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A Generalizations of the birth-death PDE

Here we mention two ways in which we can modify (13) to certain advantages. For example, we can replace
this equation with

∂tµt = ∇ · (µt∇V )− αf(V − V̄ )µt − f̄µt, (1)

where f : R→ R is some function and f̄ =
∫
D
f(V − V̄ )dµt. As we will see in Proposition A.1, as long as

zf(z) ≥ 0 for all z ∈ R, the additional term in (1) increase the rate of decay of the energy.
While the birth-death dynamics described above ensures convergence in the mean-field limit, when n is

finite, particles can only be created in proportion to the empirical distribution µ(n). In particular, such a birth
process corresponds to “cloning” or creating identical replicas of existing particles. In practice, there may
be an advantage to exploring parameter space with a distribution distinct from the instantaneous empirical
particle distribution (7). To enable this exploration we introduce a birth term proportional to a distribution
µb which we will assume has full support on D. In this case, the time evolution of the distribution is described
by

∂tµt = ∇ · (µt∇V )− α(V − V̄ )+µt + α
(∫
D

(V − V̄ )+dµt
) µb1V≤V̄

µb(V ≤ V̄ )

+ α′(V − V̄ )−µb − α′
(∫
D

(V − V̄ )−dµb

) µt1V >V̄
µt(V > V̄ )

,

(2)

where α, α′ > 0, (V − V̄ )+ = max(V − V̄ , 0) ≥ 0, (V − V̄ )− = max(V̄ − V, 0) ≥ 0. That is, we kill particles
in proportion to µt in region where V > V̄ but create new particles from µb in regions where V ≤ V̄ . We
could also combine (1) with (2) to obtain other variants.

These alternative birth-death dynamical schemes also satisfy the consistency conditions of Proposition 3.1:

Proposition A.1 Let µt be a solution of (1) with f such that zf(z) ≥ 0 for all z ∈ R or (2), with µ0 ∈M(D).
Then, µt(D) = 1 for all t ≥ 0, and E(t) = E [µt] satisfies

Ė(t) ≤ −
∫
D

|∇V (θ, [µt])|2µt(dθ) . (3)
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Proof: By considering again 1 and V (·, [µt]) as a test function in (1) or (2), we verify that ∂tµt(D) = 0. In
addition, (1) implies that

Ė(t) =

∫
D

V (θ, [µt])∂tµt(dθ)

=

∫
D

(
V (θ, [µt])− V̄ [µt]

)
∂tµt(dθ)

= −
∫
D

|∇V |2dµt − α
∫
D

(V − V̄ )f(V − V̄ )dµt

which proves (3) for (1) since all the terms at the right hand side of this equation are negative individually if
zf(z) ≥ 0 for all z ∈ R. Similarly, (2) implies that

Ė(t) =

∫
D

V (θ, [µt])∂tµt(dθ)

=

∫
D

(
V (θ, [µt])− V̄ [µt]

)
∂tµt(dθ)

= −
∫
D

|∇V |2dµt − α
∫
D

(V − V̄ )2
+dµt − α

∫
D

(V − V̄ )+dµt
∫
D

(V − V̄ )−dµb

µb(V ≤ 0)

− α′
∫
D

(V − V̄ )2
−dµb − α′

∫
D

(V − V̄ )−dµb

∫
D

(V − V̄ )+dµt

µt(V > 0)
,

which proves (3) for (2) since all the terms at the right hand side of this equation are negative. �

B Proximal formulation of birth-death dynamics

Following the framework of [JKO98], we can give an alternative interpretation to the birth-death PDE (13).
First, we recall that the PDE (8) can be obtained as the time-continuous limit (τ → 0) of the proximal
optimization scheme (also known as minimizing movement scheme [San17]) in which a sequence of distributions
{µk}k∈N0

is constructed via the iteration: given an initial µ0 such that E [µ0] <∞, set

µk+1 ∈ argmin
(
E [µ] + 1

2τ
−1W 2

2 (µ, µk)
)
, (4)

for k = 0, 1, 2, . . . where W2(µ, µk) denotes the 2-Wasserstein distance between the probability measures µ
and µk. Interestingly, the birth-death PDE relies on a different measure of “distance”: the PDE

∂tµt = −αV µt + αV̄ µt, (5)

can be obtained as the time-continuous limit of the proximal optimization scheme: given an initial µ0 such
that E [µ0] <∞, set for k = 0, 1, 2, . . .

µk+1 ∈ argmin
(
E [µ] + (ατ)−1DKL(µ||µk)

)
(6)

where the minimum is taken over all probability measures µ ∈M(D) and DKL(µ||µk) is the Kullback-Leibler
divergence

DKL(µ||µk) =

∫
D

log

(
dµ

dµk

)
dµ . (7)

We verify this claim formally; notice that the Euler-Lagrange equation for the minimizer µk+1, obtained by
zeroing the first variation of the objective function in (6), reads

V (θ, [µk+1]) + (ατ)−1 log

(
dµk+1

dµk

)
+ λ = 0 (8)

where λ is a Lagrange multiplier added to enforce
∫
D
dµk+1 = 1. (8) can be reorganized into

µk+1 = C−1µk exp (−ατV (θ, [µk+1])) (9)
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where C is adjusted so that
∫
D
dµk+1 = 1. (9) is the discrete equivalent of (14) If τ is small, we can expand

the exponential to arrive at

µk+1 = C−1
(
µk − ατV (θ, [µk+1])µk +O(τ2)

)
(10)

Setting µk+1 = µk +O(τ) in V and expanding again gives

µk+1 = µk − ατ
[
V (θ, [µk])µk + V̄ [µk]

]
µk +O(τ2) (11)

where we have also expanded C and solved for it explicitly at leading order in τ . Subtracting µk for both
sides, dividing by τ , and letting τ → 0 gives (5). The full PDE (13) can be obtained by alternating (4)
and (6).

Note that, under Assumption 4.2 below, the energy E [µ] is convex and bounded below. As a result the
augmented functionals to minimize in both (4) and (6) are strictly convex, which means that they admit a
unique minimizer. This shows that the measures in the sequence {µk}k∈N0 are well-defined and such that
E [µk+1] ≤ E [µk] whether we use (4), (6), or alternate between both. Because we discretize time in practice,
solutions of (13) satisfying (14) for all t > 0 can be interpreted as implementations of the proximal scheme.
Taking the limit τ → 0 with kτ large, however, requires ensuring well-definedness of the terms on the right
hand side of (13). This proximal interpretation also enables the design of distinct algorithms for implementing
this PDE at particle level, as discussed next.

