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Abstract
In many finite horizon episodic reinforcement
learning (RL) settings, it is desirable to optimize
for the undiscounted return – in settings like Atari,
for instance, the goal is to collect the most points
while staying alive in the long run. Yet, it may be
difficult (or even intractable) mathematically to
learn with this target. As such, temporal discount-
ing is often applied to optimize over a shorter ef-
fective planning horizon. This comes at the risk of
potentially biasing the optimization target away
from the undiscounted goal. In settings where
this bias is unacceptable – where the system must
optimize for longer horizons at higher discounts
– the target of the value function approximator
may increase in variance leading to difficulties
in learning. We present an extension of temporal
difference (TD) learning, which we call TD(∆),
that breaks down a value function into a series
of components based on the differences between
value functions with smaller discount factors. The
separation of a longer horizon value function into
these components has useful properties in scalabil-
ity and performance. We discuss these properties
and show theoretic and empirical improvements
over standard TD learning in certain settings.

1. Introduction
The goal of reinforcement learning (RL) algorithms is to
learn a policy that optimizes the cumulative reward (return)
provided by the environment. A discount factor 0 ≤ γ < 1
can be used to optimize an exponentially decreasing func-
tion of the future return. Discounting is often used as a
biased proxy for optimizing the cumulative reward to re-
duce variance and make use of convenient theoretical con-
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vergence properties, making learning more efficient and
stable (Bertsekas & Tsitsiklis, 1995; Prokhorov & Wunsch,
1997; Even-Dar & Mansour, 2003). However, in many of
the complex tasks used for evaluating current state-of-the-art
reinforcement learning systems (Mnih et al., 2013; Ope-
nAI, 2018), it is more desirable to optimize for performance
over long horizons. The optimal choice of discount factor,
which balances asymptotic policy performance with learn-
ing ability, is often difficult, and solutions have ranged from
scheduled curricula (OpenAI, 2018; Prokhorov & Wunsch,
1997; François-Lavet et al., 2015) to meta-gradient learning
of the discount factor (Xu et al., 2018).

OpenAI (2018), for example, start with a small discount
factor and gradually increase it to bootstrap the learning pro-
cess. Rather than explicitly tackling the problem of discount
selection, we make the observation that for any arbitrary
discount factor, the discounted value function already en-
compasses all smaller timescales (discounts). This simple
observation allows us to derive a novel method of generat-
ing separable value functions. That is, we can separate the
value function into a number of partial estimators, which
we call delta estimators, which approximate the difference
Wz = Vγz − Vγz−1

between value functions. Importantly,
each delta estimators is learnable by itself, because it sat-
isfies a Bellman-like equation based on the W s of shorter
horizons. Thus, these delta estimators can then be summed
to yield the same discounted value function, and any subset
of estimators from the series of smaller γz values. The use
of difference methods (the delta between two value func-
tions at different time scales) leads us to call our method
TD(∆).

The separable nature of the full TD(∆) estimator allows for
each component to be learned in a way that is optimal for
that part of the overall value function. This means that, for
example, the learning rate (and similarly other parameters)
can be adjusted for each component, yielding overall faster
convergence. Moreover, the components corresponding to
smaller effective horizons can converge faster, bootstrapping
larger horizon components (at the risk of some bias). Our
method provides a simple drop-in way to separate value
functions in any TD-like algorithm to increase performance
in a variety of settings, particularly in MDPs with dense
rewards.
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We provide an intuitive method for setting intermediary γ
values which yields performance gains, in most cases, with-
out additional tuning. Yet, we also show that this method
affords the option of further fine-tuning for further perfor-
mance improvement and note that our method is compatible
with adaptive γ selection methods (Xu et al., 2018). We
demonstrate these benefits theoretically and highlight per-
formance gains in a simple ring MDP – used by Kearns
& Singh (2000) for a similar bias-variance analysis – by
adjusting the k-step returns used to update each delta es-
timator. We also show how this method can be combined
with TD(λ) (Sutton, 1984) and Generalized Advantage Esti-
mation (GAE) (Schulman et al., 2015), leading to empirical
gains in dense reward Atari games.

