Global convergence of neuron birth-death dynamics
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Abstract

Neural networks with a large number of units ad-
mit a mean-field description, which has recently
served as a theoretical explanation for the favor-
able training properties of “overparameterized”
models. In this regime, gradient descent obeys a
deterministic partial differential equation (PDE)
that converges to a globally optimal solution for
networks with a single hidden layer under appro-
priate assumptions. In this work, we propose a
non-local mass transport dynamics that leads to a
modified PDE with the same minimizer. We im-
plement this non-local dynamics as a stochastic
neuronal birth-death process and we prove that it
accelerates the rate of convergence in the mean-
field limit. We subsequently realize this PDE with
two classes of numerical schemes that converge to
the mean-field equation, each of which can easily
be implemented for neural networks with finite
numbers of units. We illustrate our algorithms
with two models to provide intuition for the mech-
anism through which convergence is accelerated.

1. Introduction

As a consequence of the universal approximation theorems,
sufficiently wide single layer neural networks are expres-
sive enough to accurately represent a broad class of func-
tions (Cybenko, 1989; Barron, 1993; Park & Sandberg,
1991). The existence of a neural network function arbi-
trarily close to a given target function, however, is not a
guarantee that any particular optimization procedure can
identify the optimal parameters. Recently, using mathe-
matical tools from optimal transport theory and interacting
particle systems, it was shown that gradient descent (Rot-
skoff & Vanden-Eijnden, 2018; Mei et al., 2018; Sirignano
& Spiliopoulos, 2018; Chizat & Bach, 2018b) and stochas-
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tic gradient descent converge asymptotically to the target
function in the large data limit.

This analysis relies on taking a “mean-field” limit in which
the number of units n tends to infinity. In this setting, gradi-
ent descent optimization dynamics is described by a partial
differential equation (PDE), corresponding to a Wasserstein
gradient flow on a convex energy functional. This PDE
provides a powerful conceptual framework for analyzing
the properties of neural networks evolving under gradient
descent dynamics. In addition, the analysis of this Wasser-
stein gradient flow motivates the interesting possibility of
altering the dynamics to accelerate convergence.

In this work, we propose a dynamical scheme involving
a birth/death process over the units of the neural network.
It can be defined on systems of interacting (e.g., neural
network optimization) or non-interacting particles, and in
the mean-field limit it amounts to an unbalanced transport
(Chizat et al., 2018) in which mass can be locally ‘tele-
transported’ with finite cost. We prove that the resulting
modified transport equation converges to the global min-
imum of the loss in both interacting and non-interacting
regimes (under appropriate assumptions), and we provide
an explicit rate of convergence in the latter case for the
mean-field limit. Interestingly—and unlike the gradient
flow—the only fixed point of the dynamics is the global
minimum of the loss function. We study the fluctuations of
finite particle dynamics around this mean-field convergent
solution, showing that they are of the same order throughout
the dynamics and therefore providing algorithmic guaran-
tees directly applicable to finite single-layer neural network
optimization. Finally, we derive algorithms that converge
to the birth-death PDEs and verify numerically that these
schemes accelerate convergence even for finite numbers of
parameters.

Summarily, we describe:

Global convergence and monotonicity of the energy
with birth-death dynamics — We propose in Section 3
a modification of the original gradient flow that can be
interpreted as a birth-death process with the ability to per-
form non-local mass transport in the equation governing the
parameter distribution. We prove that the scheme we in-
troduce guarantee global convergence and increase the rate
of contraction of the energy compared to gradient descent
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and stochastic gradient descent for fixed p. We also derive
asymptotic rates of convergence (Section 4).

Analysis of fluctuations and self-quenching — The birth-
death dynamics introduces additional fluctuations that are
not present in gradient descent dynamics. In Section 5 we
calculate these fluctuations using tools from the theory of
measure-valued Markov processes. We show that these fluc-
tuations, for n sufficiently large, are of order O(n~'/?) and
“self-quenching” in the sense that they diminish in magni-
tude as the quality as the optimization dynamics approaches
the optimum.

Algorithms for realizing the birth-death schemes — In
Section 6 we detail numerical schemes (and provide im-
plementations in PyTorch) of the birth-death schemes de-
scribed below. In the particular case of neural networks,
the computational cost of implementing our procedure is
minimal because no additional gradient computations are
required. We demonstrate the efficacy of these algorithms
on simple, illustrative examples in Section 7.

