
A Polynomial Time MCMC Method for
Sampling from Continuous Determinantal Point Processes

Alireza Rezaei 1 Shayan Oveis Gharan 1

Abstract
We study the Gibbs sampling algorithm for dis-
crete and continuous k-determinantal point pro-
cesses. We show that in both cases, the spectral
gap of the chain is bounded by a polynomial of k
and it is independent of the size of the domain. As
an immediate corollary, we obtain sublinear time
algorithms for sampling from discrete k-DPPs
given access to polynomially many processors.

In the continuous setting, our result leads to the
first class of rigorously analyzed efficient algo-
rithms to generate random samples of continuous
k-DPPs. We achieve this by showing that the
Gibbs sampler for a large family of continuous k-
DPPs can be simulated efficiently when the spec-
trum is not concentrated on the top k eigenvalues.

1. Introduction
Determinantal Point Processes (DPPs) are a family of prob-
ability distributions that were first introduced in quantum
physics to model particles with repulsive interactions (Mac-
chi, 1975). They have been extensively studied by math-
ematicians, as they naturally appear in many contexts in-
cluding non-intersecting random walks (Johansson, 2002),
random spanning trees (Burton & Pemantle, 1993), eigen-
values of random matrices (Mehta & Gaudin, 1960; Ginibre,
1965), and zero-set of Gaussian analytic functions (Peres &
Virág, 2005). Studying DPPs in machine learning was initi-
ated by the work of (Kulesza et al., 2012) who exploited the
repulsive behavior of them to model diversity in real world
tasks. Following this insight, DPPs have found numerous
applications in machine learning, including document sum-
marization, building news story timelines, tweet generation

*Equal contribution 1Paul G. Allen School of Com-
puter Science and Engineering, University of Washington,
Seattle, WA, USA. Correspondence to: Alireza Rezaei
<arezaei@cs.washington.edu>, Shayan Oveis Gharan
<shayan@cs.washington.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

(Kulesza et al., 2012; Chao et al., 2015; Yao et al., 2016;
Gillenwater et al., 2012), video summarization, pose esti-
mation, and image search (Kulesza et al., 2012; Kulesza
& Taskar, 2010; Gong et al., 2014; Mirzasoleiman et al.,
2017).

Formally, let L ∈ Rn×n be a positive semi-definite (PSD)
matrix. Given a set Ω of size n, matrix L defines a probabil-
ity distribution over the set of subsets of Ω which is known
as a discrete DPP, and is characterized as follows: Letting π
denote the DPP, for every subset S ⊆ Ω, we have

π(S) ∝ det(LS) =
det(LS)∑

T⊆[n] det(LT)
,

where LS is the principal submatrix of L indexed by the
corresponding elements of set S. In this setting, matrix L is
called the kernel of the DPP and Ω is known as the domain,
i.e. we say π is a DPP on domain [n] defined by kernel L.
For an integer k ≤ n, a k-DPP defined by L is the restriction
of π to subsets of Ω of size k. k-DPPs are useful when the
size of the desired diverse set that we aim to select is known
in advance.

DPPs and k-DPP have been also studied on continuous
spaces. Continuous DPPs can be defined by extending the
above definition by considering a subset Ω ⊆ Rd as the
domain and letting the kernel be a PSD integral operator
L : L2(Ω)→ L2(Ω) (with some additional constraints, see
subsection 2.1 for more details). In the other words, the
continuous DPP defined by L is a probability distribution
on the finite subsets of Ω whose PDF function, denoted
by f , is given by the following for any integer k and any
{x1, . . . , xk} ⊂ Ω:

f({x1, . . . , xk}) ∝ det
L

(x1, . . . , xk),

where the detL notation indicates the determinant of
the k by k matrix formed by L(a, b) values for a, b ∈
{x1, . . . , xk}. Similar to the discrete case, the continuous
k-DPPs are defined by restricting DPPs. These distributions
have recently gained more attention in ML as in many appli-
cations of DPPs, the domain is naturally a continuous space;
in particular, such applications arise in learning parameters
of generative mixture models (Petralia et al., 2012; Kwok

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

& Adams, 2012; Hafiz Affandi et al., 2013), and tuning
hyper-parameters of neural networks (Dodge et al., 2017);
also, see (Lavancier et al., 2015) for their applications in
statistics and (Biscio & Lavancier, 2016) for the connections
to repulsive systems.

The wide range of applications of DPPs motivates designing
efficient learning and inference primitives for them. In the
discrete setting, efficient algorithms have been discovered
for sampling (Hough et al., 2006; Li et al., 2015; Desh-
pande & Rademacher, 2010; Anari et al., 2016), marginal-
ization (Borodin & Rains, 2005), conditioning (Kulesza
et al., 2012), and many other inference tasks. On the other
hand, in the continuous domain, despite previous efforts
(Scardicchio et al., 2009; Lavancier et al., 2012; Hafiz Af-
fandi et al., 2013; Hennig & Garnett, 2016), there has been
much less success.

In this work we study sampling algorithms for continuous k-
DPPs. Note that, devising such algorithms in full generality
is not well-defined, since such an algorithm would depend
on how the input kernel is represented. Therefore, the main
question is that, in what settings the sampling can be done
efficiently. We show that, given a conditional sampling
oracle for a kernel L (defined in 1.1), one can simulate a
lazy random scan Gibbs sampler to generate samples from
the continuous k-DPP defined by L, efficiently. We also
prove that for several kernels of interest, one can construct
the conditional sampler efficiently.