2. Related work
Many recent works approach discount factors in different
ways. To our knowledge, the closest work to our own is
that of Fedus et al. (2019), Sherstan et al. (2018), Sutton
et al. (2011), Sutton (1995), Feinberg & Shwartz (1994),
and Reinke et al. (2017), which learn ensembles of value
functions at different time scales to form a generalized value
function. In the case of Reinke et al. (2017), they do so for
imitating the average return estimator. Feinberg & Shwartz
(1994) examine an optimal policy for the mixture of two
value functions with different discount factors. Similarly,
Sutton (1995) present learning value functions across differ-
ent levels of temporal abstraction through mixing functions.
In the case of Sherstan et al. (2018) and Sutton et al. (2011),
they train a value function such that it can be queried for
a given set of timescales. Finally, concurrent to this work,
Fedus et al. (2019) re-weight multiple value functions across
different discount factors to form a hyperbolic value func-
tion. However, we note that none of the aforementioned
works utilize short term estimates to train the longer term
value functions. Thus, while our method can similarly be
used as a generalized value function, the ability to query
smaller timescales is a side-benefit to the performance in-
creases yielded by separating value functions into different
time scales via TD(∆).

Some recent work has investigated how to precisely select
the discount factor choice (François-Lavet et al., 2015; Xu
et al., 2018). François-Lavet et al. (2015) suggest a particu-
lar scheduling mechanism, seen similarly in OpenAI (2018)
and Prokhorov & Wunsch (1997). Xu et al. (2018) propose
a meta-gradient approach which learns the discount factor
(and λ value) over time. All of these methods can be applied
to our own as we do not necessarily prescribe a final overall
γ value to be used.

Finally, another broad category of work relates to our own in
a somewhat peripheral way. Indeed, hierarchical reinforce-
ment learning methods often decompose value functions or

reward functions into a number of smaller systems which
can be optimized somewhat separately (Dietterich, 2000;
Henderson et al., 2018a; Hengst, 2002; Reynolds, 1999;
Menache et al., 2002; Russell & Zimdars, 2003; van Sei-
jen et al., 2017). These works learn hierarchical policies,
paired with the decomposed value functions, which reflect
the structure of the goals.

3. Background and notation
Consider a fully observable Markov Decision Process
(MDP) (Bellman, 1957) (S,A, P, r) with state space S,
action spaceA, transition probabilities P : S ×A → (S →
[0, 1]) mapping state-action pairs to distributions over next
states, and reward function r : (S × A) → R. At every
timestep t, an agent is in a state st, can take an action at,
receive a reward rt = r(st, at), and transition to its next
state in the system st+1 ∼ P (· | st, at).

In the usual MDP setting, an agent optimizes the discounted
return: V πγ (s) = [

∑∞
t=0 γ

trt|s0 = s, π], where γ is the
discount factor and π : S → (A → [0, 1]) is the policy
that the agent follows. V πγ can be obtained as the fixed
point of the Bellman operator over the action-value function
T πV π = rπ + γPπV π where rπ and Pπ are respectively
the expected immediate reward and transition probabities
operator induced by the policy π. In the rest of the paper,
we drop the superscript π to avoid clutter in the formulas.

The value estimate, V̂γ may approximate the true value
function Vγ via temporal difference (TD) learning (Sutton,
1984). Given a transition (st, at, rt, st+1) we can update
our value function using the one-step TD error: δγt = rt +
γV̂γ(st+1)−V̂γ(st). Alternatively, given an entire trajectory,
we can instead use the discounted sum of one-step TD errors,
which is commonly referred to as either the λ-return (Sutton,
1984) or equivalently the generalized advantage estimator
(GAE) (Schulman et al., 2015):

A(st) =

∞∑
k=0

(λγ)kδγt+k, (1)

where the λ controls the bias-variance trade-off.

With function approximation we use a parameterized value
function V̂γ(·; θ) and then update our value function via the
following loss:

L(θ) = E
[(
V̂γ(s; θ)−

(
V̂γ(s) +A(s)

))2
]
. (2)

In actor-critic methods (Sutton et al., 2000; Konda & Tsitsik-
lis, 2000; Mnih et al., 2016), the value function is updated
per equation 2, and a stochastic parameterized policy (ac-
tor, πω(a|s)) is learned from this value estimator via the
advantage function where the loss is:

L(ω) = E [− log π(a, s;ω)A(s)] . (3)
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Building on top of actor-critic methods, Proximal Policy
Optimization (PPO) (Schulman et al., 2017) constrains the
policy update to a given optimization region (a trust region)
in the form of a clipping objective between the current and
old parameters, ω and ωold:

L(ω) = E [min (ρ(ω)A(s), ψ(ω)A(s))] , (4)

where ρ = πω(a|s)
πωold(a|s) is the likelihood ratio, ψ(ω) =

clip (ρ, 1− ε, 1 + ε) is the clipped likelihood ratio, and
ε < 1 is some small factor applied to constrain the update.

