize the “valid clicks”, and ignore invalid
ones. (In fact, web search companies developed tools to
address such issues.) The invalid clicks, out of the entire
click stream, can be viewed as noise. Some “users” are more
prone to generate invalid clicks, which can be captured by
variable Bernoulli noise across time steps.

In this paper, we present and study settings in which the
feedback is corrupted by random noise. We assume that the
losses are Boolean and that the noise is also Boolean, and the
observation is the xor of the loss and the noise. For the noise
we consider Bernoulli random variable with probability p,
denoted by B(p). We consider a few variations of the noise
model.

For the constant noise rate, we assume that there is a fixed
probability p for the noise (for all actions and rounds). For
the variable noise rate, we assume that there exists a dis-
tribution D such that in each round t we draw a vector of
probabilities, where is pi,t the noise of action i in round
t. For both settings, we study both the case that the noise
parameter is known to the learner, and where it is unknown.
Our main contribution is deriving tight regret bounds for
those settings, both upper bounds (algorithms) and lower
bounds (impossibility results). In the following paragraphs
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Figure 1. Results summary

Feedback \Noise Constant noise Variable noise
(Uniform)

Full information
known noise Θ( 1

ε

√
T lnK) Θ(T 2/3 ln1/3K)

Full Information
unknown noise Θ( 1

ε

√
T lnK) Θ(T )

Bandit
known noise Θ̃( 1

ε

√
TK) Θ̃(T 2/3K1/3)

Bandit
unknown noise Θ̃( 1

ε

√
TK) Θ(T )

we give a high level view of our results.

The constant noise model has a fixed parameter ε ∈ [0, 1]
and for every round t the loss is xored with Bernoulli random
variable with parameter p = 1−ε

2 . For the full information
model we have a tight regret bound of Θ( 1

ε

√
T lnK), both

when the noise parameter is known to the learner and when
it is unknown. For the bandit feedback model we have
a tight regret bound of Θ̃( 1

ε

√
TK), both when the noise

parameter is known and when it is unknown.

The variable noise model has a distribution D over [0, 1]K

and at each round t, we draw from D a realized noise vector
(ε1,t, . . . , εK,t), where pi,t = (1 − εi,t)/2 is the noise pa-
rameter for action i at round t. In the following we describe
our results for the uniform model, where the marginal dis-
tribution of D of each action is uniform [0, 1]. For the full
information we have a contrast between the case where the
realized noise parameters are observed by the learner, where
we have a tight regret bound of Θ(T 2/3 ln1/3K), and the
case where the realized noise parameters are not observed,
where we have a linear regret, i.e., Θ(T ). For the bandit
model we have a tight bound of Θ̃(T 2/3K1/3), when the
realized noise parameters are observed, and linear regret,
i.e., Θ(T ), when the realized noise parameters are not ob-
served. We also discuss the case of a general distribution
and derive regret bounds for other specific distributions. Our
main results are summarized in Figure 1.

Related work: The work of (Kocák et al., 2016) gener-
alized a partial-feedback scheme proposed by (Mannor &
Shamir, 2011; Alon et al., 2017), in which the learner ob-
serves losses associated with a subset of actions which de-
pends on the selected action, and considered a zero mean
noise added to the side observations. Their main result is
an algorithm that guarantees a regret of Õ(

√
T ) , where the

constant depends on a graph property.

The work of Wu et al. (2015) studies a stochastic model
where the feedback of an action has the losses of each
other action with an additive noise of a zero-mean Gaussian,
where variance depends both on the action played and ob-
served. For this model they derive problem-depend lower
bounds and matching upper bounds.

Gajane et al. (2018) studied a stochastic bandit problem
where the feedback is drawn from a different distribution
than the rewards, but there exist a link function relating
them. They provide lower and upper bound for this setting.

Binary sequence prediction with noise was studied by Weiss-
man & Merhav (2000) and Weissman et al. (2001). They
show upper bounds on the regret for binary sequence predic-
tion with a constant noise rate (the binary sequence predic-
tion model is implicitly a full feedback model). Their regret
bound is similar to our regret bound (in the full information
with constant noise).