1.1. Results

First, we formally define the Gibbs sampler chain that we
use for sampling from continuous k-DPPs 1. Let π be the
input k-DPP defined by a kernel L : Ω× Ω→ R for some
Ω ∈ Rd. If the current state of the chain is {x1, . . . , xk} ⊂
Ω, it evolves as follows: It stays at the current state with
probability half. Otherwise, A point xi ∈ {x1, . . . , xk}
is chosen uniformly at random, and is replaced by y ∈ Ω
sampled from the conditional distribution whose PDF, f , is
defined by

f(y) ∝ det
L

(x1, . . . , xi−1, y, xi+1, . . . , xk).

Our main contribution is that the above-defined Gibbs sam-
pler mixes rapidly in a time which is only a function of
k, in both discrete and continuous settings. Before stating
the results, we need a few definitions. For two probability
distributions µ, π which are defined on the same space, we
use dTV(π, µ) to denote their total variation distance, that
is

dTV(π, µ) = sup
A
|µ(A)− π(A)|

where A ranges over all events. Moreover, for a Markov

1 The analogous chain can be defined for discrete k-DPPs

chain started from a distribution µ0 and for any ε > 0, we
let τµ0(ε) denote the ε-mixing time of the chain defined by

τµ0(ε) = min{t | dTV(µt, π) ≤ ε},

where µt is the distribution of the chain after t steps. More-
over, an ε-approximate sample from a distribution π refers to
a random sample from a distribution µ with dTV(µ, π) ≤ ε.

We prove the following bound on the mixing time of the
Gibbs sampler for continuous k-DPPs and, its analogue for
discrete k-DPPs.

Theorem 1.1. If we run the Gibbs sampler for a k-DPP
π, starting from an arbitrary distribution µ0, then for any
ε > 0 we have

τµ0
(ε) ≤ O(k4) · log

varπ(
fµ0
fπ

)

ε

 .

In the above theorem, fπ and fµ0
refer to the PDFs for π

and µ0.

Applications for Discrete k-DPPs. In this case, to find a
proper starting state of the chain, we can use a the greedy
algorithm for determinant maximization which returns a
state (a subset of Ω of size k) S with π(S) ≥ 1

k! (Çivril
& Magdon-Ismail, 2009); starting from such state S, the
chain generates ε-approximate samples after Õ(k5) steps.
Moreover, for a k-DPP over n elements, one can note that
to simulate one step of the chain, it is enough to compute
the determinant of at most n k × k submatrices. Therefore,
using the Gibbs sampler, approximate samples from a k-
DPP can be generated in time O(n) · poly(k). This is not
an improvement over the currently known running times
for sequential algorithms. However, since the mixing time
is independent of n, it can lead to sublinear time sampling
algorithms in distributed models of computation. The fol-
lowing corollary is an immediate naive consequence of this
fact.

Corollary 1.2. Given access to nδ processors for some
δ > 0, an approximate sample of a k-DPP defined on
domain of size n can be generated in timeO(n1−δ)·poly(k).

On the other hand, for continuous k-DPPs, to turn the above
result into an efficient algorithm, finding a “good” starting
distribution µ which makes the log variance term in the
bound of Theorem 1.1 polynomially small is more elusive.
We also need to have an algorithm to simulate the Gibbs
sampler. To do both of these, we require the DPP kernel to
be presented to us by a conditional sampling oracle, defined
as follows.

Definition 1.1. For a kernel L : Ω× Ω → R, and a finite
subset S ⊂ Ω, we define the (S)-conditional distribution of

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

L to be a distribution on Ω, defined by the following PDF

f(x) ∝ det
L

(S ∪ {x}),

for any point x ∈ Ω. We denote this distribution by DL(S).
We say an algorithm is a CDL(i) oracle for an integer i, if
given any S ⊂ Ω (|S| = i), it returns a sample from the
DL(S).

It is straight-forward to see that taking a step of the
Gibbs sampler of the k-DPP defined by L from the
state x1, . . . , xk is equivalent to removing a point xi,
for some 1 ≤ i ≤ k, and generating a sample from
DL({x1, . . . , xi−1, xi+1, . . . , xk}). So simulating the
chain can be done by a CDL(k − 1) oracle call. We also
show these oracles are enough to find a starting distribution
which gives the following guarantee.

Theorem 1.3. Consider a continuous k-DPP π defined
by a kernel L. Given access to CDL(i) oracles for all
0 ≤ i ≤ k−1, we can find a distribution µ and simulate the
Gibbs sampler started at µ to get ε-approximate samples of
π in O(k5 log k

ε) steps.

Therefore, the task of sampling from a continuous k-DPP
boils down to have algorithms to sample from conditional
1-DPPs (DL(.) distributions), which is a much simpler prob-
lem.

Applications for Continuous k-DPPs To construct the
conditional sampling oracles, we use a simple rejection sam-
pler similar to the one suggested at (Lavancier et al., 2012),
with uniform distribution on the domain as the proposal dis-
tribution. Analyzing the rejection sampler and combining
that with Theorem 1.3, we get the following.

Theorem 1.4. Let L be a kernel on a bounded domain Ω,
and we have an oracle which can generate uniform samples
from Ω. For any integer k and any ε > 0, an ε-approximate
sample from the k-DPP defined by L can be generated by

O(k5 log
1

ε
) · M · vol(Ω)∑∞

i=k λi

oracle calls in expectation where λ0 ≥ λ1 ≥ · · · are eigen-
values of L and M = supx L(x, x).