B.1 Proximal Optimization

For concreteness we focus on the cases of neural networks—the ideas below can be easily adapted to the
others situations treated in this paper. Assume that the neural representation at iterate k is

f
(n)
k (x) =

1

n

n∑
i=1

wki ϕ(x,θki ) (12)

where θki denotes the parameter in the network and wki ≥ 0 are extra weights satisfying n−1
∑n
i=1 w

k
i = 1—we

will define a dynamics for these weights in a moment. Notice that (12) can be written as

f
(n)
k (x) =

∫
D

φ(x,θ)dµ
(n)
k (θ), dµ

(n)
k (θ) =

1

n

n∑
i=1

wki δθki (dθ) (13)

and the loss is given by

`(θk1 , . . . ,θ
k
n;wk1 , . . . , w

k
n) = 1

2Ey,x|y − f
(n)
k (x)|2

= Cf +
1

n

n∑
i=1

wki F (θki ) +
1

2n2

n∑
i,j=1

wki w
k
jK(θki ,θ

k
j )

(14)

where Cf = 1
2Eyy

2 and F (θ) and K(θ,θ′) given in (4) and (5), respectively. The scheme we propose will

update the θki and the wki separately, the first by usual gradient descent over the loss, the second by proximal
gradient. That is, given {θki }ni=1 and {wki }ni=1:

1. Gradient step. Evolve the parameters θki by GD (or SGD if we need to use the empirical loss) with the
weights wki kept fixed. Do this for m steps of size ∆t to obtain a new set of {θk+1

i }ni=1.

2. Proximal step. Evolve the weights wki with the parameter θk+1
i fixed using a proximal step based on

the particle equivalent of (6), i.e.

{wk+1
i }ni=1 ∈ argmin

(
`(θk+1

1 , . . . ,θk+1
n ;w1, . . . , wn) +

1

τn

n∑
i=1

wi log(wi/w
k
i )

)
(15)

where the minimization is done under the constraint that n−1
∑n
i=1 wi = 1. The equation for the minimizer

wk+1
i is the discrete equivalent of (10)

wk+1
i = C−1wki exp

(
−τ Ṽ k+1

i

)
(16)
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where C is a constant to be adjusted so that n−1
∑n
i=1 w

k+1
i = 1 and

Ṽ k+1
i = F (θk+1

i ) +
1

n

n∑
j=1

wk+1
j K(θk+1

i ,θk+1
j ) (17)

(16) is implicit in wk+1
i and should be solved by iteration. Note that this proximal step is guaranteed to

decrease the loss. In practice, this step could eventually lead to big variations of the weights. Should this
happen, we add the additional step:

3. Resampling step. Resample the weights {wk+1
i }ni=1 so as to keep them roughly equal to 1 each, that is:

eliminate the ones that are too small and transfer their weights to the others: split the remaining (large)
weights into bits of size roughly 1. There are standard ways to do this resampling step that are unbiased and
preserve the population size exactly. This resampling step may increase the loss, though not to leading order.
This step is the actual birth-death step in the scheme (and it is also the only random component of it if the
exact loss is used).

If we set τ = αm∆t and set ∆t→ 0 and n→∞, the scheme above is formally consistent with the PDE

∂tµt = ∇ · (∇V µt)− αV µt + αV̄ µt. (18)

However, it is obviously not necessary to take either of these limits explicitly in practice, and, as explained
above, the proximal step is guaranteed to decrease the loss. With a strict version of the the resampling step
performed at every iteration, in which the weights are taken to be in {0, 1} the scheme above recovers the
one described in Algorithm 1. The main difference is that in Algorithm 1 the proximal step (16) is solved in
one iteration, by substituting wk+1

i by wki at the right hand side of (16).
Finally notice that if we were to implement the proximal step only and skip both the gradient and the

resampling steps, the scheme above is a naive implementation of the lazy training scheme discussed in [CB18].
This highlights again why using birth-death alone is not an efficient way to perform network optimization,
and it should be combined with standard GD.

C Convergence and Rates in the Non-interacting Case

C.1 Non-interacting Case

We consider first the non-interacting case with V = F and D = Rk, under

Assumption C.1 F ∈ C2(Rk) is a Morse function, coercive, and with a single global minimum located
at θ∗.

With no loss of generality we set F (θ∗) = 0 since adding an offset to F in (13) does not affect the dynamics.
We also denote by H∗ = ∇∇F (θ∗) the Hessian of F at θ∗: recall that a Morse function is such that its
Hessian is nondegenerate at all its critical points (where ∇F = 0) and it is coercive if limθ→∞ F (θ) = ∞.
Our main result is

Theorem C.2 (Global Convergence and Rate: Non-interacting Case) Assume that the initial con-
dition µ0 of the PDE (12) has a density ρ0 positive everywhere in Rk and is such that E [µ0] < ∞. Then
under Assumption C.1 the solution of (12) satisfies

µt ⇀ δθ∗ as t→∞. (19)

In addition we can quantify the convergence rate: if F̄ (t) =
∫
Rk F (θ)µt(dθ), then ∃C > 0 such that ∀ε > 0,

the time tε needed to reach E [µtε ] ≤ ε satisfies

tε ≤ Cε−(d+2)/2. (20)

Furthermore the rate of convergence becomes exponential in time asymptotically: for all δ > 0, ∃tδ such that

F̄ (t) ≤ α−1 tr
(
H∗e−2H∗(t−δ)

)
if t ≥ tδ. (21)
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In fact we show that

lim
t→∞

αF̄ (t)

tr (H∗e−2H∗t)
= 1. (22)

The theorem is proven in Appendix C This proof shows that the additional birth-death terms in the PDE (12)
allow the measure to concentrate rapidly in the vicinity of θ∗; subsequently, the transport term takes over
and leads to the exponential rate of energy decay in (21). The proof also shows that, if we remove the
transportation term ∇ · (µt∇V ) in the PDE (12), the energy only decreases linearly in time asymptotically.
This means that the combination of the transportation and the birth-death terms accelerates convergence. A
similar theorem can be proven for the PDE (2).

C.2 Non-interacting Case without the Transportation Term

Let us look first at the PDE satisfied by the measure µ in the non-interacting case, i.e. with V = F satisfying
Assumption C.1, and without the transportation term:

∂tµt = −αF (θ)µt + αF̄ (t)µt, (23)

where F̄ (t) =
∫
Rk F (θ)µt(dθ). This equation can be solved exactly. Assuming that µ0 has a density

everywhere positive on Rk, µt has a density ρt given by

ρt(θ) = eα
∫ t
0
F̄ (s)ds−αtF (θ)ρ0(θ). (24)

The normalization condition µt(Rk) =
∫
Rk ρt(θ)dθ = 1 leads to:

eα
∫ t
0
F̄ (s)ds

∫
Rk
e−αtF (θ′)ρ0(θ′)dθ′ = 1

⇔ e−α
∫ t
0
F̄ (s)ds =

∫
Rk
e−αtF (θ′)ρ0(θ′)dθ′.