4. TD(∆)
In this section, we introduce TD(∆), along with several
variations, including: Multi-step TD, TD(λ), and GAE.

4.1. Single-step TD(∆)

Consider learning with Z + 1 different discount factors
∆ := γ0, γ1, . . . , γZ . Each of these define a corresponding
value function Vγz . We define the delta functions Wz by

Wz := Vγz − Vγz−1
, W0 := Vγ0 . (5)

This results in Z + 1 delta functions such that the desired
Vγz is simply the sum of the delta functions:

Vγz (s) =

z∑
i=0

Wi(s). (6)

We can derive a Bellman-like equation for the delta func-
tions W . Indeed, W0 = V0 satisfies the Bellman equation

W0(st) = E [rt + γ0W0(st+1)] , (7)

while the delta functions at larger time scales satisfy:

Wz(st) = Vγz (st)− Vγz−1(st)

= E
[
(rt + γzVγz (st+1))−

(
rt + γz−1Vγz−1

(st+1)
)]

= E
[
γz
(
Wz(st+1) + Vγz−1

(st+1)
)
− γz−1Vγz−1

(st+1)

]
= E

[
(γz − γz−1)Vγz−1(st+1) + γzWz(st+1)

]
. (8)

This is a Bellman-type equation for Wz , with decay factor
γz and rewards Vγz−1

(st+1). Thus, we can use it to define
the expected TD update forWz . Note that in this expression,
Vγz−1

(st+1) can be expanded as the sum of Wi(st+1) for
i ≤ z − 1, so that the Bellman equation for Wz depends on
the values of all delta functions Wi, i ≤ z − 1.

This way, the delta value function at a given timescale ap-
pears as an autonomous reinforcement learning problem

with rewards coming from the value function of the imme-
diately lower timescale. Thus, for a target discounted value
function Vγz (s), we can train all the delta components in
parallel according to this TD update, bootstrapping off of
the old value of all the estimators. Of course, this requires
assuming a sequence of γz values, including a largest and
smallest discount γ0 and γZ . We will see in Section 6.3 that
these can affect results, further allowing tuning. However,
to avoid the addition of a number of hyperparameters, we
assume a simple sequence where we double the effective
horizon of the γz values until the final γZ value is reached.
This simple sequence of γ’s, without tuning, yields perfor-
mance gains in many settings as seen in Section 6.2.

4.2. Multi-step TD(∆)

In many scenarios, it has been shown that multi-step TD is
more efficient than single-step TD (Sutton & Barto, 1998).
We can easily extend TD(∆) to the multi-step case as fol-
lows. To begin, since W0 := Vγ0 , the multi-step target for
W0 is identical to the standard multi-step target with γ = γ0.
For all other W s, we can unroll both the bootstrap term and
the rewards from the previous value function in Section 4.1:

W0(st) = E
[k0−1∑
i=0

γi0rt+i + γk00 W0(st+k)

]
,

Wz(st) = E
[
(γz − γz−1)Vγz−1(st+1) + γzWz(st+1)

]
= E

[
(γz − γz−1)rt+1 + γz−1(γz − γz−1)Vγz−1

(st+2)

+ γz(γz − γz−1)Vγz−1
(st+2) + γ2

zWz(st+2)

]
= E

[
(γz − γz−1)rt+1 + (γ2

z − γ2
z−1)Vγz−1(st+2)

+ γ2
zWz(st+2)

]
= E

[kz−1∑
i=1

(γiz − γiz−1)rt+i + (γkzz − γ
kz
z−1)Vγz−1

(st+k)

+ γkzz Wz(st+k)

]
. (9)

Thus, each Wz receives a fraction of the rewards from the
environment up to time-step kz − 1. Additionally, each W
bootstraps off of its own value function as well as the value
at the previous time-scale. A version of this algorithm based
on k-step bootstrapping from Sutton & Barto (1998) can be
seen in Algorithm 1. We also note that while Alorithm 1 has
quadratic complexity w.r.t. Z, we can make the algorithm
linear in implementation for large Z by storing V̂ values at
each timescale γz .