For some of the widely used kernels such as a Gaussian
kernel defined by L(x, y) = exp((x− y)ᵀΣ−1(x− y), the
L(x, x) is a constant for all x and so tr(L) =

∫
Ω
L(x, x) ∝

vol(Ω) and the bound in the above theorem becomes pro-
portional to tr(L)∑∞

i=k λi
. Therefore in this setting, we get an

efficient algorithm for sampling from k-DPPs with “moder-
ately decaying” spectrum. We further analyze the running
time for Gaussian kernels defined on a sphere. The details
can be found in section 5.

1.2. Comparison with Previous Work

In general, two families of algorithms have been consid-
ered to generate samples from discrete DPPs: spectral algo-
rithms, and MCMC methods. Spectral algorithms are based
on the work of (Hough et al., 2006) which given the eigen-
decomposition of the kernel suggests a two-step sampling
procedure: Firstly, a set of eigen-vectors of the kernel is
generated from a probability distribution driven from the
eigenvalues. In the second step, a subset of points in the do-
main is sampled recursively based on selected eigen-vectors
in the previous step. Although, a natural generalization
of this scheme provides a theoretically correct and exact
sampling method for continuous DPPs, there are several
challenges to turn it into a practical algorithm:

1. A general continuous kernel does not have a finite
eigen-decomposition representation. As suggested by
(Lavancier et al., 2012; Hafiz Affandi et al., 2013), a
heuristic is to find a finite rank approximation of the
original kernel. (Hafiz Affandi et al., 2013) applies
Nyström method, and random Fourier feature trans-
form to find a low rank approximation of the kernel.
However, to the best of our knowledge, there is no
universal bound on the total variation distance of the
approximated kernel and true underlying DPP kernel.

2. Even given a proper low rank approximation of the ker-
nel with small error, implementing the second phase
of the algorithm is not tractable in general, as it re-
quires computationally integrating certain functionals
of the eigenvectors over a continuous space. To bypass
this, (Hafiz Affandi et al., 2013) suggests an analytical
approach which first computes a dual kernel by analyt-
ically integrating the functionals. Such a method can
only be employed if the eigenvectors of the approxi-
mated kernel are well-understood and integrable.

Another type of algorithms which give fast, and practical
sampling algorithms for discrete DPPs and k-DPPs are
MCMC based methods. In particular, it is shown in (Anari
et al., 2016) that the natural Metropolis-Hastings algorithm
for k-DPPs gives an efficient sampling method running in
time O(n)poly(k), where n is the size of the domain, and
it has been extended to an algorithm for sampling from dis-
crete DPPs in time Õ(n3) (Li et al., 2015; 2016). However,
to best of our knowledge, such an MCMC algorithm with a
provable guarantee is not known for the continuous setting;
in an attempt, (Hafiz Affandi et al., 2013) provides empirical
evidence that Gibbs sampling is an efficient algorithm to
generate samples from continuous k-DPPs in many cases.
However, they do not provide any rigorous justification.

It is also worth mentioning that (Hennig & Garnett, 2016)
claims to devise an algorithm to generate exact samples for

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

specific kernels (including Gaussian), yet a careful look at
their method would reveal a major flaw in their argument 2.

2. Background
Let Rd denote the d-dimensional euclidean space. For a
compact body Ω ⊂ Rd, we use vol(Ω) to denote its volume
(with respect to the standard Lebesgue measure). For a
(d−1)-dimensional body in Rd like an sphere, we use vol to
refer to the surface area. An integrable function f : Ω→ R
belongs to L2(Ω), if

∫
Ω
|f(x)|2dx < ∞. Also throughout

the paper, whenever we have a distribution it is defined with
respect to the standard Lebesgue measure on Rd, or the
corresponding product measures for Rd × Rd · · · × Rd.

2.1. Continuous k-DPPs

Let Ω ⊂ Rd be a closed set. A k-DPP on domain Ω is
defined by a continuous function L : Ω × Ω (a.k.a. ker-
nel) with the following properties: It is symmetric which
means L(x, y) = L(y, x) for any x, y ∈ Ω. Its corre-
sponding Hilbert-Schmidt operator defined by TL(f)(x) =∫

Ω
L(x, y)f(y) for any f ∈ `2(Ω), is a PSD operator, and

finally
∫

Ω

∫
Ω
|L(x, x)| <∞.

We only work with kernels with the aforementioned prop-
erties. Such a kernel generalizes finite PSD matrices in
many aspects. In particular, the classical Mercer’s theorem
implies that there is an orthonormal basis of eigen-functions
{ej}i∈N of L2(Ω) with non-negative eigenvalues {λi}i∈N
such that for any x, y ∈ Ω, L(x, y) =

∑∞
i=0 λiei(x)ei(y).

It is also follows from the continuity of L that for any
finite set of points x1, . . . , xk ∈ Ω, the k × k matrix
{L(xi, xj)}1≤i,j≤k is a PSD matrix. We use the notation
detL(x1, . . . , xk) to denote its determinant. Whenever, the
kernel is clear from the context, we may drop the subscript.

If π is a probability distribution, we use fπ to refer to the cor-
responding probability density function (PDF). Continuous
k-DPPs can be defined formally as follows.

Definition 2.1 (Continuous k-DPP). The continuous k-DPP
defined by kernelL on domain Ω is a probability distribution
π on subsets of Ω of size k with PDF function
fπ(x1, . . . , xk) ∝ detL(x1, . . . , xk)

We refer interested readers to (Hough et al., 2006) for more
on continuous DPPs.