Therefore, by plugging this last expression in equation (24), we obtain the explicit expression

ρt(θ) =
e−αtF (θ)ρ0(θ)∫

Rk e
−αtF (θ′)ρ0(θ′)dθ′

. (25)

We can use this equation to express the energy F̄ (t) =
∫
Rk F (θ)ρt(θ)dθ:

F̄ (t) =

∫
Rk F (θ)e−αtF (θ)ρ0(θ)dθ∫

Rk e
−αtF (θ)ρ0(θ)dθ

=
d

dαt
G(αt), (26)

where G(αt) is the function defined as:

G(αt) = − log

∫
Rk
e−αtF (θ)ρ0(θ)dθ. (27)

At late times, the factor e−αtF (θ) focuses all the mass in the vicinity of the global minimum of F . Therefore,
we can neglect the influence of the density ρ0 in this integral. More precisely a calculation using the Laplace
method indicates that ∫

Rk
e−αtF (θ)dθ ∼ (2π)d/2(αt)−d/2(det(H∗))−1/2. (28)

where H∗ = ∇∇F (θ∗) is the Hessian at the global minimum located at θ∗, and ∼ indicates that the ratio of
both sides of the equation tend to 1 as αt→∞. This shows that

F̄ (t) ∼ 1
2d(αt)−1 as αt→∞ (29)
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C.3 Non-interacting Case with Transportation and Birth-death

C.3.1 Proof of Theorem C.2

We first prove the following intermediate result

Lemma C.3 Let δ > 0 arbitrary, and define

φδ(θ) = max(0, 1− δ−1F (θ)) , fδ =

∫
Rk
φδ(θ)µ0(dθ) .

Then

∀t : E(t) ≤ δ +
1

αtfδ
. (30)

Proof: By slightly abusing notation, we define

fδ(t) =

∫
Rk
φδ(θ)µt(dθ) .

We consider the following Lyapunov function:

Lδ(t) = αt(E(t)− δ) +
1

fδ(t)
. (31)

Its time derivative is

L̇δ(t) = α(E(t)− δ) + αtĖ(t)− ḟδ(t)

f2
δ (t)

. (32)

By definition, we have

Ė(t) = −
∫
Rk
|∇F (θ)|2µt(dθ)− α

∫
Rk

(F (θ)− F (t))2µt(dθ) ≤ 0 . (33)

We also have

ḟδ(t) = −
∫
Rk
〈∇φδ(θ),∇F (θ)〉µt(dθ)− α

∫
Rk
φδ(θ)F (θ)µt(dθ) + αE(t)fδ(t)

≥ δ−1

∫
Rk
|∇F (θ)|2µt(dθ) + α(E(t)− δ)fδ(t)

≥ α(E(t)− δ)fδ(t) . (34)

Observe that 0 ≤ fδ(t) < 1 because otherwise F would be flat (in which case the energy is 0). Also, we can
assume wlog that E(t)− δ > 0, since otherwise the statement of the lemma is trivially verified. By plugging
(33) and (34) into (32) we have

L̇δ(t) ≤ α(E(t)− δ)− α(E(t)− δ)f−1
δ (t) = α(E(t)− δ)(1− f−1

δ (t)) ≤ 0 . (35)

Finally, since f−1
δ (t) ≥ 0, we have

(E(t)− δ) ≤ Lδ(t)
αt

≤ Lδ(0)

αt
=

1

αtfδ
,

which concludes the proof of the Lemma. �
Proof of Theorem C.2: In order to prove (20), we apply the previous lemma for δ → 0. Let θ∗ =

arg minV (θ), We have F (θ∗) = 0, and ‖∇∇F (θ)‖ ≤ β for some β > 0. Then, for δ sufficiently small, the
indicator function φδ(θ) is localized in the set{

θ ∈ Rk; 1
2 〈(θ − θ

∗), H∗(θ − θ∗) ≤ δ
}
⊇
{
θ ∈ Rd; ‖θ − θ∗‖2 ≤ 2β−1δ

}
.
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where H∗ = ∇∇F (θ∗). It follows that for sufficiently small δ,

fδ =

∫
Rk
φδ(θ)µ0(dθ)

& ρ0(θ∗)

∫
‖θ−θ∗‖≤

√
2β−1δ

(
1− 1

2δ
−1〈(θ − θ∗), H∗(θ − θ∗)〉

)
dθ

∼ ρ0(θ∗)
(
2β−1δ

)d/2
. (36)

By plugging (36) into (30) we obtain

∀ δ, t > 0 : E(t) ≤ δ +
1

αt

(
β

2δ

)d/2
∼ δ + Cδ−d/2t−1 ,

which implies that in order to reach an error ε, we need

tε = O
(
ε−(d+2)/2

)
,

which shows (20).
To obtain the asymptotic convergence rate in (21), note that by Lemma C.4 below the energy F̄ (t) =∫

Rk F (θ)ρt(θ)dθ can be written in terms of (43) as

F̄ (t) =

∫
Rk F (θ) exp

(∫ 0

−t(−αF (Θ(s,θ)) + ∆F (Θ(s,θ)))ds
)
ρ0(Θ(−t,θ))dθ∫

Rk exp
(∫ 0

−t(−αF (Θ(s,θ)) + ∆F (Θ(s,θ)))ds
)
ρ0(Θ(−t,θ))dθ

(37)

For large t, we can again use Laplace method to confirm that ρ(t,θ) concentrates near the absolute minimum
of F (θ) located at θ∗. To see why notice that Θ(t,θ) converge, as t→∞, near local minima of F . Suppose
that these minima are located at θ∗1 = θ∗, θ∗2, etc. At these minima we have ∇F (θ∗j ) = 0, and if in (45) we

replace F (θ) by its quadratic approximation around any θ∗j ,
1
2 〈θ − θ

∗
j , H

∗
j (θ − θ∗j )〉 with H∗j = ∇∇H(θ∗j )

positive definite, the solution to this equation reads

Θj
quad(t,θ) = θ∗j + e−H

∗t(θ − θ∗j ) (38)

from which we deduce ∫ 0

−t
∆F (Θj

quad(s,θ))ds = tr(H∗j )t, (39)

and

−α
∫ 0

−t
F (Θj

quad(s,θ))ds = αF (θ∗j )t− 1
2α

∫ 0

−t
〈θ̃j , e−H

∗sH∗e−H
∗sθ̃j〉

= αF (θ∗j )t− 1
4α〈θ̃j , (e

2H∗t − Id)θ̃j〉.
(40)

where θ̃j = θ − θ∗j . Since F (θ∗j ) > 0 except for the the global minimum F (θ∗1) = F (θ∗1) = 0, for large t, the
only points that contribute to the integrals in (37) are those in a small region near θ∗ where we can replace
Θ(t,θ) by Θ1

quad(t,θ). As a result we can again neglect ρ0 in these integrals, and evaluate them as if ρt was
asymptotically the Gaussian density:

ρt(θ) ∼ N (θ∗, 2α−1e−2H∗t). (41)

This quantifies the late stages of the global convergence to the minimum and confirms the asymptotic decay
rate in (21), thereby concluding the proof of Theorem C.2. �

Lemma C.4 Denote by Θ(t,θ) the solution of the ODE

Θ̇(t,θ) = −∇F (Θ(t,θ)), Θ(0,θ) = θ (42)
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Then under the conditions of Theorem C.2, the solution µt of the PDE (12) has a density ρt given by

ρt(θ) =
exp

(∫ 0

−tG(Θ(s,θ))ds
)
ρ0(Θ(−t,θ))∫

D
exp

(∫ 0

−tG(Θ(s,θ′))ds
)
ρ0(Θ(−t,θ′))dθ′

(43)

where G(θ) = ∆F (θ)− αF (θ).