There is a vast literature in statistics, operation research and
machine learning regarding various noise models. In com-
putational learning theory, popular noise models include
random classification noise (Angluin & Laird, 1988) and
malicious noise (Valiant, 1985; Kearns & Li, 1993). The
above noise models use the PAC model, and study the gen-
eralization error, while we consider an online setting and
study the regret.

Paper Organization: In the next section we formalize our
model. In section 3 we study the full information with
constant noise settings, providing algorithms and matching
lower bounds. In section 4 we study full information with
variable noise settings and derives algorithm, analyzes their
regret, and proves a matching lower bound for specific noise
distribution. In section we 5 study the bandit feedback
settings both for the constant noise and variable noise model.
We include in the paper proofs sketches for part of the
bounds shown. Full proofs for all of the bounds are given in
the supplementary material.

2. Model
We consider adversarial decision problem with finite actions
set A = {1, 2, . . . ,K}. On each round t = 1, 2, . . . , T

the environment (or adversary) selects a loss vector ~̀t ∈
{0, 1}K where `i,t is the loss associated with action i at
round t. The learner (or algorithm) chooses an action It,
without observing ~̀t. Then, the learner incurs a loss `It,t.

The main difference between our models and the standard
online model is that the learner observes a noisy feedback of
the loss (to be specified separately in each setting). Before
presenting our models we start with a general definition of
a noisy feedback of a single loss.
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Definition 1 Let ` ∈ {0, 1} be a loss, and let ε ∈ [0, 1]
be a parameter. We define the ε-noisy feedback to be the
following the random variable

c = `⊕Rε

where Rε is Bernoulli random variable with parameter p =
1−ε
2 (i.e., Pr[Rε = 1] = p = 1−ε

2 ).

Using the above definition we present our four different
settings, which are different in the feedback that the learner
observes and the noise parameter selection. The settings are
as follow:

1. Full Information with Constant Noise: In this set-
ting, there exists a constant noise parameter ε ∈ [0, 1],
such that for every round t the learner observes the
ε-noisy feedback, ci,t for each action i, i.e., ci,t =
`i,t ⊕Rε.

2. Full Information with Variable Noise: In this set-
ting, there exists a distribution D over [0, 1]K . At the
beginning of each round t, we draw from D a realized
noise parameters (ε1,t, . . . , εK,t), where εi,t ∈ [0, 1] is
the noise parameter of action i at round t. We assume
that the noise parameters are drawn independently from
D at each round t. The learner observes, for each ac-
tion i, an εi,t-noisy feedback ci,t, i.e., ci,t = `i,t⊕Rεi,t .

3. Bandit with Constant Noise: In this setting, there ex-
ists a constant noise parameter ε ∈ [0, 1], such that for
every round t the learner observes the ε-noisy feedback
of the action played, i.e., cIt,t = `i,t ⊕Rε where It is
the action played in round t.

4. Bandit with Variable Noise: In this setting, there ex-
ists a distribution D over [0, 1]K . At the beginning of
each round t, we draw from D a realized noise param-
eters (ε1,t, . . . , εK,t), where εi,t ∈ [0, 1] is the noise
parameter of action i at round t. We assume that the
noise parameters are drawn independently from D at
each round t. The learner observes only the feedback
for the action he played, i.e., cIt,t = `It,t ⊕ RεIt,t ,
where It is the action played in round t.