2. Related Work

Non-local update rules appear in various areas of machine
learning and optimization. Derivative-free optimization
(Rios & Sahinidis, 2013) offers a general framework for
optimizing complex non-convex functions using non-local
search heuristics. Some notable examples include Parti-
cle Swarm Optimization (Kennedy, 2011) and Evolution-
ary Strategies, such as the Covariance Matrix Adaptation
method (Hansen, 2006). These approaches have found some
renewed interest in the optimization of neural networks in
the context of Reinforcement Learning (Salimans et al.,
2017; Such et al., 2017) and hyperparameter optimization
(Jaderberg et al., 2017).

Our setup of non-interacting potentials is closely related to
the so-called Estimation of Distribution Algorithms (Baluja
& Caruana, 1995; Larrafiaga & Lozano, 2001), which de-
fine update rules for a probability distribution over a search
space by querying the values of a given function to be opti-
mized. In particular, Information Geometric Optimization
Algorithms (Ollivier et al., 2017) study the dynamics of
parametric densities using ordinary differential equations,
focusing on invariance properties. In contrast, our focus
in on the combination of transport (gradient-based) and
birth/death dynamics.

Dropout (Srivastava et al., 2014) is a regularization tech-
nique popularized by the AlexNet CNN (Krizhevsky et al.,
2012) reminiscent of a birth/death process, but we note that
its mechanism is very different: rather than killing a neu-
ron and replacing it by a new one with some rate, Dropout
momentarily masks neurons, which become active again at
the same position; in other words, Dropout implements a

purely local transport scheme, as opposed to our non-local
dynamics.

Finally, closest to our motivation is (Wei et al., 2018), who,
building on the recent body of works that leverage optimal
transport techniques to study optimization in the large pa-
rameter limit (Rotskoff & Vanden-Eijnden, 2018; Chizat
& Bach, 2018b; Mei et al., 2018; Sirignano & Spiliopou-
los, 2018), proposed a modification of the dynamics that
replaced traditional stochastic noise by a resampling of a
fraction of neurons from a base, fixed measure. Our model
has significant differences to this scheme, namely we show
that the dynamics preserves the same global minimizers and
accelerates the rate of convergence. Finally, our interpre-
tation of the modified dynamics in terms of a generalized
gradient flow is related to the unbalanced optimal transport
setups of (Kondratyev et al., 2016; Liero et al., 2018; Chizat
et al., 2018). Our analysis of the resulting dynamics in
terms of proximal operators was also studied in (Gallouét &
Monsaingeon, 2017) in the context of unbalanced transport.

3. Mean-field PDE and Birth-death Dynamics
3.1. Mean-Field Limit and Liouville dynamics

Gradient descent propagates the parameters locally in pro-
portion to the gradient of the objective function. In some
cases, an optimization algorithm can benefit from nonlo-
cal dynamics, for example, by allowing new units to ap-
pear at favorable values and existing units to be removed
if they diminish the quality of the representation. In or-
der to exploit a nonlocal dynamical scheme, it is useful to
interpret the units as a system of n particles, 8; € D, a k-
dimensional differentiable manifold, which for: =1,...,n
evolve on a landscape determined by the objective function
0(64,...,0,). Here we will focus on situations where the
objective function may involve interactions between pairs
of units:

(01,00 = Y F(O) +5- > K(6,0,) ()
=1 1,j=1

where F' : D — R is a single particle energy function and
K : D x D — Ris asymmetric semi-positive definite
interaction kernel. Interestingly, optimizing neural networks
with the mean-squared loss function fits precisely this frame-
work (Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2018;
Chizat & Bach, 2018b). Consider a supervised learning
problem using a neural network with nonlinearity . If we
write the neural network as

T
fn(x§01a-~-a0n):EZ@(xvgi) 2
=1

and expand the loss function,

001,...,0,) = LB, 2|y — fa(2:01,...,0,)>, 3)
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we see that, up to an irrelevant constant depending only on
the data distribution, we arrive at (1) with

F(@) =-Eyz [y%@(% 6)]’ “4)

and,
K(gvel) =Es [@(maOW(mﬂ/)]- (%)

We also consider non-interacting objective functions in
which K = 0 in (1). Optimization problems that fit this
framework include resource allocation tasks in which, e.g.,
weak performers are eliminated, Evolution Strategies, and
Information Geometric Optimization (Ollivier et al., 2017).