Proof: Since the initial µ0 has a density ρ0 > 0, so does µt for all t > 0 (but not in the limit as t→∞)
and its density satisfies

∂tρt = ∇ · (ρt∇F (θ))− αF (θ)ρt + αF̄ (t)ρ(t), (44)

If Θ(t,θ) satisfies
Θ̇(t,θ) = −∇F (Θ(t,θ)) Θ(0,θ) = θ. (45)

we have
d

dt
ρt(Θ(t,θ)) = ∂tρt(Θ(t,θ)) + Θ̇(t,θ)) · ∇ρt(Θ(t,θ))

= ∆F (Θ(t,θ))ρ(t,Θ(t,θ))−
(
F (Θ(t,θ))− αF̄ (t)

)
ρt(Θ(t,θ)).

(46)

Therefore

ρt(Θ(t,θ)) = exp

(∫ t

0

(−αF (Θ(s,θ)) + αF̄ (s) + ∆F (Θ(s,θ)))ds

)
ρ0(θ). (47)

By using Θ(t,Θ(s,θ)) = Θ(t+ s,θ) and the normalization condition, this implies

ρt(θ) =
exp

(∫ 0

−t(−αF (Θ(s,θ)) + ∆F (Θ(s,θ)))ds
)
ρ0(Θ(−t,θ))∫

Rk exp
(∫ 0

−t(−αF (Θ(s,θ′)) + ∆F (Θ(s,θ′)))ds
)
ρ0(Θ(−t,θ′))dθ′

. (48)

This is (43) and terminates the proof of the lemma. �

D Derivation of (17)

Let µ∗ be a minimizer and compare its energy to that of any other probability measure µ. Since the energy
minimum is unique by convexity, we must have E [µ] ≥ E [µ∗]. A direct calculation shows that

E [µ] = E [µ∗] +

∫
D

V (θ, [µ∗])(µ(dθ)− µ∗(dθ))

+ 1
2

∫
D×D

K(θ,θ′)(µ(dθ)− µ∗(dθ))(µ(dθ′)− µ∗(dθ′))
(49)

The last term at the right hand side is always non-negative. Focusing on the second term its positivity
requires that ∫

D

V (θ, [µ∗])µ(dθ) ≥
∫
D

V (θ, [µ∗])µ∗(dθ)) ≡ V̄ [µ∗] (50)

Since this equation must hold for any µ ∈M(D), we can specialize to Dirac distributions to deduce that the
second equation in (17) must hold everywhere in D. In turns, this implies the first equation in (17) must
hold as well.

E Proof of Theorem 4.3

We begin by noting that, if (14) holds for al t > 0, then V̄ [µt] = −α−1d logC(t)/dt must be well-defined at
all times. From (15), this derivative is given by

V̄ [µt] = −α−1 d

dt
logC(t) =

∫
D
V (Θ(t,θ), [µt])e

−α
∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)

(51)

8



Differentiating one more times gives

d

dt
V̄ [µt] = −α

∫
D
|V (Θ(t,θ), [µt])|2e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)

+ α

(∫
D
V (Θ(t,θ), [µt])e

−α
∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])ds

)2

+

∫
D
∂tV (Θ(t,θ), [µt])e

−α
∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)

= −α
∫
D
|V (Θ(t,θ), [µt])|2e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)

+ α

(∫
D
V (Θ(t,θ), [µt])e

−α
∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])ds

)2

+

∫
D

Θ̇(t,θ) · ∇V (Θ(t,θ), [µt])e
−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)

+

∫
D×DK(Θ(t,θ),θ′)∂tµt(dθ

′)e−α
∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)∫

D
e−α

∫ t
0
V (Θ(s,θ),[µs])dsµ0(dθ)

(52)

Using (15) to replace Θ̇(t,θ) by −∇V (Θ(t,θ), [µt]) and (14) to express these integral as expectations
against µt gives

d

dt
V̄ [µt] = −α

∫
D

|V (θ, [µt])|2µt(dθ) + α

(∫
D

V (θ, [µt])µt(dθ)

)2

−
∫
D

|∇V (θ, [µt])|2µt(dθ)−
∫
D×D

K(θ,θ′)∂tµt(dθ
′)µt(dθ)

= −α
∫
D

(
V (θ, [µt])− V̄ [µt]

)2
µt(dθ)−

∫
D

|∇V (θ, [µt])|2µt(dθ)

− 1
2

d

dt

∫
D×D

K(θ,θ′)µt(dθ
′)µt(dθ)

(53)

Therefore the terms at right hand side of (16) must be well-defined and we must also have∫
D

|V (θ, [µt])|2µt(dθ) <∞,
∫
D

|∇V (θ, [µt])|2µt(dθ) <∞
∫
D×D

K(θ,θ′)µt(dθ
′)µt(dθ) <∞ (54)

Since µt ⇀ µ∗ ∈M(D) by assumption, we can take the limit as t→∞ to deduce that

lim
t→∞

∫
D

V (θ, [µt])µt(dθ) =

∫
D

V (θ, [µ∗])µ∗(dθ)

lim
t→∞

∫
D

|V (θ, [µt])|2µt(dθ) =

∫
D

|V (θ, [µ∗])|2µ∗(dθ)

lim
t→∞

∫
D

|∇V (θ, [µt])|2µt(dθ) =

∫
D

|∇V (θ, [µ∗])|2µ∗(dθ)

(55)

We will use these properties below, along with

V (θ, [µt])→ V (θ, [µ∗]) and

∫
D

K(θ,θ′)µt(dθ
′)→

∫
D

K(θ,θ′)µ∗(dθ
′) pointwise in D (56)

which is require in order that both V̄ [µt] and E [µt] be well-defined at all t > 0 and in the limit as t→∞.
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With these preliminaries, we now recall that the argument given after Theorem 4.3 implies that any fixed
point µ∗ of the PDE (13) must satisfy the first equation in (17). That is, we must have

V (θ, [µ∗]) = V̄ [µ∗] ∀θ ∈ suppµ∗ (57)

Therefore, to prove Theorem 4.3, it remains to show that the second equation in (17) must be satisfied as well.
We will argue by contradiction: Let D∗ = suppµ∗, assume Dc

∗ 6= ∅, and suppose that there exists a region
N ⊆ Dc

∗ where V (θ, [µ∗]) < V̄ [µ∗]. If it exists, this region must have nonzero Hausdorff measure in D since,
by Assumption 4.2, V (θ, [µt]) ∈ C2(D) for all t ≥ 0 and V (θ, [µ∗]) ∈ C2(D). V (θ, [µ∗])− V̄ [µ∗] must also
reach a minimum value inside D even if D is open, for otherwise (15) would eventually carry mass towards
infinity, which contradicts µt ⇀ µ∗. This implies that, if we pick δ ∈ (0, V̄ [µ∗]−minθ V (θ, [µ∗])) and let