Each of the models can have two variants: known noise pa-
rameters, where the learner observes the noise parameters
or unknown noise parameters, where the learner does not
observe the noise parameters. The known noise parameters
settings can be divided farther into two variant: in the in-
formed model, the learner observes the noise parameter at
the beginning of round t, before drawing an action It. In the
uninformed model, the player observes the noise parameter
at the end of round t, after drawing It and observing the
losses. In this paper we show upper bounds (algorithms)
in the uninformed model and tight lower bounds in the

Algorithm 1 Exponential Weights Scheme
1: Initialization: wi,1 = 1 for all i ∈ A
2: Parameters: η > 0
3: for t = 1 to T do
4: Construct the probability distribution qt with

qi,t =
wi,t
Wt

where Wt =

K∑
i=1

wi,t

5: Play a random action It according to qt
6: Incur loss `It,t
7: Observe feedback according to the specific settings

observed_feedback = Model_feedback(`t, It, εt)

8: Construct loss estimate

ˆ̀
i,t = EST (i, ~qt, It, observed_feedback)

for all i ∈ A
9: Update weights for all i ∈ A:

wi,t+1 = wi,t exp(−η ˆ̀
i,t)

10: end for

informed model, concluding that the informed and unin-
formed models are equivalent with respect to asymptotic
regret bounds.

In the constant noise, the noise parameter is ε and in the
variable noise, the noise parameters are the realized noise
parameters at each round t, i.e., (ε1,t, . . . , εK,t).

The adversaries we consider are nonoblivious. Namely, the
losses at time t can be arbitrary functions of the past player’s
actions and the realise noise drawn in each round.

We measure the performance of the learner using the (ex-
pected) regret of the true losses, namely,

Regret(T ) = E

[ T∑
t=1

`It,t

]
−min

i∈A

T∑
t=1

`i,t ,

where the losses are selected by an adversary and the expec-
tation is taken over the randomness of the algorithm and the
randomness of the noise.

The algorithms presented in this paper are variants of the
Exponential Weights Scheme (see Algorithm 1). In the
Exponential Weights Scheme (EWS) the algorithm main-
tains weight wi,t for each action i (initially wi,t = 1). On
round t the algorithm chooses an action proportional to the
weights, based on a distribution qt. After observing the
feedback of round t, the algorithm updates the weights
to wi,t+1 using the previous weights wi,t, the observa-
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tions (i.e., ci,t) and the noise parameter (if known). Each
noise setting determines how the feedback is constructed
and observed depending on the losses `t, the selected ac-
tion It and the noise εt (line 7 in the algorithm template).
Each algorithm determines how to construct the loss esti-
mate ˆ̀

i,t (line 8 in the algorithm). We denote generically
ˆ̀
i,t = EST (i, ~qt, It, observed_feedback), where EST is

the loss estimate function that will be implemented differ-
ently in each setting and for each algorithm.

Notations: Let L̂ON,T =
∑T
t=1

∑K
i=1 qi,t

ˆ̀
i,t and L̂k,T =∑T

t=1
ˆ̀
k,t be the estimated loss of the online algorithm

and of action k, respectively. We denote by LON,T =∑T
t=1

∑K
i=1 qi,t`i,t and Lk,T =

∑T
t=1 `k,t the expected

loss of the online algorithm and the loss of action k, respec-
tively.

We denote by B(p) the Bernoulli distribution with parame-
ter p and by B(n, p) the Binomial distribution with n trials
and parameter p.

3. Full Information with Constant Noise
model

In this section, we consider the Full Information with Con-
stant Noise feedback model. In the first part, we derive
an algorithm that uses the constant noise parameter ε and
obtains regret bound of O( 1

ε

√
T lnK). Then, we show how

to obtain the same regret bound when the noise parameter
ε is unknown. In the second part, we derive a lower bound,
which shows that the regret of our algorithm is asymptoti-
cally optimal.

3.1. Algorithms

We start with the algorithms that establish the upper bound
on the regret. The idea is to construct an unbiased estimator
for each loss. Let ε ∈ [0, 1] and let p = 1−ε

2 be the noise
parameter. The unbiased estimator is

EST (i, ~qt, It, ci,t) =
ci,t − p
1− 2p

= ˆ̀
i,t .

The estimator is unbiased since,

E[ˆ̀i,t] =
p(1− `i,t) + (1− p)`i,t − p

1− 2p
= `i,t .

The following theorem establishes the regret bound when
we use the Exponential Weights Scheme with the above
unbiased estimator.