2.2. Markov Chains and Mixing Time

A Markov chain on a measurable state space can be defined
similarly to that of on a finite space. In this section we give a

2The distribution that they consider as the conditional distribu-
tion of the k-DPP is in fact equivalent to our notion of conditional
distribution of the kernel (see Definition 1.1)

high level overview, and provide more details is provided in
the supplementary. LetM(S, P) be a Markov chain where
the Lebesgue measurable set S ⊂ Rd is the state space and
P : S × S → R+ is the transition probability kernel. So if
µ is the current distribution of the chain, the distribution of
the chain after one step is a probability distribution P (µ, .)
on S which is defined by

∀measurable B ⊂ S, P (µ,B) =

∫
S

∫
B

fµ(x)P (x, y)dxdy.

π is a stationary measure of the chain if P (π, .) = π(.).
ThenM is denoted by (S, P, π). The chain is reversible
if for any pair of states x, y ∈ S, π(dx)P (x, dy) =
π(dy)P (y, dx). It is easy to verify that the random scan
Gibbs sampler for a k-DPP is reversible and its stationary
measure is the corresponding k-DPP distribution. A chain
is also called lazy if at each step it stays at the current state
with probability at least half.

To bound the mixing time of the our Gibbs sampler and
prove , we analyze its Poincaré constant (a.k.a. spectral
gap).

Theorem 2.1 ((Kontoyiannis & Meyn, 2012)). For any re-
versible, lazy, π-irreducible Markov chainM, if the spectral
gap λ > 0, then starting the chain from any distribution µ
(which is absolutely continuous with respect to π), after t
steps we have

‖P t(µ, .)− π‖TV ≤
1

2
(1− λ)t

√
varπ

(
fµ
fπ

)
.

In the above, varπ(fµ/fπ) :=
∫
S(

fµ(x)
fπ(x))2fπ(x)dx.

Instead of directly bounding the spectral gap, we bound
the conductance of the chain and apply the well-known
Cheeger’s inequality. For any subset B, the conductance
of a set B is defined by φ(B) := Q(B,B)

π(B) where Q(B,B)

is known as the ergodic flow leaving B and is equal to
Q(B,B) =

∫
B

∫
B
fπ(x)P (x, y)dxdy. The conductance of

the chain is then defined by φ(M) = min0<π(B)≤ 1
2
φ(B).

Theorem 2.2 ((Lawler & Sokal, 1988)). For a chain M
defined on a general state space with spectral gap λ we
have φ(M)2

2 ≤ λ ≤ 2φ(M).

The analogues of the above results also hold on a discrete
domain, and we can use them to convert a lower bound on
the conductance to an upper bound bound on the mixing
time for a discrete k-DPP Gibbs sampler.

3. Gibbs Sampling for Discrete k-DPP
Let M = (S, P, π) be the Gibbs sampler for a discrete
k-DPP π defined on domain [n], that is the state space is

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

S =
(

[n]
k

)
and P denotes the transition probability ma-

trix. Recall that the conductance is defined by Φ(M) =

minS⊂S:π(S)≤ 1
2

Q(S,S)
π(S) , where for x, y ∈ Ω, Q(x, y) =

π(x)P (x, y) and Q(S, S) =
∑
x∈S,y/∈S Q(x, y). We prove

the following.

Theorem 3.1. LetM be the Gibbs sampler chain for an
arbitrary discrete k-DPP, then we have φ(M) & 1

k2 .

The proof of the above theorem follows an inductive ap-
proach similar to (Mihail, 1992) and (Anari et al., 2016)
which uses the properties of k-DPPs, and in particular their
negative correlation. Let S be a sample generated of π. Neg-
ative correlation says that for any arbitrary pair of elements
x, y ∈ Ω, we have

P(x ∈ S|y ∈ S) ≤ P(x ∈ S).

Here, due the page limit we only include a sketch of the
proof, and delegate the formal proof to the supplement.

Combining this theorem with the discrete versions of The-
orem 2.1 and Theorem 2.2 establishes our main result for
discrete k-DPPs and proves Theorem 1.1 for discrete k-
DPPs.

Proof Sketch. WLOG, suppose that Ω = [n] for some
integer n. Let S = Sn ∪ Sn where Sn and Sn denote the
subset of states which contain element n, do not contain n,
respectively. Also define πn and πn to be conditioning of π
to Sn and Sn, i.e. for any x ∈ Sn, πn(x) = π(x)

π(Sn) and for

any y ∈ Sn, πn(y) = π(y)
π(Sn) . It follows that πn, πn can be

identified with a (k − 1)-DPP, k-DPP supported on Sn,Sn
Now, fix a subset S ⊂ S with π(S) ≤ 1

2 . We need to show
Q(S, S) ≥ π(S)

Ck2 . Letting Sn = S ∩ Sn and Sn = S ∩ Sn,
we have

Q(S, S) = Q(Sn,Sn \ Sn) +Q(Sn,Sn \ Sn)

+Q(Sn,Sn \ Sn) +Q(Sn,Sn \ Sn).
(1)

To bound the contribution of the edges of (S, S) with both
endpoints in Sn or Sn we use induction; More precisely, we
induct on k+n and consider the implication of Theorem 3.1
for πn and πn. Then, we can use the induction hypothesis
to bound (Sn,Sn \ Sn) and Q(Sn,Sn \ Sn). 3. In order to
bound the edges across the cut, we use the negative corre-
lation property for k-DPPs and in particular the following
consequence of that appeared in (Anari et al., 2016).

Lemma 3.2. For any subset A ⊆ Sn,

πn(Nn(A)) ≥ πn(A).

3Note that the Gibbs chains defined for πn and πn induce
different transition probabilities than the restriction of the Gibbs
sampler for π on Sn and Sn. So the induction hypothesis cannot
be applied directly to bound these two terms.