Nδ = {θ : δ ≤ V̄ [µ∗]− V (θ, [µ∗])} ⊂ N, (58)

then Nδ is not empty. Since V (θ, [µ∗]) is twice differentiable in θ, for δ close enough to V̄ [µ∗]−minθ V (θ, [µ∗]),
Nδ is also compact and such that

∀θ ∈ ∂Nδ : |∇V (θ, [µ∗])| > 0. (59)

Given any solution µt of the PDE (13) that is supposed to converge to µ∗ as t→∞, consider

fδ(t) = µt(Nδ) (60)

Since µt is positive everywhere at any finite time, we must have fδ(t) > 0 for t ∈ (0,∞) However, since
µt → µ∗, we must also have

lim
t→∞

fδ(t) = 0. (61)

From (13), fδ(t) satisfies

ḟδ(t) =

∫
∂Nδ

n̂ · ∇V dσt − α
∫
Nδ

(V − V̄ )dµt (62)

where n̂(θ) is the inward pointing unit normal to ∂Nδ at θ and σt is the probability measure on ∂Nδ obtained
by restricting µt on this boundary: If φε ∈ C∞c (D) is a sequence of test functions with suppφε = Nδ and
converging towards the indicator set of Nδ as ε→ 0, σt is defined as

lim
ε→0

∫
Nδ

∇φε(θ) · ∇V (θ, [µt])µt(dθ) =

∫
∂Nδ

n̂(θ) · ∇V (θ, [µt])dσt(θ) (63)

Since
lim
t→∞

n̂(θ) · ∇V (θ, [µt]) = |∇V (θ, [µ∗])| > 0, (64)

there exists t+ > 0 such that

∀t > t+ :

∫
δNδ

n̂ · ∇V dνt > 0. (65)

Restricting ourselves to t > t+, we therefore have

ḟδ(t) > −α
∫
Nδ

(V − V̄ )dµt (66)

Let us analyze the remaining integral in this equation. Denoting Ṽ (θ, [µt]) = V (θ, [µt])− V̄ [µt], we have

−α
∫
Nδ

Ṽ (θ, [µt])µt(dθ) = −α
∫
Nδ

Ṽ (θ, [µ∗])µt(dθ)

− α
∫
Nδ

(
Ṽ (θ, [µt])− Ṽ (θ, [µ∗])

)
µt(dθ)

≥ αδfδ(t)− α
∫
Nδ

(
Ṽ (θ, [µt])− Ṽ (θ, [µ∗])

)
µt(dθ)

(67)
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where we used the definition of Nδ. Looking at the last term, we can assess its magnitude using∣∣∣∣∫
Nδ

(
Ṽ (θ, [µt])− Ṽ (θ, [µ∗])

)
µt(dθ)

∣∣∣∣
≤ 1

2

∫
Nδ

∣∣∣∣∫
D

K(θ,θ′)
(
µt(dθ

′)− µ∗(dθ′)
)∣∣∣∣µt(dθ) +

∣∣V̄ [µt]− V̄ (µ∗)
∣∣ fδ(t)

≤M(t)fδ(t)

(68)

where (using the compactness of Nδ)

M(t) = max
Nδ

∣∣∣∣∫
D

K(θ,θ′)(µt(dθ
′)− µ∗(dθ′))

∣∣∣∣+ |V̄ [µt]− V̄ (µ∗)| <∞ (69)

Summarizing, we have deduced that
ḟδ(t) > αδfδ(t) +R(t) (70)

with
|R(t)| ≤M(t)fδ(t) (71)

Since we work under the assumption that µt ⇀ µ∗, M(t) must tend to 0 as t→∞. As a result, ∃tδ > 0 such
∀t > tδ we have N(t) < δ, which, from (70), implies that ∀t > max(t+, tδ) we have ḟδ(t) > 0, a contradiction
with (61). Therefore the only fixed points accessible by the PDE (13) are those for which both equations
in (17) hold, which proves the theorem.

F Proof of Theorem 4.4

Let µ∗ = limt→∞ µt be the stationary point reached by the solution of (13) and denote E(t) = E [µt]−E [µ∗] ≥ 0.
Then

d

dt
E−1 = −E−2

∫
D

V ∂tµt

= E−2

∫
D

(
|∇V |2 + α|V − V̄ |2

)
dµt

≥ αE−2

∫
D

|V − V̄ |2dµt

(72)

where we used
∫
D
V 2dµt − V̄ 2 =

∫
D
|V − V̄ |2dµt. By convexity

E [µ∗] ≥ E [µ]−
∫
D

V (dµ− dµ∗)

= E [µ]− V̄ +

∫
D

V dµ∗

= E [µ] +

∫
D

(V − V̄ )dµ∗

(73)

As a result

0 ≤ E ≤
∫
D

(V̄ − V )dµ∗ (74)

and hence

0 ≤ E2 ≤
∣∣∣∣∫
D

(V − V̄ )dµ∗

∣∣∣∣2 (75)

Using this inequality in (72) gives
d

dt
E−1 ≥ α

∫
D
|V − V̄ |2dµt∣∣∫

D
(V − V̄ )dµ∗

∣∣2 (76)
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In Lemma F.1 below we show that ∃t+ > 0 such that

∀t > t+ :

∫
D
|V − V̄ |2dµt∣∣∫

D
(V − V̄ )dµ∗

∣∣2 ≥ C > 0 (77)

As a result, dE−1/dt ≥ α for t > t+. Integrating this relation in time on [t0, t] with t+ < t0 ≤ t gives

E−1(t) ≥ E−1(t)− E−1(t0) ≥ αC(t− t0) (78)

and hence
lim
t→∞

tE(t) ≤ (αC)−1 (79)

which proves the theorem. �
Note that the proof only takes into account the effects of birth-death terms; adding transport may

accelerate the rate.

Lemma F.1 There exist t+ > 0 such that (77) holds.