Theorem 2 Let ε ∈ [0, 1], denote p = 1−ε
2 and assume

T ≥ 1
4 lnK. Then running Exponential Weights Scheme

under the Full Information with Constant Noise setting with

the following loss estimate

EST (i, qt, It, ci,t) =
ci,t − p
1− 2p

= ˆ̀
i,t

and for η = ε
√

lnK
T we have,

Regret(T ) ≤ 2

ε

√
T lnK

The following lemma establishes a well known property of
EWS.

Lemma 3 Let η > 0 and a sequence of loss estimates
ˆ̀
1, . . . , ˆ̀

T where ˆ̀
t : {1, . . . ,K} → R such that −η ˆ̀

i,t ≤
1 for all i and t, then the probability vectors ~q1, . . . , ~qT
define in the Exponential Weights Scheme, for any action k,
satisfies

T∑
t=1

K∑
i=1

qi,t ˆ̀i,t −
T∑
t=1

ˆ̀
k,t ≤

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2

Full proof of Theorem 2 follows by using Lemma 3, the
fact that the estimator is unbiased, and bounding the second
moment of the estimator by E[(ˆ̀

i,t)
2] ≤ 1

ε2 .

In Theorem 2, the learner uses the noise parameter ε to
derive an unbiased estimator. The following theorem shows
that the same regret bound can be attained even when the
leaner does not know the noise parameter ε.

Theorem 4 Let ε ∈ [0, 1] and denote p = 1−ε
2 . Running

Exponential Weights Scheme under the Full Information
with Constant Noise setting with the following loss estimate

EST (i, ~qt, It, ci,t) = ci,t = ˆ̀
i,t

and for η =
√

lnK
T , we have,

Regret(T ) ≤ 2

ε

√
T lnK

3.2. Impossibility result

In this section we derive a lower bound on the regret for
the Full Information with Constant Noise model. Our lower
bound matches our upper bound, up to a constant factor.
Specifically, the following theorem gives us a lower bound
of Ω( 1

ε

√
T lnK) on the regret.

Theorem 5 Consider the Full Information with Constant
Noise setting with noise parameter ε ∈ (0, 12 ) and T ≥
2 lnK. Then for any algorithm, there exists a sequence of
loss vectors ~̀1, ..., ~̀T such that

Regret(T ) = Ω(min{1

ε

√
T lnK,T})
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The proof idea is to define a stochastic strategy for loss
assignment, which is a distribution over problem instances.
Then, by showing that any algorithm suffers high expected
regret, where the expectation is over the problem instances
defined by the strategy, conclude that there exists a problem
instance with high regret.

Proof sketch for K ≥ 27 To prove the theorem we first
define the following adversarial loss assignment strategy:

• The adversary initially picks uniformly a best action
i? (∀i Pr[i? = i] = 1

K )

• At round t: the adversary draws losses for the actions
from the following distributions:

1. For i?: `i?,t ∼ B( 1
2 − δ)

2. For i 6= i?: `i,t ∼ B( 1
2 )

where δ = min{ 1
6ε

√
lnK
T , 12}.

Now we calculate the distribution of the ε-noisy feed-
back ci,t. A simple calculation yields that for i? we
have Pr[ci?,t = 1] = 1

2 − εδ and for i 6= i? we have
Pr[ci,t = 1] = 1

2 , where the probability is taken over the
draw of Ri,t ∼ B( 1−ε

2 ) and the draw of the losses `i,t.

Thus, we have: ci?,t ∼ B( 1
2 − εδ) and ci,t ∼ B( 1

2 ) for
i 6= i?.