TD (∆)

Algorithm 1 Multi-step TD(∆)
Inputs (γ0, γ1, ..., γZ), (k0, k1, ..., kZ), (α0, α1, ..., αZ)
Initialize Ŵz(·) = 0 ∀z
for t = 0, 1, 2... do

Take step according to policy and store (st, rt, st+1)
if t ≥ kZ then
τ ← t− kZ + 1
for z ∈ 0, 1, ..., Z do

if z = 0 then
G0
τ ←

∑τ+k0−1
i=τ γi−τ0 ri + γk00 Ŵ0(sτ+k0)

else
Gzτ ←

∑τ+kz−1
i=τ+1 (γi−τz − γi−τz−1)ri+

(γkzz − γ
kz
z−1)

∑z−1
g=0 Ŵg(sτ+kz )+

γkzz Ŵz(sτ+kz )
end if

end for
for z ∈ 0, 1, ..., Z do
Ŵz(sτ )← Ŵz(sτ ) + αz

[
Gzτ − Ŵz(sτ )

]
end for

end if
end for

4.3. TD(λ,∆)

The traditional TD(λ) (Sutton, 1984) uses the following
λ-return as a target for its update rules:

Gγ,λt = V̂γ(st) +

∞∑
k=0

(λγ)kδγt+k. (10)

The underlying TD(λ) operator can be written:

TλV = V + (I − λγP )−1(TV − V ) (11)

Similarly, for each Wz we can define a λ return:

Gz,λzt := Ŵz(st) +

∞∑
k=0

(λzγz)
kδzt+k, (12)

where δ0
t := δγ0t and δzt := (γz − γz−1)V̂γz−1(st+1) +

γzŴz(st+1)− Ŵz(st) are the TD-errors.

4.4. TD(λ,∆) with GAE

Since GAE is used in powerful policy gradient baselines
(Schulman et al., 2017), we propose a simple extension of
TD(∆) that leverages GAE. Specifically, to train the policy
we use the following generalized advantage estimator:

A∆(st) :=

T−1∑
k=0

(λZγZ)kδ∆
t+k, (13)

where δ∆
t+k := rt + γZ

∑Z
z=0 Ŵz(st+1)−

∑Z
z=0 Ŵz(st).

Thus, we use γZ as our discount factor and the sum of all our
W estimators as a replacement for VγZ . This objective can
easily be applied to PPO by using the policy update from
Eq. 4 and replacing A with A∆. Similarly, to train each
Wz , we use a truncated version of their respective λ-return
defined in Equation 12. See Algorithm 2 for details.

Algorithm 2 PPO-TD(λ,∆)
Initialize policy ω and values θz ∀z
for t = 0, 1, 2, . . . do

Take step according to πω and store (st, at, rt, st+1)
if t ≥ T then
Gz,λz ← Ŵz(st−T ) +

∑T−1
k=0 (λzγz)

kδzt−T+k ∀z
A∆ =

∑T−1
k=0 (λZγZ)kδ∆

t−T+k

Update θz with TD (Eq. 2) using Gz ∀z
Update ω with PPO (Eq. 4) using A∆

end if
end for

5. Analysis
We now analyze our estimators more formally. The goal
is that our estimator will provide favorable bias-variance
trade-offs under some circumstances (as we shall see experi-
mentally). To shed light on this, we first start by illustrating
when our estimator is identical to the single estimator V̂γ
(Theorem 1) which gives insight into the important quan-
tities of our estimator that can determine when we may
achieve benefits over the standard V̂γ estimator. Then mo-
tivated by these results and prior work by Kearns & Singh
(2000), we bound the error of our estimator in terms of a
variance and bias term (Theorem 4) that also yields insight
into how to trade-off this quantities to achieve the best result.

5.1. Equivalence settings and improvement

In some cases, we can show that our TD(∆) update and its
variations are equivalent to the non-delta estimator Vγ when
recomposed into a value function. In particular, we focus
here on linear function approximation of the form:

V̂γ(s) := 〈θγ , φ(s)〉 and Ŵz(s) := 〈θz, φ(s)〉,∀z

where θγ and {θz}z are weight vectors in Rd and φ : S →
Rd is a feature map from a state to a given d-dimensional
feature space. Let θγ be updated using TD(λ) as follows:

θγt+1 = θγt + α
(
Gγ,λt − V̂γ(st)

)
φ(st), (14)

where Gγ,λt is the TD(λ) return defined in equation 10.

Similarly, each Ŵz is updated using TD(λz , ∆) as follows:

θzt+1 = θzt + αz

(
Gz,λzt − Ŵz(st)

)
φ(st), (15)
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where Gz,λzt is TD(∆) return defined in equation 12. Here,
α and {αz}z are positive learning rates. The following
theorem establishes the equivalence of the two algorithms.

Theorem 1. If αz = α, λzγz = λγ,∀z and if we pick the
initial conditions such that

∑Z
z=0 θ

z
0 = θγ0 , then the iterates

produced by TD(λ) (Eq. 14) and TD(λ, ∆) (Eq. 15) with
linear function approximation satisfy:

Z∑
z=0

θzt = θγt ,∀t, (16)

(The proof is provided in the Supplemental).