Algorithm 1 Choosing a starting state

Input: CDL(i) oracles of L for 0 ≤ i ≤ k − 1.
Let S = ∅.
for i from 0 to k − 1 do

Use the CDL(i) oracle to generate a sample xi and add
xi to S.

end for
Return S.

In the above is the set of neighbors ofA in Sn, i.e. Nn(A) =
{y ∈ Sn | ∃x ∈ A : P (x, y) > 0}.

4. Gibbs Sampling for Continuous k-DPP
In this section we analyze the mixing time our Gibbs sam-
pler for continuous k-DPPs and prove Theorem 1.3. The
first step is to show that the analogous bound of Theorem 3.1
on conductance also holds for the Gibbs sampler for a con-
tinuous k-DPP. Throughout the section, we fix π to denote
the k-DPP defined by a kernel L : Ω× Ω→ R, where the
domain Ω is a closed subset of Rd.

Theorem 4.1. Let M be the Gibbs sampler for π, then
φ(M) & 1

k2 .

The main idea of the proof is to approximate the given con-
tinuous k-DPP by a sequence of discrete k-DPPs which are
obtained by discretizating the underlying domain, and apply
Theorem 3.1 on these approximated discrete kernels. The
key points that we use in the argument are: First, the bound
in Theorem 3.1 is independent of the size of the domain, so
we can afford to consider discrete k-DPPs with arbitrarily
large number of points, while maintaining the 1

k2 bound
on the conductance. Secondly, continuity of L implies that
the discrete k-DPPs in this sequence approach the given
continuous k-DPP distribution in the limit. Therefore, a
limiting argument would finish the proof of Theorem 4.1.
The details of the proof are provided in the supplement.

Having this bound on the conductance, we can apply Theo-
rem 2.2 to get λM & 1

k4 , where λM is the spectral gap of
M. Now, we can use Theorem 2.1 to deduce Theorem 1.1.
Next, we propose an algorithm that given access to condi-
tional samplers of L, finds the proper starting distributions,
and thus we conclude Theorem 1.3.

4.1. Finding a Warm Start

In this subsection, we are assuming we have access to
CDL(i) oracles of L for any 0 ≤ i ≤ k − 1. To find a
starting state, we use Algorithm 1 which is the continuous
version of a greedy algorithm analyzed at (Deshpande &
Varadarajan, 2007) for approximate volume sampling. Al-
gorithm 1 is a randomized algorithm which returns a single
state of M, i.e. a subset of k-points of the domain. We

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

Algorithm 2 An Algorithm for Conditional Sampling

Input: A set of k points x1, . . . , xk ∈ Ω.
Output: A sample from DL({x1, . . . , xk}).
Let M be a number such that M > supz∈C L(z, z).
repeat

Draw a uniform sample x from Ω and a uniform num-
ber u from [0, 1].
If u ≤ detL(x1,...,xk,x)

M ·detL(x1,...,xk) , accept and return x.
until A sample is accepted.

can prove the following guarantee for the distribution of the
output of the algorithm.
Lemma 4.2. Let µ0 be the probability distribution of the
output of Algorithm 1. Also let fµ0

and fπ denote the PDF
for µ0 and π. Then for any {x1, . . . , xk} ⊂ Ω,

fµ0
({x1, . . . , xk}) ≤ (k!)2fπ({x1, . . . , xk}).

The proof essentially follows from a similar argument in
(Deshpande & Varadarajan, 2007). We provide it in the
supplement. We use this lemma to bound varπ(

fµ0
fπ

) which
appears in our bound for the mixing time. In particular, the
lemma implies

varπ(
fµ0

fπ
) = Eπ

(
fµ0

(x)

fπ(x)

)2

− 1 ≤ (k!)4 · Eπ1 = (k!)4.

Combining this bound with Theorem 1.1 yields the proof of
Theorem 1.3.

5. A Simple Conditional Sampler
Theorem 1.3 reduces sampling from the continuous k-DPPs
to having access to conditional samplers CDL(i) (for 0 ≤
i ≤ k − 1). To implement these conditional samplers, we
consider a simple rejection sampler described in Algorithm
2. Let Ω be the domain of the k-DPP. The algorithm assumes
that Ω is bounded and we have an oracle to generate uniform
samples from Ω.

Correctness of the algorithm. We want to show that Al-
gorithm 2 generate a sample of DL({x1, . . . , xk}). Let
Φ denote the distribution of the output and fφ be its
PDF. It suffices to show that for any z ∈ Ω, fφ(z) ∝
detL(x1, . . . , xk, z). By the definition of the algorithm, it is
enough to verify detL(x1,...,xk,z)

M ·detL(x1,...,xk) ≤ 1 which follows from
detL(x1,...,xk,z)
detL(x1,...,xk) ≤ L(z, z) and M > L(z, z). The former

holds, since if we write the PSD matrix given by restricting
L to x1, . . . , xk, z as the inner product of a set of k + 1
vectors, then by definition L(z, z) is the norm squared of
the vector corresponding to z and the ratio detL(x1,...,xk,z)

detL(x1,...,xk)

is equal to the squared of distance of that vector from the
plane spanned by vectors corresponding to x1, x2, . . . , xk.

Therefore, it remains to analyze the running time,

5.1. Analyzing the Running Time

Let T be a random variable which indicates the expected
number of uniform samples generated from Ω until the
algorithm terminates. Our goal is to bound E[T]. As we saw
in the preliminaries, for the kernels that we are considering,
the associated integral operator has a discrete spectrum of
eigenvalues. So, let λ0 ≥ λ1 ≥ . . . be eigenvalues of L.
The following relates E[T] to the eigenvalues.
Lemma 5.1. For any set of points x1, . . . , xk as the input
of Algorithm 2, we have

E[T] ≤ M · vol(Ω)∑∞
i=k λi

.