Proof: Let νt = µt − µ∗ and for future reference note that νt is a signed measure on D∗ = suppµ∗ but νt ≥ 0
on D∗c . Denote

V = V (θ, [µt]), V̄ =

∫
D

V (θ, [µt])dµt, V∗ = V (θ, [µ∗]), V̄∗ =

∫
D

V (θ, [µ∗])dµ∗ (80)

We have

V = F (θ) +

∫
D

K(θ,θ′)(µ∗(dθ
′) + νt(dθ)′)

= V∗ +

∫
D

K(θ,θ′)νt(dθ
′)

(81)

and hence ∫
D

V dµ∗ = V̄∗ +

∫
D×D

K(θ,θ′)νt(dθ
′)µ∗(dθ) (82)

Recall that V∗ = V̄∗ on suppµ∗. As a result

V̄ =

∫
D

F (θ)(µ∗(dθ) + νt(dθ)) +

∫
D×D

K(θ,θ′)(µ∗(dθ) + νt(dθ))(µ∗(dθ
′) + νt(dθ

′))

= V̄∗ +

∫
D

F (θ)νt(dθ) + 2

∫
D×D

K(θ,θ′)µ∗(dθ)νt(dθ
′) +

∫
D×D

K(θ,θ′)νt(dθ)νt(dθ
′)

(83)

We can combine these two equations to obtain∫
D

(V̄ − V )dµ∗ =

∫
D

F (θ)νt(dθ) +

∫
D×D

K(θ,θ′)µ∗(dθ)νt(dθ
′) +

∫
D×D

K(θ,θ′)νt(dθ)νt(dθ
′)

=

∫
D

V∗dνt +

∫
D×D

K(θ,θ′)νt(dθ)νt(dθ
′)

=

∫
D

(V? − V̄∗)dνt +

∫
D×D

K(θ,θ′)νt(dθ)νt(dθ
′)

=

∫
Dc∗

(V? − V̄∗)dνt +

∫
D×D

K(θ,θ′)νt(dθ)νt(dθ
′)

(84)

where we used
∫
D
V̄∗dνt = V̄∗

∫
D

(dµt − dµ∗) = 0 to get the penultimate equality and V? − V̄∗ = 0 on D∗ to
get the last.

Proceeding similarly using again V∗ = V̄∗ on suppµ∗ as well as
∫
D
dνt =

∫
D

(dµt − dµ∗) = 0, we can also
obtain∫

D

|V − V̄ |2dµ∗ =

∫
D

(∫
D

K(θ,θ′)νt(dθ
′)

)2

µ∗(dθ) +R2 − 2R

∫
D×D

K(θ,θ′)νt(dθ
′)µ∗(dθ) (85)
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and ∫
D

|V − V̄ |2dµt =

∫
Dc∗

|V∗ − V̄∗|2dνt +

∫
D

(∫
D

K(θ,θ′)νt(dθ
′)

)2

(µ∗(dθ) + νt(dθ)) +R2

− 2R

∫
Dc∗

(V∗ − V̄∗)dνt − 2R

∫
D×D

K(θ,θ′)νt(dθ
′)(µ∗(dθ) + νt(dθ))

+ 2

∫
Dc∗×D

(V∗ − V̄∗)νt(dθ)K(θ,θ′)νt(dθ
′)

(86)

where we denote

R = V̄ − V̄∗

=

∫
D

F (θ)νt(dθ) + 2

∫
D×D

K(θ,θ′)µ∗(dθ)νt(dθ
′) +

∫
D×D

K(θ,θ′)νt(dθ)νt(dθ
′)

(87)

Let us now compare the square of (84) to (86). Since V∗ − V̄∗ ≥ 0 and νt ≥ 0 on Dc
∗, we have∫

Dc∗

(V? − V̄∗)dνt ≥ 0. (88)

We distinguish two cases:

Case 1:
∫
Dc∗

(V∗ − V̄∗)dνt > 0 (which requires Dc
∗ 6= ∅). Since νt ⇀ 0 as t→∞ the last term in (82) is

higher order. As a result, for any δ > 0, ∃t1 > 0 such that

∀t > t1 :

∫
D

(V̄ − V )dµ∗ ≤ (1 + δ)

∫
Dc∗

(V? − V̄∗)dνt (89)

which also implies that (using again νt ≥ 0 on Dc
∗)

∀t > t1 :

∣∣∣∣∫
D

(V − V̄ )dµ∗

∣∣∣∣2 ≤ (1 + δ)2

∣∣∣∣∫
D∗

(V∗ − V̄∗)dνt
∣∣∣∣2

≤ (1 + δ)2νt(D
c
∗)

∫
D∗
|V? − V̄∗|2dνt

(90)

Similarly, the first term at the right hand side of (86) dominates all the other ones as t→∞ in the sense
that, for any δ > 0, ∃t2 > 0 such that

∀t > t2 :

∫
D

|V − V̄ |2dµt ≥ (1− δ)
∫
Dc∗

|V∗ − V̄∗|2dνt (91)

Taken together, (90) and (91) imply the statement of the lemma with any C > 0 (since νt(D
c
∗) → 0 as

t→∞). As a result limt→∞ tE(t) = 0 in this case since
∫
D
|V − V̄ |2dµt/|

∫
D

(V − V̄ )dµ∗|2 →∞.

Case 2:
∫
Dc∗

(V∗ − V̄∗)dνt = 0 (i.e. Dc
∗ = ∅ or V∗ = V̄∗ on Dc

∗ as well as D∗). In this case it is easier to

use (85) via the inequality ∣∣∣∣∫
D

(V − V̄ )dµ∗

∣∣∣∣2 ≤ ∫
D

|V − V̄ |2dµ∗ (92)

We also have that (86) reduces to∫
D

|V − V̄ |2dµt =

∫
D

(∫
D

K(θ,θ′)νt(dθ
′)

)2

(µ∗(dθ) + νt(dθ)) +R2

− 2R

∫
D×D

K(θ,θ′)νt(dθ
′)(µ∗(dθ) + νt(dθ))

=

∫
D

(∫
D

K(θ,θ′)νt(dθ
′)

)2

(µ∗(dθ) + νt(dθ))−R2

(93)
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where we use the fact that R reduces to (using V∗ = V̄∗ and
∫
D
V∗dνt = V̄∗

∫
D

(dµt − dµ∗) = 0)

R =

∫
D

V∗dνt +

∫
D×D

K(θ,θ′)µ∗(dθ)νt(dθ
′) +

∫
D×D

K(θ,θ′)νt(dθ)νt(dθ
′)

=

∫
D×D

K(θ,θ′)νt(dθ)(µ∗(dθ
′) + νt(dθ

′))

(94)

Since
∫
D
K(θ,θ′)νt(dθ

′) 6= 0 on D∗, the leading order terms in
∫
D
|V − V̄ |2dµ∗ and

∫
D
|V − V̄ |2dµt are the

same and given by

A =

∫
D

(∫
D

K(θ,θ′)νt(dθ
′)

)2

dµ∗ −
(∫

D×D
K(θ,θ′)νt(dθ

′)µ∗(dθ)

)2

> 0 (95)

That is, for any δ > 0, ∃t3 > 0 such that

∀t > t3 :

∫
D

|V − V̄ |2dµ∗ ≤ (1 + δ)A,

∫
D

|V − V̄ |2dµt ≥ (1− δ)A (96)

Together with (92), this implies the statement of the lemma with C = 1. �

G Proof of Propositions 5.1 and 5.2

Here we give formal proofs Propositions 5.1 and 5.2 using tools from the theory of measure-valued Markov
processes [Daw06].