Note that the equivalence is achieved when λzγz = λγ,∀z.
When λ is close to 1 and γz < γ, the latter condition implies
that λz = λγ

γz
could potentially be larger than one. One

would conclude that the TD(λz) could diverge. Fortunately,
we show in the next theorem that the TD(λ) operator defined
in equation 11 is a contraction mapping for 1 ≤ λ < 1+γ

2γ
which implies that λγ < 1.

Theorem 2. ∀λ ∈ [0, 1+γ
2γ [, the operator Tλ defined as

TλV = V + (I − λγP )−1(TV − V ),∀V ∈ R|S| is well
defined. Moreover, TλV is a contraction with respect to the
max norm and its contraction coefficient is equal to γ|1−λ|

1−λγ
(The proof is provided in the Supplemental).

Similarly, we can consider learning each Wz using kz-step
TD(∆) instead of TD(λ, ∆). In this case, the analysis of
Theorem 1 could be extended to show that with linear func-
tion approximation, standard multi-step TD and multi-step
TD(∆) are equivalent if kz = k, ∀z.

However, we note that the equivalence with unmodified TD
learning is the exception rather than the rule. For one, in
order to achieve equivalence we require the same learning
rate across every time scale. This is a strong restriction as
intuitively the shorter timescales can be learned faster than
the longer ones. Further, adaptive optimizers are typically
used in the nonlinear approximation setting (Henderson
et al., 2018c; Schulman et al., 2017). Thus, the effective rate
of learning can differ depending on the properties of each
delta estimator and its target. In principle, the optimizer
can automatically adapt the learning to be different for the
shorter and longer time scales.

Besides for the learning rate, such a decomposition allows
for some particularly helpful properties not afforded to the
non-delta estimator. In particular, every Wz delta compo-
nent need not use the same k-step return (or λ-return) as the
non-delta estimator (or the higher Wz components). Specif-
ically, if kz < kz+1,∀z (or γzλz < γz+1λz+1,∀z), then
there is the possibility for variance reduction (at the risk of
some bias introduction).

5.2. Analysis for reducing kz values

To see intuitively how our method differs from the single
estimator case, let us consider the tabular phased version of
k-step TD studied by Kearns & Singh (2000). In this setting,
starting from each state s ∈ S, we generate n trajectories
{s(j)

0 = s, a0, r0, . . . , s
(j)
k , a

(j)
k , r

(j)
k , s

(j)
k+1, . . .}1≤j≤n fol-

lowing policy π. For each iteration t, called also phase t,
the value function estimate for s is defined as follows:

V̂γ,t(s) =
1

n

n∑
j=1

(
k−1∑
i=0

γir
(j)
i + γkV̂γ,t−1(s

(j)
k )

)
(17)

The following theorem from Kearns & Singh (2000) pro-
vides an upper bound on the error in the value function

estimates defined by ∆
V̂γ
t := maxs{|V̂γ,t(s)− Vγ(s)|}.

Theorem 3. (Kearns & Singh, 2000) for any 0 < δ < 1, let

ε =
√

2 log(2k/δ)
n . with probability 1− δ,

∆
V̂γ
t ≤ ε

(
1− γk

1− γ

)
︸ ︷︷ ︸

variance term

+ γk∆
V̂γ
t−1︸ ︷︷ ︸

bias term

, (18)

(The proof is provided in the Supplemental).

The first term ε( 1−γk
1−γ ), in the bound in Eq. 18, is a vari-

ance term arising from sampling transitions. In particular,
ε bounds the deviation of the empirical average of rewards
from the true expected reward. The second term is a bias
term due to bootstrapping off of the current value estimate.

Similarly, we consider a phased version of multi-step
TD(∆). For each phase t, we update each W as follows:

Ŵz,t(s) =
1

n

n∑
j=1

( k−1∑
i=1

(γiz − γiz−1)r
(j)
i +

(γkzz − γ
kz
z−1)Vγz−1

(s
(j)
t+k) + γkzz Ŵz(s

(j)
t+k)

)
. (19)

We now establish an upper bound on the error of phased
TD(∆) defined as the sum of error incurred by each W com-
ponents

∑Z
z=0 ∆z

t , where ∆z
t = maxs{|Ŵz(s)−Wz(s)|}

Theorem 4. Assume that γ0 ≤ γ1 ≤ . . . γZ = γ and k0 ≤
k1 . . . ≤ kZ = k, for any 0 < δ < 1, let ε =

√
2 log(2k/δ)

n ,
with probability 1− δ,

Z∑
z=0

∆z
t ≤ ε

1− γk

1− γ
+ ε

Z−1∑
z=0

γ
kz+1
z − γkzz

1− γz︸ ︷︷ ︸
variance reduction

(20)