Proof. Let µ be the uniform distribution on Ω and x =
{x1, . . . , xk}. We also use x+ z to denote {x1, . . . , xk, z}.
The probability that the algorithm accepts and outputs the
sample generated in the current step is

P z∼µ
u∼[0,1]

[
u ≤ detL(x + z)

M · detL(x)

]
= Ez∼µ

detL(x + z)

M · detL(x)
.

So T forms a geometric distribution and E [T] =
M ·detL(x)

Ey∼µ detL(x+y) . Since x is fixed, it is enough to show

Ey∼µ detL(x+y)
detL(x) ≥

∑∞
i=k λi(L)

vol(Ω) to prove the lemma. By
Mercer theorem, for any x ∈ Ω, there exists a function
(feature map) fx : Ω → R such that for any y ∈ Ω,
L(x, y) = 〈fx, fy〉. Now, for any y ∈ Ω, define E(y) =
Π〈fx1 ,...,fxk 〉⊥(fy), be the projection of fy onto the space
orthogonal to functions corresponding to x1, . . . , xk. Then,
by definition detL(x+y)

detL(x) = ‖E(y)‖2, where recall that
x = {x1, . . . , xk}. It implies

Ey∼µ
detL(x + y)

detL(x)
= Ey∼µ ‖E(y)‖2 =

tr(E)

vol(Ω)
(2)

for the kernel E : Ω × Ω → R defined by E(x, y) =
〈E(x), E(y)〉. Now, note that, tr(E) =

∑∞
i=0 λi(E). More-

over, it follows from the definition of E that, L − E is
associated to an PSD operator of rank at most k. So
tr(E) ≥

∑∞
j=k λj(L) which completes the proof.

Using this algorithm as CDL(.) oracles for L and combining
that with Theorem 1.3 immediately implies Theorem 1.4.
Next, we analyze the bound of Lemma 5.1 more precisely
for special kernels defined on a sphere, and show it gives an
efficient sampling algorithm for k-DPPs defined by spheri-
cal Gaussian.

5.2. Complexity of Algorithm 2 for Spherical Kernels

Let Sd−1 denote the (d− 1)-dimensional unit sphere, and
let f : [−1, 1] → R be a continuous function. Consider a

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

kernel Kf : Sd−1 × Sd−1 → R which can be defined by
Kf (x, y) = f(〈x, y〉) for any x, y ∈ Sd−1. For example,
consider a spherical Gaussian kernel (a.k.a RBF kernel)
defined by G(x, y) = exp(−‖x−y‖

2

2σ2) for some scalar σ. In
our setting, it is generated by taking f(u) = exp((−1 +
2u)/σ2). As an another example, consider the polynomial
kernel which is defined by P (x, y) = (1 + 〈x, y〉)b, where
b is an integer known as the degree of the kernel. It is
obtained by letting f(u) = (1 + u)b. The eigenvalues and
eigen-functions of such kernels has been studied before, e.g.
see (Minh et al., 2006).
Theorem 5.2 ((Minh et al., 2006)). Let K be a kernel de-
fined on Sd−1 × Sd−1 defined as above. Then for any ` ≥ 0,
the associated operator to K has an eigenvalue λ` with
multiplicity N(d, `) = (2`+d−2)(`+d−3)!

`!(d−2)! given by

λ` = vol(Sd−2)

1∫
−1

f(τ)P`(d; τ)(1− τ2)
d−3
2 dτ

where P`(; .) is the Legendre polynomial of degree ` in
dimension d.

The above integral formula for eigenvalues turns out to be
computable or easy to bound for several kernels. In particu-
lar, (Minh et al., 2006) gives explicit formula for spherical
Gaussians. The following lemma states its implication for
bounding the complexity of Algorithm 2. The proof is pro-
vided in the supplement. Note that generating a uniform
sample from a d-dimensional sphere can be done in O(d)
time, so combining the lemma with Theorem 1.4 yields an
efficient algorithm for sampling from spherical Gaussians
on a sphere. Recall that T denotes the number of samples
generated from C in a run of Algorithm 2, we prove the
following.
Lemma 5.3. Let Gσ be a spherical Gaussian kernel on the
unit sphere given by Gσ(x, y) = exp(−‖x− y‖2 /2σ2) for
x, y ∈ Sd−1. Also let k ≤ exp(d4), and set t to be the
smallest integer that d

t

t! ≥ 2k . Then for any set of k points
as the input of Algorithm 2, we have E[T] ≤ e

2
σ2 · σ2t · t!.

Moreover, if σ . 1√
log k

, then E[T] = O(1).

Note that a direct consequence of the above lemma is that
in the case k = poly(d) and σ = Ω(1), the running time of
the algorithm is polynomial in terms of σ, d.

6. Experimental Results
We implement our algorithm and evaluate the mixing time
for various kernels and parameters to empirically confirm
our results. In particular, we consider the two family of
kernels:

1. Spherical Gaussian given by L(x, y) =

Algorithm 3 Gibbs Sampler for Continuous k-DPPs

Input: A kernel L : Ω × Ω → R along with an oracle
which generates uniform samples form Ω.
Let S = ∅.
Let M be a number such that M > supz∈Ω L(z, z)4 .
for i from 0 to k − 1 do

repeat
Draw a uniform sample x from Ω and a uniform
number u from [0, 1].
If u ≤ detL(S∪x)

M ·detL(S) , accept x and set S = S ∪ x.
until A sample is accepted

end for
Let τ = Õ(k5 log 1

ε).
for τ iterations do

Let S = {x1, . . . , xk} and pick an uniform random
integer 0 ≤ i ≤ k − 1. Set S = S − xi
repeat

Draw a uniform sample x from Ω and a uniform
number u from [0, 1].
If u ≤ detL(S∪x)

M ·detL(S) , accept x and set S = S ∪ x.
until A sample is accepted

end for
Return S.

exp(−‖x− y‖2 /σ2) for parameter σ. In all
experiments, we let the domain be the d-dimensional
unit ball.