Denote by Ci,T =
∑T
t=1 ci,t, the sum of the noisy feedback

of action i, and note that it is binomial random variable.
In addition, for i? we have Ci?,T ∼ B(T, 12 − εδ) and for
i 6= i? we have Ci,T ∼ B(T, 12 ).
Using a standard claim regarding the minimum of i.i.d. bi-
nomial random variables we show that with probability at
least 1

4 there exist action j 6= i? such that Cj,T < Ci?,T .
Standard Bayesian argument gives us

Pr[i? = j1 | Cj1,T < Cj2,T ] > Pr[i? = j2 | Cj1,T < Cj2,T ]

Applying this argument for each round t, implies that the
optimal algorithm satisfies,

Pr[It 6= i?] ≥ 1

4

Therefore the expectation of the regret, when the expecta-
tion is taken over the losses, the noise and the draw of i?

(note that the regret itself depends on the randomness of the
algorithm) satisfies,

E[Regret(T )] =

T∑
t=1

Pr[It 6= i?]δ ≥ 1

4
Tδ,

where δ = min{ 1
6ε

√
lnK
T , 12} concludes the proof. �

4. Full Information with Variable Noise model
In this section we investigate the Full Information with
Variable Noise settings. Recall that in this setting we have
a distribution D over [0, 1]K . At the beginning of each
round t, we draw from D a realized noise (ε1,t, . . . , εK,t),
where εi,t is the noise parameter for action i at round t. We
assume that the noise parameters are drawn independently
from D at each round t (however, there can be correlations
between the noise parameters εi,t of different actions at the
same round t). The learner picks an action It ∈ A. Then
the learner observes the realized noise (ε1,t, . . . , εK,t) and
the εi,t-noisy feedback ci,t for each action i. We denote by
pi,t =

1−εi,t
2 .

The section is structured as follows. Initially, we investigate
the case of a uniform distribution over [0, 1], that is, the
marginal distribution of D for each action i is uniform over
[0, 1], i.e., εi,t ∼ U(0, 1), where U(0, 1) is the uniform
distribution on [0, 1]. Following that, we generalize the
regret bound for a general noise distributionD. We conclude
with a few examples of specific distributions.

4.1. Uniform Noise Distribution

4.1.1. ALGORITHM

A simple potential approach to the problem is to try to use
the Exponential Weights Scheme with the unbiased estimator

EST (i, ~qt, It, ci,t) =
ci,t − pi,t
1− 2pi,t

as in the constant noise settings. A close examination reveals
that there is a problem when pi,t is close to 1/2 (i.e., εi,t is
close to 0). In such cases the estimator is unbounded and
can give a very high value. An intuitive idea is to avoid
using feedbacks with high noise. This is implemented by
the learner by having an additional parameter θ and ignoring
feedbacks where pi,t > 1−θ

2 (i.e., εi,t < θ). More formally,
we use the Exponential Weights Scheme with the following
estimator:

EST (i, ~qt, It, ci,t) =
ct,i − pi,t
1− 2pi,t

1{pi,t≤ 1−θ
2 }

= ˆ̀
i,t

The algorithm resulting from using the above estimator in
the Exponential Weights Scheme is called EW-Threshold.

Theorem 6 Let D be the noise distribution, such that for
each action i the marginal distribution εi,t is distributed
U(0, 1) (but not necessarily independent for different ac-
tions). The EW-Threshold algorithm with the parameters

η = (
lnK

T
)2/3 and θ = (

lnK

T
)1/3

has, in the Full Information with Variable Noise setting, a
regret of at most,

Regret(T ) ≤ 3T 2/3(lnK)1/3
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4.1.2. IMPOSSIBILITY RESULT

In this section we derive a lower bound on the regret of
Ω(T 2/3(lnK)1/3). Together with the upper bound we ob-
tain that for the Full Information with Variable Noise, with
uniform marginals, we have

Regret(T ) = Θ(T 2/3(lnK)1/3)

For the lower bound we use a specific noise distribution D,
denoted by D′. In D′, all the noise of individual actions are
identical, and uniformly distributed. Formally, we generate
the noise parameters from D′ as follows. We draw εt ∼
U(0, 1) and for every i we set εi,t = εt.

The idea behind the proof of the following theorem is to
use adversarial strategy for loss assignment in the following
way: when the noise is low, all the actions will have the
same loss, but when the noise is high, one action, chosen
randomly at the beginning, will be superior.