+

Z−1∑
z=0

(γkzz − γkz+1
z )

z∑
u=0

∆u
t−1︸ ︷︷ ︸

bias introduction

+γk
Z∑
z=0

∆z
t−1

(The proof is provided in the Supplemental).
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Comparing the bound for phased TD(λ) in Theorem 3
with the one for phased TD(∆) in Theorem 4, we see
that the latter allows for a variance reduction equal to

ε
∑Z−1
z=0

γ
kz+1
z −γkzz

1−γz ≤ 0 but it suffers from a potential bias

introduction equal to
∑Z−1
z=0 (γkzz −γ

kz+1
z )

∑z
u=0 ∆u

t−1 ≥ 0.
This is due to the compounding bias from all shorter-horizon
estimates. We note that in the case that kz are all equal we
obtain the same upper bound for both algorithms.

It is a well known and often used result that the expected dis-
counted return over T steps is close to the infinite-horizon
discounted expected return after T ≈ 1

1−γ Kearns & Singh
(2002). Thus, we can conveniently reduce kz for any γz such
that kz ≈ 1

1−γz so that we follow this rule. Thus, if we have
T samples, we can have an excellent bias-variance compro-
mise on all timescales << T by choosing kz = 1

(1−γz) ,

so that γkzz is bound by a constant (since γ
1

1−γz
z ≤ 1

e ) for
all z. This provides intuitive ways to set both γz and kz
values (as well as all other parameters) without necessar-
ily searching. We can double the effective horizon at each
increasing Wz (to keep a logarithmic number of value func-
tions with respect to the horizon) and similarly adjust all
other parameters for estimation.

6. Experiments
All hyperparameter settings, extended details, and the repro-
ducibility checklist for machine learning research (Pineau,
2018) can be found in the Supplemental1.

6.1. Tabular

Figure 1. (Left) γZ = .9375, 250 random seeds on the 5-state ring
MDP. Error denotes the absolute error against the true discounted
value function (pre-computed ahead of time using Value Iteration)
averaged across the entire learning trajectory (5000 timesteps).
Error bars denote standard error across random seeds. (Right) The
average absolute error for the optimal learning rate at each k-step
return up to the effective planning horizon of γZ .

We use the same 5-state ring MDP as in Kearns & Singh
(2000) – a diagram of which is available in the Supplemen-
tal for clarity – to demonstrate performance gains under

1Link to Code: github.com/facebookresearch/td-delta

decreasing k-step regimes as described in Section 5.1. For
all experiments we provide a variable number of gammas
starting with 0 and increasing according to γz+1 = γz+1

2
until the maximum desired γZ is reached. Similarly, kz :=

1
1−γz ,∀z as described earlier. The baseline is a single esti-
mator with γ = γZ , k = kZ . We run a grid of various γZ
and kZ values and use standard TD-style updates (Sutton,
1988) for our experiments.

We compare against the true error which can be calculated
ahead of time using value iteration (VI) (Bellman, 1957).
In the case where we do not tailor k (all kz are equal), as
predicted by the theory in Section 5.1, the performance is
exactly equal to the single estimator case. We compute the
average error from the VI pre-computed optimal value func-
tion across the entire training trajectory and plot a sample
of these results in Figure 1. We supply all results in the sup-
plemental across a set of 7 different γ values corresponding
to effective planning horizons of (4, 8, 16, 32, 64, 125, 250).
We note that performance gains tend to increase with larger
γ and k values as discussed further in the supplemental.
However, consistent with the theory, in all cases we still
perform about equal to (statistically) or significantly better
than the single estimator setting.

6.2. Dense reward Atari

We further demonstrate performance gains in Atari using the
PPO-based version of TD(∆). We directly update PPO with
TD(λ,∆), using the code of Kostrikov (2018). We compare
against the standard PPO baseline with hyperparameters
as found in (Schulman et al., 2017; Kostrikov, 2018). Our
architecture differs slightly from the PPO baseline as the
value function now outputs Z + 1 outputs (1 for each W ).
For complete fairness, we also add another neural network
architecture which replicates the parameters of TD(∆). That
is, we use a neural network value function that outputs Z+1
values which are summed together before computing the
value loss (we call this PPO+). We run two versions of
TD(∆). The first version, as described in Section 4.4, uses a
similar set of γz sequence as in the ring MDP experiments
(starting at γZ = 0.99 and halving the horizon) where λz
is set for each lower γz such that γzλz = γZλZ as per
Theorem 1. However, we note that due to the use of adap-
tive optimizers, performance may improve as parameters
are honed for each delta estimator. Just as in the tabular
setting where kz can be reduced for lower delta estimators,
in this setting as well, parity with the baseline model is
not necessary and λ can effectively be reduced. To this
end, we introduce a second version of our method, labelled
PPO-TD(λ̂,∆), where we limit λz ≤ 1.