To begin, recall that the evolution of µ
(n)
t = n−1

∑n
i=1 δθi(t) is Markovian since that of the particles θi(t)

is and these particles are interchangeable. To study this measure-valued Markov process and in particular
analyze its properties when n→∞, it is useful to write its infinitesimal generator, i.e. the operator whose
action on a functional Φ :M(Rk)→ R evaluated on µ(n) is defined via

(LnΦ)[µ(n)] = lim
t→0+

t−1
(
Eµ

(n)
0 =µ(n)

Φ[µ
(n)
t ]− Φ[µ(n)]

)
(97)

where Eµ
(n)
0 =µ(n)

denotes the expectation along the trajectory µ
(n)
t taken conditional on µ

(n)
0 = µ(n) for some

given µ(n). To compute the limit in (97), notice that if particle θi(t) gets killed at time t and particle θj(t)

gets duplicated, the changes this induces on µ
(n)
t is

µ
(n)
t = µ

(n)
t− + n−1

(
δθj − δθi

)
. (98)

where µ
(n)
t− = limε→0+ µ

(n)
t−ε Similarly if particle θi(t) gets duplicated at time t and particle θj(t) gets killed,

the change this induces on µ
(n)
t is

µ
(n)
t = µ

(n)
t− − n−1

(
δθj − δθi

)
. (99)

A particle swap occurs with rates dictated by Ṽ , so we define

µ
(n)
t {θ ↔ θ′} = µ

(n)
t + n−1σ(θ) (δθ − δθ′) (100)

where σ(θi) = sign Ṽ (θi) determines the direction of the swap. If we account for the rate at which these
events occur, as well as the effect of transport by GD, we can explicitly compute the generator defined in (97)
and arrive at the expression

(LnΦ)[µ(n)] = − 1

n

n∑
i=1

∫
D

∇V (θi, [µ
(n)])δθi(dθ) · ∇θiDµ(n)Φ(θi)

+
α

n

n∑
i,j=1

∫
D×D

|Ṽ (θi)|δθi(dθ)δθj (dθ
′)
(

Φ[µ
(n)
t {θi ↔ θj}]− Φ[µ(n)]

) (101)
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where the functional derivative DµΦ is the function from D to R defined via: for any ω ∈Ms(D), the space
of signed distributions such that

∫
D
ω(dθ) = 0,

lim
ε→0

ε−1 (Φ[µ+ εω]− Φ[µ]) =

∫
D

DµΦ(θ)ω(dθ) (102)

We can use the properties of the Dirac distribution to rewrite the generator in (101) as

(LnΦ)[µ(n)] = −
∫
D

∇V (θ, [µ(n)])µ(n)(dθ) · ∇Dµ(n)Φ(θ)

+ nα

∫
D×D

|Ṽ (θ, [µ(n)])|µ(n)(dθ)µ(n)(dθ′)
(

Φ[µ
(n)
t {θ ↔ θ′}]− Φ[µ(n)]

) (103)

and σ in (100) is evaluated on

Ṽ (θ, [µ]) = F (θ) +

∫
D

K(θ,θ′)µ(dθ′)−
∫
D

(
F (θ′) +

∫
D

K(θ′,θ′′)µ(dθ′′)

)
µ(dθ′). (104)

The operator in (103) is now defined for any µ ∈M(D), and we will use it in this form in our developments
below.

The generator (103) can be used to write an evolution equation for the expectation of functionals evaluated

on µ
(n)
t . That is, if we define

Φt[µ
n] = Eµ

(n)
0 =µ(n)

Φ[µnt ] (105)

then this time-dependent functional satisfies the backward Kolmogorov equation (BKE)

∂tΦt[µ
n] = (LnΦt)[µ

(n)], Φt=0[µn] = Φ[µn]. (106)

The proof of Proposition 5.1 is based on analyzing the properties of this equation in the limit as n → ∞,
which we expand upon in Appendix G.1. The proof of Proposition 5.2 is based on writing a similar equation

for an extended process in which we magnify the dynamics of µ
(n)
t around its limit, as shown in Appendix G.2.

G.1 Proof of Proposition 5.1

If we take the limit of (LnΦ)[µ(n)] as n→∞ on a sequence such that µ(n) ⇀ µ, we deduce that (LnΦ)[µ(n)]→
(LΦ)[µ] with

(LΦ)[µ] = −
∫
D

∇V (θ, [µ])µ(dθ) · ∇θDµΦ(θ)− α
∫
D

Ṽ (θ, [µ])µ(dθ)DµΦ(θ) (107)

Correspondingly, in this limit the BKE (106) becomes

∂tΦt[µ] = (LΦt)[µ], Φt=0[µ] = Φ[µ]. (108)

Since (107) is precisely the generator of process defined by the PDE (13), this shows that, if µ
(n)
t=0 = µ(n) ⇀ µ

as n→∞, then

lim
n→∞

Φt[µ
(n)] = Φt[µ] ⇔ lim

n→∞
Eµ

(n)
0 =µ(n)

Φ[µnt ] = Φ[µt] (109)

where µt solves the PDE (13) for the initial condition µt=0 = µ. This proves the weak version of the LLN
stated in Proposition 5.1.

G.2 Proof of Proposition 5.2

To quantify the fluctuations around the LLN, let µt be the limit of µ
(n)
t (i.e. the solution to the PDE (13))

and define
ω

(n)
t =

√
n
(
µ

(n)
t − µt

)
∈Ms(D) (110)
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We can write down the generator of the joint process (µt, ω
(n)
t ). To do so, we consider its action on a

functional, Φ̂ :M(D)×Ms(D)→ R is given by (using µ(n) = µ+ n−1/2ω(n))

(L̂nΦ̂)[µ, ω(n)]

= n1/2

∫
D

∇V (θ, [µ+ n−1/2ω(n)]))
(
µ(dθ) + n−1/2ω(n)(dθ)

)
· ∇Dω(n)Φ̂(θ)

+ nα

∫
D×D

σ(θ, [µ+ n−1/2ω(n)])Ṽ (θ, [µ+ n−1/2ω(n)])
(
µ(dθ) + n−1/2ω(n)(dθ)

)(
µ(dθ′) + n−1/2ω(n)(dθ′)

)
×
(

Φ̂[µ, ω(n) + n−1/2σ(θ, [µ+ n−1/2ω(n)])(δθ′ − δθ)]− Φ̂[µ, ω(n)]
)

−
∫
D

∇V (θ, [µ]))µ(dθ) · ∇θ
(
DµΦ̂(θ)− n1/2Dω(n)Φ̂(θ)

)
− α

∫
D

Ṽ (θ, [µ])µ(dθ)
(
DµΦ̂(θ)− n1/2Dω(n)Φ̂(θ)

)
.