Theorem 7 Any algorithm in the Full Information with
Variable Noise setting with the noise distribution D′, there
exist a series of loss vectors ~̀1, ..., ~̀T such that

Regret(T ) ≥ 1

48
T 2/3(lnK)1/3

Proof sketch Let θ = c. Initially, the adversary choose an
action i? uniformly at random, and it will be the best action.
Then, for each round t after observing εt, the adversary
assigns losses as follow:

1. If εt ≥ θ then `i,t = 0 for every action i.

2. Otherwise (εt < θ) the adversary draw a loss for each
action as follows: for action i? the loss is drawn from
B( 1

2 −
1
6 ) and for any other action j 6= i? it is drawn

from B( 1
2 ).

Denote by T ′ the number of rounds where εt ≤ θ (bad
rounds). Since E[T ′] = θT we have that with probability
at least 1

2 we have T ′ ≥ θT . Condition on this event we
assume that T ′ = θT (if T ′ > θT we take the first θT
rounds to be T ′), we reduce the bad rounds to the constant
noise setting in the following way:
In the bad rounds we have εt ∼ U(0, θ). If we assume
that in the bad rounds we have εt = θ, namely a constant
noise, then we only reduced the noise in the model. We
call the model with εt = θ and T = T ′ the reduced model.
Therefore, a lower bound for the regret in the reduced model
is also a lower bound for a model where εt ∼ U(0, θ).
Our reduced model is the Full Information with Con-
stant Noise model with T = T ′ and ε = θ. Denote by
Regret(T ′, θ) the regret in the Full Information with Con-
stant Noise model with horizon T ′ and noise parameter θ.

Now, we can apply Theorem 5 on the reduced model and
obtain that

Regret(T ′, θ) ≥ 1

24θ

√
T ′ lnK =

1

24
T 2/3(lnK)1/3

Where in the last equality we use T ′ = θT, θ = ( lnK
T )1/3

Putting it back in the original model yields,

Regret(T ) ≥ Pr[T ′ ≥ θT ] Regret(θT, θ)

≥ 1

2

1

24
T 2/3(lnK)1/3

(We note that the number 1
6 in the distribution B( 1

2 −
1
6 ) the

adversary uses, comes from the δ = 1
6ε

√
lnK
T we use in the

proof of theorem 5 with ε = θ and T = T ′). �

4.2. General distributions

In this section we generalized the result of EW-Threshold
to a general noise distribution D. We assume that the
marginal distribution of each action i is the same and we
denoting the CDF (Cumulative Distribution Function) of it
by F . Then, we use our generalized bound to derive a sub-
linear regret upper bound for distributions D that satisfies
a given condition. We extend the proof of Theorem 6 and
obtain the following general upper bound.

Theorem 8 Let D be a distribution, such that the marginal
distribution over εi,t ∈ (0, 1) has a CDF F . Then, running
EW-Threshold algorithm with parameters θ > 0 and η > 0
satisfies,

Regret(T ) ≤ lnK

η
+ ηTg(θ) + F (θ)T

where g(θ) = E[ 1
ε21{ε≥θ}]. Moreover, for η =

√
lnK
Tg(θ) we

have

Regret(T ) ≤ 2
√
g(θ)T lnK + F (θ)T

The following corollary gives a general upper bound that
depends only on a property of the noise distribution D. We
assume that all the marginal distributions of D are identical
and with CDF F .

Corollary 9 Let D be a noise distribution, where each
marginal distribution has the same CDF F , and assume
F (θ) ≤ θα for a given α > 0. Then, running EW-
Threshold algorithm with η =

√
lnK
Tg(θ) , where g(θ) =

E[ 1
ε21{ε≥θ}] satisfies,

Regret(T ) = O(T
2+α
2+2α (lnK)

α
2(1+α) )
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To get an intuition for the bound of Corollary 9 we can
consider a few intuitive settings of the parameter α. The
uniform distribution has α = 1, and the theorem yield
Regret(T ) = Õ(T

3
4 ), which is higher than the regret

bound computed explicitly in Theorem 6, of O(T 2/3) (this
is because we use the bound g(θ) ≤ 1

θ2 which is not tight).
When α → ∞ we have Regret(T ) → Õ(T

1
2 ), which is

tight even without any noise. When α → 0, we have no
restriction on the noise distribution, and indeed the theorem
yields a linear regret bound.