We run experiments on the 9 games defined in (Bellemare
et al., 2016) as ‘Hard’ with dense rewards. We chose ‘Hard’
games as these games are most likely to need algorithmic

https://github.com/facebookresearch/td-delta
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Figure 2. The Wz estimators versus the reward over a single episode in two games - the drops in value align with a lost life. This is done
on a single rollout trajectory of the trained PPO-TD(λ̂,∆) agent using random seed 1153780.

improvements to solve. We chose dense reward tasks since
we do not tackle the problem of exploration here (needed
for tackling sparse reward settings), but rather modeling of
complex value functions which dense reward settings are
likely to benefit from. As seen in Table 1 (with average
return across training and on hold-out no-op starts in the
Supplemental), PPO-TD(λ,∆) performs (statistically) sig-
nificantly better in a certain class of games roughly related
to the frequency of non-zero rewards (the density). In both
versions of TD(∆), the algorithms perform worse asymptot-
ically than the baselines in two games, Zaxxon and Wizard
of Wor, which belong to a class of games with lower density.
Though PPO-TD(λ̂,∆) performs somewhat better in both
cases, as we will see in Section 6.3, it is still possible to
improve performance further in these games by tuning the
number and scale of γZ factors.

One may wonder why performance improves in increasingly
dense reward settings. There is a basic intuition that TD(∆)
would allow for quick learning of short-term phenomena,
followed by slower learning of long-term dependencies.
Such a decomposition is reflected in a rolled out trajectory
using the learned policy in Figure 2. There, the long-term
WZ value declines early according to a consistent gradient
towards a lost life in the game, while short-term phenomena
continue to be captured in the smaller components like W0.

6.3. Tuning and Ablation

In the previous section we demonstrated how using a fixed
set of γ, λ tailored to an intuitive set of progressively large
horizons, we could yield performance gains in a number
of environments over the single estimator case. However,
a performance drop was seen in the case of Zaxxon and
WizardOfWor. Due to our bias-variance trade-off in boot-
strapping from smaller delta estimators, a curriculum based
on smaller horizons may effectively slow learning in some
cases. However, the benefit of separating value functions in
a flexible way, as we propose here, is that they can be tuned.
In Figure 3 (with full results in the Supplemental), we show

Figure 3. Performance of TD(∆) variations vs. the baselines on
Zaxxon and WizardOfWor. ppo+ refers to ppo with an aug-
mented architecture. ppoDelta refers to setting γzλz = γλ ∀z.
ppoDelta3 and ppoDelta12 only use two value functions with
horizons (3, 100) and (12, 100) respectively. Shaded region is
standard error across 10 random seeds.

how different γ values can be used to improve asymptotic
performance to match the baseline. By increasing the low-
est effective horizon (γ0) of W0, we bias the algorithm less
toward myopic settings and increase the rate of learning
comparable to the baselines. Further tuning of the number
of components and their parameters (γz, λz , learning rate,
etc.) may further improve performance.

7. Discussion
In this work we explore temporal decomposition of the value
function. More concretely, we proposed a novel way for
decomposing value estimators via a Bellman update based
on the difference between two value estimators with differ-
ent discount factors. This has convenient theoretical and
practical properties which help improve performance in cer-
tain settings. These properties have additional benefits: they
allow for a natural way to distribute and parallelize training,
easy inspection of performance at different discount factors,
and the possibility of lifelong learning by adding or remov-
ing components. Moreover, we have also highlighted the
limitations of this method (introduced bias toward myopic
returns) when using the simple parameter settings we pro-
pose. However, these limitations can be overcome with the
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Algorithm Zaxxon WizardOfWor Qbert MsPacman Hero Frostbite BankHeist Amidar Alien
PPO-TD(λ,∆) 396 ± 210 2118 ± 138 13428 ± 333 † 2273 ± 67 † 29074 ± 512 † 292 ± 7 1183 ± 13 731 ± 30 † 1606 ± 112∗

PPO-TD
(
λ̂,∆

)
3291 ± 812 2440 ± 89 13092 ± 430 † 2241 ± 78 † 29014 ± 764 † 304 ± 21 1166 ± 5 672 ± 45 1663 ± 113∗