2. Polynomial kernel defined by K(x, y) = (1 + 〈x, y〉)b
for some parameter bwhich is also known as the degree
of the kernel. In our experiments, we let the domain be
the unit hypercube in Rd.

Simulation Setup: For a fixed kernel, we use the rejection
sampler described in Algorithm 2 as the conditional sampler
of the kernel. To do the sampling from the continuous k-
DPP defined by the kernel, we first run Algorithm 1 to find
a starting state. Then we start simulating the chain; At each
step, one of the k current points is chosen uniformly and
replaced by the point returned by the rejection sampler. The
pseudo-code of the method is presented in Algorithm 3.
Finally, to evaluate the mixing time, we use the following
criteria.

Empirical Mixing: We employ the multivariate extension
of the Gelman and Rubin multiple sequence method (Brooks
& Gelman, 1998). To be consistent with that, instead of
k-subsets, we work with k-tuples as the state space by ran-
domly labeling points in each step. So each state can be
represented by a k × d matrix. We run m = 10 copies
of our algorithm independently. We consider each column
separately as the projection of the state onto a coordinate of
the ambient space, and at each step compute its associated

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

multivariate Potential Scale Reduction Factor (PSRF) over
these m runs. We set the first time that the average of these
d PSRF values drops below α = 1.1, as our empirical mea-
sure for the mixing time. For any fixed kernel, we repeat this
process 10 times and report the average as the (empirical)
mixing time.

Experiments: We use the above criteria to evaluate the
empirical mixing time of the chain for the Gaussian and
polynomial kernels, defined on the unit ball and unit hyper-
cube, respectively. The results are demonstrated in Figure 1
and Figure 2. In the first experiment, we investigate the
change of mixing time with respect to size parameter k; k
varies from 5 to 40, and other parameters are fixed, d = 40,
σ = 1, b = 5. As stated, our theoretical results guarantees
an O(k4) dependency. However, our experiments demon-
strated in Figure 1, shows a much smaller bound (roughly
O(k2)).

In the second experiment, we fix number of points k = 10,
and values σ = 1 (b = 5) for the Gaussian (Polynomial)
kernel, and vary the dimension from 5 to 50. As illustrated
in Figure 2, the mixing time is quite unchanged with small
fluctuations which corroborates independence of the mixing
time from these parameters.

Finally, we look at the impact of b and σ on the mixing
time. As shown in Figure 2, for fixed values of k = 10 and
d = 40, the change in mixing time with respect to changes
in σ and b seems negligible, as expected by our theoretical
findings.

5 10 15 20 25 30 35 40

k

0

200

400

600

800

1000

1200

1400

1600

m
ix
in
g

y= x2

Gaussian

Polynomial

Figure 1. Empirical mixing time for different values of k while
dimension and other parameters are fixed (d = 40, σ = 1 and
b = 5)

.

7. Conclusion and Future Directions
We studied a Gibbs sampling scheme for sampling from
continuous and discrete k-DPPs, and proved that the mixing
time is only a function k. In the discrete case, this nat-
urally leads to sublinear time algorithms for sampling in
distributed models of computation. It is an interesting open
question to extend these ideas to get efficient distributed
algorithms for sampling from DPPs, as well.

On the other hand for continuous k-DPP, in order to get
an efficient algorithm and simulate the chain, we need to
generate samples from 1-conditional distributions associated
to the kernel. To do that, we analyzed a simple rejection
sampler, and show that when the spectrum of the kernel is
not concentrated on the k largest eigenvalues, it is efficient.
However, it remains an open question to design algorithms
to efficiently simulate the chain for larger classes of kernels.

10 20 30 40 50

dim

100

150

200

250

300

m
ix
in
g

Gaussian

Polynomial

4 5 6 7 8 9 10

sigma

100

150

200

250

300

m
ix
in
g

Gaussian

0 2 4 6 8 10

b

100

150

200

250

300

m
ix
in
g

Polynomial

Figure 2. Plots of the empirical mixing time for a fixed k and
varying σ (middle plot), b (bottom plot), and d (top plot).

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

Acknowledgments
The authors are supported by the NSF grant CCF-1552097
and ONR-YIP grant N00014-17-1-2429. Part of this work
was done while the authors were visiting the Simons Insti-
tute for the Theory of Computing.

References
Anari, N., Gharan, S. O., and Rezaei, A. Monte carlo

markov chain algorithms for sampling strongly rayleigh
distributions and determinantal point processes. In Con-
ference on Learning Theory, pp. 103–115, 2016.

Biscio, C. A. N. and Lavancier, F. Quantifying repulsiveness
of determinantal point processes. Bernoulli, 22(4):2001–
2028, 11 2016. URL https://doi.org/10.3150/
15-BEJ718.

Borodin, A. and Rains, E. M. Eynard–mehta theorem, schur
process, and their pfaffian analogs. Journal of statistical
physics, 121(3):291–317, 2005.

Brooks, S. P. and Gelman, A. General methods for moni-
toring convergence of iterative simulations. Journal of
computational and graphical statistics, 7(4):434–455,
1998.