To give an example for the bound of Theorem 8 we prove a
regret bound for truncated exponential distribution.

Corollary 10 Let D be a distribution, such that the
marginal distribution over εi,t ∈ (0, 1) has a PDF f(x) =

λ
1−e−λ e

−λx for x ∈ (0, 1) and λ > 0. Then, running EW-
Threshold algorithm with parameters θ > 0 and η > 0
satisfies,

Regret(T ) ≤ 3λT 2/3(lnK)1/3

4.3. Importance of knowing the Noise

Until now we assume for the Full Information with Variable
Noise that the learner observes the noise drawn for each
action, pi,t, with the feedback. In the Full Information with
Constant Noise we showed that this information is not criti-
cal and the same regret bound can be achieved without this
information. The following theorem states that in the Full
Information with Variable Noise, a learner cannot achieve
sub-linear regret without observing the noise.

Theorem 11 Fix an algorithm for the Full Information
with Variable Noise model under the uniform marginal dis-
tribution and assume that in each round t the learner does
not observes the noise parameters (ε1,t, ..., εK,t). Then,
there exist a sequence of loss vectors ~̀1, ..., ~̀T such that

Regret(T ) ≥ 1

8
T

The idea behind the proof is to use stochastic adversarial
strategy for loss assignment such that one action is signifi-
cantly better than the other, but after applying noise on both,
they look identical to the learner.

proof sketch We prove the theorem for the case of K = 2.
Assume that initially the adversary picks the best action
uniformly. Let i? ∈ {1, 2} be a random variable denoting
the best action and j = 3− i? denote the worse action. On
round t, after observing the noise parameters p1,t and p2,t,
the adversary selects the losses as follow:

1. For the best action i?, the loss is drawn at every round
independently from a Bernoulli r.v. with parameter
1/4.

2. For the worse action j: if pj,t < 1/4 then the loss is
`j,t = 0, otherwise the loss is `j,t = 1.

For the learner, observing the feedback ci,t = `i,t ⊕ ri,t,
the loss of each action is a Bernoulli random variable. A
simple calculation of the expected value of the observed
feedback, where the expectation is taken over the draw of
εi,t ∼ U(0, 1), the draw Ri,t ∼ B(

1−εi,t
2 ) and the draw of

the losses `i,t, yields that both actions will have the same
probability of 1, namely 3/8, and therefore indistinguish-
able by the learner.

This clearly implies that the learner cannot distinguish be-
tween the two actions, and therefore, in expectation, half the
time it will select the worse action. The best action has an
expected loss of T4 while the worse action has an expected
loss of T2 . This implies that the expected regret would be at
least T8 . �

5. Bandit Models
In this section we study bandit models, where the learner
observes only the noisy feedback for the action selected. In
our notation, the learner selects It ∼ qt and observers only
the feedback cIt,t.

5.1. Bandit with Constant Noise Model

5.1.1. ALGORITHM

Using our conclusion from the Full Information with Con-
stant Noise setting, we present algorithm that do not use
the noise parameter ε. Clearly, this establish upper bound
for both settings: the known noise setting and the unknown
noise setting.

Theorem 12 Let ε ∈ [0, 1] and denote p = 1−ε
2 . Then,

running Exponential Weights Scheme under the Bandit with
Constant Noise setting with the following loss estimate

EST (i, ~qt, It, cI,t) =
1

qi,t
ci,t1{i=It} = ˆ̀

i,t

and η =
√

lnK
TK , guarantees

Regret(T ) ≤ 2

ε

√
TK lnK

The proof of Theorem 12 is similar in spirit to the proof of
Theorem 4.