In the case of gradient descent dynamics, the evolution of
the particles 0; is governed fori = 1,...,n by

0; = —Vg l(01,...,0,). (6)

To analyze the dynamics of this particle system, we consider
the “mean-field” limit n — oo. As the number of particles
becomes large, the empirical distribution of particles

n 1
™ (d6) = - Z:l%j(t)(d@) (7
iz

leads to a deterministic partial differential equation at first
order (Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2018;
Chizat & Bach, 2018b; Sirignano & Spiliopoulos, 2018),

6t/,ét =V (MtVV) 5 (8)

where f1; is the weak limit of 13 and pg is some distribution
from which the initial particle positions 8;(0) are drawn
independently. The potential V' : D — R is specified by the
objective function £ as

V(0. [1]) = F(8) + /D K(0,0)(d0).  (9)

and (8) should be interpreted in the weak sense, i.e., we
require V¢ € C2°(D)

o /D $(0)114(18) = /D V6(8) - VV(0, [11])us(d6),

(10)
where C$° (D) denotes the space of smooth functions with
compact support on D.

Because V is the gradient with respect to p of an energy
functional &[u],

K(0,0')1(d0)p(de’),

DxD
1D
the nonlinear Liouville equation (8) is the Wasserstein gra-
dient flow with respect to the energy functional &£[u]. Local
minima of V' (where VV = 0) are clearly fixed points of

el = [ PO)uds)+ 4

this gradient flow, but these fixed points may not always
be minimizers of the energy when supp ¢ C D. When the
initial distribution of units has full support, neural networks
evolving with gradient descent avoid these spurious fixed
points under appropriate assumptions about their nonlinear-
ity (Chizat & Bach, 2018b; Rotskoff & Vanden-Eijnden,
2018; Mei et al., 2018).

3.2. Birth-Death augmented Dynamics

Here we consider a more general dynamical scheme that in-
volves nonlocal transport of particle mass. As we shall see in
Section 4, this dynamics avoids spurious fixed points and lo-
cal minima, and converges asymptotically to the global min-
imum. Consider the following modification of the Wasser-
stein gradient flow above:

Oppy =V - (1 VV) — aVpuy (a>0). (12)
The additional term —a'V/ 44 is a birth/death term that modi-
fies the mass of p. If V' is positive, this mass will decrease,
corresponding to the removal or “death” of units. If V is
negative, this mass will increase, which can be implemented
as duplication or “cloning” of units. For a finite number of
units, this dynamics could lead to changes in the architec-
ture of the network. In many applications it is preferable
to fix the total population, achieved by simply adding a
conservation term to the dynamics,

Ope =V - (e VV) — aV iy + aV pug, (13)

where V = f p Vdug. This equation (like (12)) should in
general be interpreted in the weak sense. Here we will focus
on solutions of (13) for the initial condition py € M(D),
the space of probability measures on D, that satisfy

/D $(0)pe(df) = O~ (1) /D $(Br)e o VOlnDds o (d6)

(14
where ¢ : D — R is any bounded differentiable function
with bounded gradient, C(t) is given by

C(t) = e=oJi Vinslas 5/ =0 Ji V(Oulnds ().

’ (15)
and @, satisfies @; = —VV (8, [11]) with 8y = 6. For-
mula (14) can be formally established by solving (13) by
the method of characteristics (Appendix C). In the non-
interacting case, since V' (0, [u¢]) = F(0), (14) is explicit
and well-posed under appropriate assumptions on F' (see
Assumption C.1 below). In the interacting case, (14) is im-
plicit since the right hand side depends on u;. Following
Chizat & Bach (Chizat & Bach, 2018b), we know that under
appropriate assumptions on F' and K (see Assumption 4.2
below), solutions to (14) exist for all ¢ > 0 for appropriate
initial po that are compactly supported in D. Here we will
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assume global existence of solutions to this equation for ug
such that supp up = D with D open: if ug decays suffi-
ciently fast at infinity, this assumption is supported by the
alternative derivation of (12) based on a proximal gradient
formulation given in Appendix B.

Note that solutions of (12) that satisfy (14) are probability
measures since they are positive by definition and we can
set = 1 in (14) to deduce that p;(D) = 1. We can also
show that the birth-death terms improve the rate of energy
decay, as stated in the following proposition:

Proposition 3.1. Let u; be a solution of (13) for the initial
condition yig € M(D) that satisfies (14) for all t > 0. Then,
ue(D) =1forallt > 0, and E(t) = E[u(t)] satisfies

mw:f/vaammqum
p (16)

— o [ (V0. ) = Vi) (d0) < 0.