PPO+ 7006 ± 211 † 2870 ± 218 † 10594 ± 335 1876 ± 89 23511 ± 843 299 ± 2 1199 ± 5 611 ± 34 1374 ± 85
PPO 7366 ± 223 † 3408 ± 193 † 11735 ± 387 1888 ± 111 21038 ± 972 294 ± 5 1190 ± 3 575 ± 54 1315 ± 70

Reward Density 1.15 1.07 12.26 13.27 13.46 5.04 6.3 4.63 11.33

Table 1. Asymptotic Atari performance (across last 100 episodes) with the mean across 10 seeds and the standard error. † denotes
significantly better results over our algorithm in the case of baselines or over the best baseline in the case of our algorithm using Welch’s
t-test with a significance level of .05 and bootstrap confidence intervals (Colas et al., 2018; Henderson et al., 2018b). ∗ indicates significant
using bootstrap CI, but not t-test. Bold algorithms are where we perform as well as or significantly better than the baselines. Reward
Density is frequency of rewards per 100 time-steps averaged over 10k timesteps under learned policy using baseline (PPO). Notice how
the task ‘Zaxxon’ has a much lower frequency than the largest frequency task (Hero). More information in Supplemental.

additional ability to tune parameters at different timescales.
We briefly discuss the added benefits of TD(∆) below.

Scalability: While we have not pursued it experimentally
here, another benefit of separating value functions in this
way is that this reflects a natural way of distributing updates
across systems for large scale problems. In fact, prior work
has sought different ways to scale RL algorithms through
partitioning methods (though typically through other means
like dividing the state space) (Wingate, 2004; Wingate &
Seppi, 2004). Our work provides another such method for
scaling RL systems in a different way. A TD(∆) update
can be spread across many machines, such that each Wz is
updated separately (as long as weights are synced across
machines after a parallel update).

Additional tuning ability: Many of the performance im-
provements seen here come not necessarily from the de-
composition method itself, but from the ability to set certain
parameters differently for each component. The fine-grained
nature of the decomposition of the value function allows
for further improvement by tuning the number of delta es-
timators and the γz values which correlate with them. In
the future, a meta-gradient method as Xu et al. (2018) pro-
posed could be used to automatically scale delta estimators
to timescales which require more computational complexity.
However, the default method for tailoring γz and kz and λz
values as described above (doubling effective horizons until
the maximum horizon is reached), still yields improvements
in most games tested here, without additional tuning.

Interpreting performance at different time-scales: As
we mention in Section 2, another benefit of TD(∆) is the
ability to examine the value function at different time scales
after a single pass of learning. That is, we can compose
value functions from γ0, ..., γZ and understand the differ-
ences between different timescales. This has implications
for real-world uses with similar motivations as Sherstan et al.
(2018) describe. Take for example an MDP where the bulk
of rewards are in some central region, requiring following a
policy π for some number of timesteps before reaching the
dense reward region. By examining each Wz component as

we do in Figure 2, a practitioner could understand how far
into a trajectory π must be followed before the dense reward
region is reached. This adds some layer of interpretability to
the value function which is missing in the single estimator
case. Similarly, this may have the benefit in determining an
optimal stopping point for the policy. In production systems
where there is a cost to running a policy (time, money, or
energy resources), yet the policy can be run indefinitely, a
practitioner may use Wz components to determine if the
discounted return at a larger horizon is worth the cost.

TD(∆) as an (almost) anytime algorithm: Throughout
this work, we emphasize this algorithm as a complement to
selection of a final γZ . The longest horizon discount factor
can be chosen according to other methods (hyperparameter
optimization or meta-gradient methods). However, an added
benefit of our method not explored in this work is its func-
tionality as an almost anytime algorithm. While longer time
horizons will take longer to converge, at any point in time the
sum of all horizons which have converged are a suitable ap-
proximation for the value function at that intermediary point.
Therefore, with enough resources, TD(∆) could potentially
at anytime add one further timescale Z ← Z+1 (initialized
toWZ+1 = 0 which preserves the current V estimate). This
has implications for methods which already extend discount
factors through a curriculum (OpenAI, 2018).

Other extensions: Our method should also extend easily to
any TD-like methods such as Sarsa(λ) and Q-learning with
few adjustments. We leave this to future work.

Conclusion: We believe that TD(∆) is a important drop-
in addition to any TD-based training methods that can be
applied to a number of existing model-free RL algorithms.
We especially highlight the value of this method for perfor-
mance tuning. We show that a simple sequence of γz values
based on doubling horizon values can yield performance
gains especially in dense settings, but this performance can
be enhanced further with tuning. As the complexity of mod-
eling and training long-horizon problems increases, TD(∆)
may be another tool for scaling and honing production sys-
tems for optimal performance.
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