5.1.2. IMPOSSIBILITY RESULT

In this section we present a lower bound that matches our
upper bound, up to a constant factor.
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Theorem 13 Consider the Bandit with Constant Noise set-
ting with noise parameter ε ∈ (0, 1). Then, for any learner
algorithm there exists a sequence of loss vectors ~̀1, ..., ~̀T
and a constant γ > 0 such that

Regret(T ) ≥ min{
√
γ

16

1

ε

√
TK,

1

16
T}

The proof of the above theorem follows the methodology for
lower bounds for multi-arm bandit problems, we follow here
the methodology proposed in (Slivkins, 2017) and adapt it
to our special setting.

5.2. Bandit with Variable Noise Model

In this section we investigate the Bandit with Variable Noise
settings. We concentrate on the case where the marginal
distribution ofD for each action i is the uniform distribution
on [0, 1].

5.2.1. ALGORITHM

We use the same idea as in the Full Information settings
and ignore “too-noisy” rounds where the noise is close to 1

2 .
More formally, we will run the Exponential Weights Scheme
with the following estimator:

ˆ̀
i,t = EST (i, ~qt, It, cI,t)

=
1

qi,t

ci,t − pi,t
1− 2pi,t

1{pi,t≤ 1−θ
2 }

1{It=i}

where θ is a parameter. We call the algorithm resulting
from using the above estimator in the Exponential Weights
Scheme as the Exp3-Threshold. The following theorem
bounds the regret of the algorithm.

Theorem 14 Let D be the noise distribution, such that for
each action i the marginal distribution εi,t is distributed
U(0, 1) (but not necessarily independent for different ac-
tions). The Exp3-Threshold algorithm with the parameters

η =
(lnK)2/3

K1/3T 2/3
and θ =

K1/3(lnK)1/3

T 1/3

has, in the Bandit with Variable Noise, regret of at most

Regret(T ) ≤ 3T 2/3K1/3(lnK)1/3

5.2.2. IMPOSSIBILITY RESULT

We show a lower bound of Ω((TK)2/3). The proof is sim-
ilar to the proof of Theorem 7 for the Full Information
settings. For the lower bound we use the distribution D′ we
used in theorem 7: we first draw εt ∼ U(0, 1) and for every
i we set εi,t = εt.

Theorem 15 For any algorithm in the Bandit with Variable
Noise setting with D′ as the noise parameters distribution,

there exist a series of loss vectors ~̀1, ..., ~̀T and a constant
γ > 0 such that

Regret(T ) ≥ γ

2
T 2/3K1/3

5.3. Importance of knowing the Noise

In Theorem 11 we showed that in the Full Information with
Variable Noise setting, a learner cannot guarantee a sub-
linear regret bound without observing the noise drawn for
each action pi,t at each round t. Since in the Bandit with
Variable Noise setting the feedback is a restriction of the
feedback in the Full Information with Variable Noise setting,
the same lower bound still holds, as stated in the following
corollary.

Corollary 16 Fix an algorithm for the Bandit with Vari-
able Noise model under the uniform marginal distribution
and assume that in each round t the learner does not ob-
serves the noise parameters (ε1,t, ..., εK,t), then there exist
a sequence of loss vectors ~̀1, ..., ~̀T such that

Regret(T ) = Ω(T )

6. Discussion
In this paper we investigated adversarial online learning
problems where the feedback is corrupted by random noise.
We presented and study different noise systems that apply to
the full information feedback and the bandit feedback. We
provided efficient algorithms, as well as upper and lower
bounds on the regret.

This work can be extended in many ways. In our settings
we apply the noise system on the classic full information
and bandit. Similar noise system can be applied on inter-
mediate models such as the one proposed by Mannor &
Shamir (2011); Alon et al. (2017). A different corrupting
settings can be consider too. For example, a settings in
which an adversary is corrupting the feedbacks under some
restrictions.
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