Burton, R. and Pemantle, R. Local characteristics, entropy
and limit theorems for spanning trees and domino tilings
via transfer-impedances. The Annals of Probability, pp.
1329–1371, 1993.

Chao, W.-L., Gong, B., Grauman, K., and Sha, F. Large-
margin determinantal point processes. In UAI, pp. 191–
200, 2015.

Çivril, A. and Magdon-Ismail, M. On selecting a maxi-
mum volume sub-matrix of a matrix and related problems.
Theoretical Computer Science, 410(47-49):4801–4811,
2009.

Deshpande, A. and Rademacher, L. Efficient volume sam-
pling for row/column subset selection. In Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE
Symposium on, pp. 329–338. IEEE, 2010.

Deshpande, A. and Varadarajan, K. Sampling-based di-
mension reduction for subspace approximation. In Pro-
ceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pp. 641–650. ACM, 2007.

Dodge, J., Jamieson, K., and Smith, N. A. Open loop hyper-
parameter optimization and determinantal point processes.
arXiv preprint arXiv:1706.01566, 2017.

Gillenwater, J., Kulesza, A., and Taskar, B. Discovering
diverse and salient threads in document collections. In

Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computa-
tional Natural Language Learning, pp. 710–720. Associ-
ation for Computational Linguistics, 2012.

Ginibre, J. Statistical ensembles of complex, quaternion,
and real matrices. Journal of Mathematical Physics,
6(3):440–449, 1965. URL https://doi.org/10.
1063/1.1704292.

Gong, B., Chao, W.-L., Grauman, K., and Sha, F. Diverse
sequential subset selection for supervised video summa-
rization. In Advances in Neural Information Processing
Systems, pp. 2069–2077, 2014.

Hafiz Affandi, R., Fox, E. B., and Taskar, B. Approximate
inference in continuous determinantal point processes.
arXiv preprint arXiv:1311.2971, 2013.

Hennig, P. and Garnett, R. Exact sampling from determi-
nantal point processes. arXiv preprint arXiv:1609.06840,
2016.

Hough, J. B., Krishnapur, M., Peres, Y., Virág, B., et al.
Determinantal processes and independence. Probability
surveys, 3:206–229, 2006.

Johansson, K. Non-intersecting paths, random tilings and
random matrices. Probability theory and related fields,
123(2):225–280, 2002.

Kontoyiannis, I. and Meyn, S. P. Geometric ergodicity
and the spectral gap of non-reversible markov chains.
Probability Theory and Related Fields, pp. 1–13, 2012.

Kulesza, A. and Taskar, B. Structured determinantal point
processes. In Advances in neural information processing
systems, pp. 1171–1179, 2010.

Kulesza, A., Taskar, B., et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends R©
in Machine Learning, 5(2–3):123–286, 2012.

Kwok, J. T. and Adams, R. P. Priors for diversity in gen-
erative latent variable models. In Advances in Neural
Information Processing Systems, pp. 2996–3004, 2012.

Lavancier, F., Møller, J., and Rubak, E. H. Statistical aspects
of determinantal point processes. Technical report, De-
partment of Mathematical Sciences, Aalborg University,
2012.

Lavancier, F., Møller, J., and Rubak, E. Determinantal point
process models and statistical inference. Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology), 77(4):853–877, 2015. ISSN 1467-9868. URL
http://dx.doi.org/10.1111/rssb.12096.

A Polynomial Time MCMC Method for Sampling from Continuous DPPs

Lawler, G. F. and Sokal, A. D. Bounds on the l2 spectrum for
markov chains and markov processes: a generalization
of cheeger’s inequality. Transactions of the American
mathematical society, 309(2):557–580, 1988.

Li, C., Jegelka, S., and Sra, S. Efficient sampling
for k-determinantal point processes. arXiv preprint
arXiv:1509.01618, 2015.

Li, C., Jegelka, S., and Sra, S. Fast sampling for strongly
rayleigh measures with application to determinantal point
processes. arXiv preprint arXiv:1607.03559, 2016.

Macchi, O. The coincidence approach to stochastic point
processes. Advances in Applied Probability, 7(1):83–122,
1975.

Mehta, M. L. and Gaudin, M. On the density of eigenvalues
of a random matrix. Nuclear Physics, 18:420–427, 1960.

Mihail, M. On the expansion of combinatorial polytopes. In
International Symposium on Mathematical Foundations
of Computer Science, pp. 37–49. Springer, 1992.

Minh, H. Q., Niyogi, P., and Yao, Y. Mercer’s theorem,
feature maps, and smoothing. In International Confer-
ence on Computational Learning Theory, pp. 154–168.
Springer, 2006.

Mirzasoleiman, B., Jegelka, S., and Krause, A. Stream-
ing non-monotone submodular maximization: Person-
alized video summarization on the fly. arXiv preprint
arXiv:1706.03583, 2017.

Peres, Y. and Virág, B. Zeros of the iid gaussian power
series: a conformally invariant determinantal process.
Acta Mathematica, 194(1):1–35, 2005.

Petralia, F., Rao, V., and Dunson, D. B. Repulsive mixtures.
In Advances in Neural Information Processing Systems,
pp. 1889–1897, 2012.

Scardicchio, A., Zachary, C. E., and Torquato, S. Statisti-
cal properties of determinantal point processes in high-
dimensional euclidean spaces. Physical Review E, 79(4):
041108, 2009.

Yao, J.-g., Fan, F., Zhao, W. X., Wan, X., Chang, E. Y., and
Xiao, J. Tweet timeline generation with determinantal
point processes. In AAAI, pp. 3080–3086, 2016.