(111)
Proceeding similarly as we did to derive (107), we can take the limit of (L̂nΦ̂)[µ, ω(n)] as n → ∞ on

a sequence such that ω(n) ⇀ ω ∈ Ms(D). A direct calculation using
∫
D
Ṽ (θ, [µ])dµ = 0,

∫
D
dω = 0, and∫

D
Ṽ (θ, [µ])dµ = 1 indicates that (L̂nΦ̂)[µ, ω(n)]→ (L̂Φ̂)[µ, ω] with

(L̂Φ̂)[µ, ω] = −
∫
D

∇V (θ, [µ])ω(dθ) · ∇DωΦ(θ)−
∫
D×D

∇K(θ,θ′)ω(dθ′)µ(dθ) · ∇DωΦ(θ)

− α
∫
D

Ṽ (θ, [µ])ω(dθ)DωΦ̂(θ)− α
∫
D×D

K(θ,θ′)ω(dθ′)µ(dθ)DωΦ̂(θ)

+ α

∫
D×D

Ṽ (θ′, [µ])ω(dθ′)µ(dθ)DωΦ̂(θ)

+ α

∫
D×D×D

K(θ′,θ′′)ω(dθ′)µ(dθ′′)µ(dθ)DωΦ̂(θ)

+ α

∫
D×D

|Ṽ (θ, [µ])|µ(dθ)µ(dθ′)
(
D2
ωΦ̂(θ,θ) +D2

ωΦ̂(θ′,θ′)− 2D2
ωΦ̂(θ,θ′)

)
−
∫
D

∇V (θ, [µ])µ(dθ) · ∇θDµΦ(θ)− α
∫
D

Ṽ (θ, [µ])µ(dθ)DµΦ(θ)

(112)

where the second order functional derivative D2
µΦ̂ is the function from D × D to R defined via: for any

ν, ν′ ∈Ms(D),

lim
ε,ε′→0

(εε′)−1
(

Φ̂[µ+ εν + ε′ν′, ω]− Φ̂[µ+ εν, ω]− Φ̂[µ+ ε′ν′, ω] + Φ̂[µ, ω]
)

=

∫
D×D

D2
µΦ̂(θ,θ′)ν(dθ)ν(dθ′),

(113)

and similarly for D2
ωΦ̂. The operator in µ in (111) is the same as in (107), confirming the LLN; the operator

in ω is a second order operator, i.e. it is the generator of a stochastic differential equation. That is, we have
established that, as n→∞,

ω
(n)
t ≡

√
n
(
µ

(n)
t − µt

)
⇀ ωt in law (114)

where ωt(dθ) is Gaussian random distribution whose equation can be obtained from the generator in (112)
Formally

∂tωt = ∇ ·
(
∇V (θ, [µt])ωt +

∫
D

∇K(θ,θ′)ωt(dθ
′)µt

)
− αṼ (θ, [µt])ωt − α

∫
D

K(θ,θ′)ωt(dθ
′)µt

+ α(

∫
D×D

K(θ′,θ′′)µt(dθ
′)ωt(dθ

′′))µt +
√

2η(t),

(115)
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where η(t) is a white-noise term with covariance consistent with (112):

Eη(t)η(t′) = α|Ṽ (θ, [µt])|µt(dθ)δθ(dθ′)δ(t− t′)

− α
(
|Ṽ (θ, [µt])|+ |Ṽ (θ′, [µt])|

)
µt(dθ)µt(dθ

′)δ(t− t′)
(116)

Since ωt is Gaussian with zero mean, all its information is contained in its covariance Σt(dθ, dθ
′) =

Eωt(dθ)ωt(dθ
′), for which we can derive the equation

∂tΣt = ∇θ ·
(
∇V (θ, [µt])Σt +

∫
D

∇K(θ,θ′′)Σt(dθ, dθ
′′)µt(dθ)

)
+∇θ′ ·

(
∇V (θ′, [µt])Σt +

∫
D

∇K(θ′,θ′′)Σt(dθ
′, dθ′′)µt(dθ

′)

)
− α

(
Ṽ (θ, [µt]) + Ṽ (θ′, [µt])

)
Σt

− αµt(dθ)

∫
D

K(θ,θ′′)Σt(dθ
′′, dθ′)− αµt(dθ′)

∫
D

K(θ′,θ′′)Σt(dθ
′′, dθ)

+ αµt(dθ)

∫
D

Ṽ (θ′′, [µt])Σt(dθ
′′, dθ) + αµt(dθ

′)

∫
D

Ṽ (θ′′, [µ])Σt(dθ
′′, dθ′)

+ αµt(dθ)

∫
D×D

K(θ′′′,θ′′)µt(dθ
′′′)Σt(dθ

′′, dθ′) + αµt(dθ
′)

∫
D

K(θ′′′,θ′′)µt(dθ
′′′)Σt(dθ

′′, dθ)

+ α|Ṽ (θ, [µt])|µt(dθ)δθ(dθ′)− α(|Ṽ (θ, [µt])|+ |Ṽ (θ′, [µt])|)µt(dθ)µt(dθ
′)

(117)
This equation should also be interpreted in the weak sense by testing it against some φ ∈ C∞c (D×D), and it
can be seen that it conserves mass in the sense that Σt(dθ, D) = Σt(D, dθ

′) = 0 for all t > 0 since this is true
initially and ∂tΣt(dθ, D) = ∂tΣt(D, dθ

′) = 0.
We can also analyze the effect of the fluctuations at long times. Since |Ṽ (θ, [µt])|µt(dθ) ⇀ 0 as t→∞,

the noise terms in (115) and (117) converge to zero—a property we refer to as self-quenching—and these
equations reduce respectively to

∂tωt = ∇ ·
(
∇V (θ, [µ∗])ωt +

∫
D

∇K(θ,θ′)ωt(dθ
′)µ∗

)
− αṼ (θ, [µ∗])ωt − α

∫
D

K(θ,θ′)ωt(dθ
′)µ∗

+ α(

∫
D

V (θ′, [µ∗])dωt(θ
′))µ∗ + α(

∫
D×D

K(θ′,θ′′)µ∗(dθ
′)ωt(dθ

′′))µ∗

(118)

and

∂tΣt = ∇θ ·
(
∇V (θ, [µ∗])Σt +

∫
D

∇K(θ,θ′′)Σt(dθ, dθ
′′)µ∗(dθ)

)
+∇θ′ ·

(
∇V (θ′, [µ∗])Σt +

∫
D

∇K(θ′,θ′′)Σt(dθ
′, dθ′′)µ∗(dθ

′)

)
− α

(
Ṽ (θ, [µ∗]) + Ṽ (θ′, [µ∗])

)
Σt

− αµt(dθ)

∫
D

K(θ,θ′′)Σt(dθ
′′, dθ′)− αµ∗(dθ′)

∫
D

K(θ′,θ′′)Σt(dθ
′′, dθ)

+ αµ∗(dθ)

∫
D

Ṽ (θ′′, [µ])Σt(dθ
′′, dθ) + αµ∗(dθ

′)

∫
D

Ṽ (θ′′, [µ∗])Σt(dθ
′′, dθ′)

+ αµ∗(dθ)

∫
D×D2

K(θ′′′,θ′′)µ∗(dθ
′′′)Σt(dθ

′′, dθ′) + αµ∗(dθ
′)

∫
D2

K(θ′′′,θ′′)µ∗(dθ
′′′)Σt(dθ

′′, dθ)

(119)
Since Ṽ (θ, [µ∗]) ≥ 0, the fixed points of these equations are ωt = 0 and Σt = 0. That is, the effect of the
fluctuations disappear as t→∞, and in particular they do not impede in the particle system the convergence
observed at mean field level.
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