Proof: (16) can be formally obtained by testing (13)
against V (0, [1]) and using the chain rule to deduce that
dElpe)/dt = [,V (0, [1e])Osp4(dB). To complete the
proof, we need to show that this testing is legitimate and the
terms at the right hand side of (16) are well-defined; this is
done in Appendix E by differentiating C(t). O

The birth-death term thus contributes to increase the rate
of decay of the energy at all times. A natural question is
whether such improved energy decay can lead to global
convergence of the dynamics to the global minimum of
the energy. As it turns out, the answer is yes: the fixed
points of the birth-death PDEs (12) and (13) are the global
minimizers of the energy £[u], as we prove in Section 4.
How to implement a particle dynamics consistent with (13)
is discussed in Sections 5 and 6.

We also note that there are several ways in which we can
modify (13) to certain advantages: this is discussed in Ap-
pendix A.

4. Convergence of Transport Dynamics with
Birth-death

Here, we compare the solutions of the original PDE (8)
with those of the PDE (13) with birth-death. We restrict
ourselves to situations where I" and K in (11) are such that
&[] is bounded from below. Our main technical contribu-
tions are results about convergence towards global energy
minimizer as well as convergence rates as the dynamics
approaches these minimizers. We consider in this section
the interacting case and describe the easier non-interacting
case in Appendix C.

Under gradient descent dynamics, global convergence can
be established with appropriate assumptions on the initial-

ization and architecture of the neural network. (Mei et al.,
2018) establishes global convergence and provides a rate for
neural networks with bounded activation functions evolv-
ing under stochastic gradient descent. Similar results were
obtained in (Chizat & Bach, 2018b; Rotskoff & Vanden-
Eijnden, 2018), in which it is proven that gradient descent
converges to the globally optimal solution for neural net-
works with particular homogeneity conditions on the ac-
tivation functions and regularizers. Closely related to the
present work, (Wei et al., 2018) provides a convergence rate
for a “perturbed” gradient flow in which uniform noise is
added to the PDE (8). It should be emphasized that, unlike
our formulation, the addition of uniform noise changes the
fixed point of the PDE and convergence to only an approxi-
mate global solution can be obtained in that setting.

Let us now consider the interacting case, when V' is given
by (9) with K # 0. We make

Assumption 4.1. The set D is a k-dimensional differen-
tiable manifold which is either closed (i.e. compact, with
no boundaries), or open (i.e. with no closed subset), or the
Cartesian product of a closed and an open manifold.

Assumption 4.2. The kernel K is symmetric, positive semi-
definite, and twice differentiable in its arguments, K €
C?*(D x D); F € C*(D); and F and K are such that
the energy is bounded from below, i.e. Am € R such that
Vu € M(D) : E[u] > m.

This technical assumption typically holds for neural net-
works. Assumption 4.2 guarantees that the quadratic energy
E[u] in (11) has a (unique) minimum value. While we can-
not guarantee in general that this minimum is reached only
by minimizers, below we will work under the assumption
that minimizers exist. These are solutions in M(D) of
following Euler-Lagrange equations:

V(6. [us]) = V] V8 € supp fu.
o)) > V] V0 € D.

7

where V[u] = [, V(0,[u])1(d6). These equations are
well-known (Serfaty, 2015): we recall their derivation in
Appendix D.

Minimizers of the energy should not be confused with fixed
points of the dynamics. In particular, a well-known issue
with the PDE (8) is that it potentially has many more fixed
points than £[u] has minimizers: Indeed, rather than (17),
these fixed points only need to satisfy

vVv(e,u]) =0 V6 € supp p. (18)
It is therefore remarkable that, if we pick an initial condition
1o for the birth-death PDE (13) that has full support, the
solution to this equation converges to a global minimizer of

Elul:
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Theorem 4.3 (Global Convergence to Global Minimizers:
Interacting Case). Let u; denote the solution of (13) that
satisfies (14) for the initial condition g with supp g = D.
If py — ps ast — oo for some probability measure |1, €
M(D), then under Assumptions 4.1 and 4.2 . is a global
minimizer of £[p].

This theorem is proven in Appendix E. Note that the theo-
rem holds under the assumption that p; converges to a fixed
point 1., which we cannot guarantee a priori but should
be true for a wide class of F' and K and initial conditions
1o satisfying properties like &[], co—for more details on
these conditions see the proof in Appendix E. One aspect of
this proof is based on the evolution equation (16) for &|[p].
Since d€[p+]/dt < 0 and since &[] is bounded from below
by Assumption 4.2, by the bounded convergence theorem,
the evolution must stop eventually. By assumption, this
involves p; converging weakly towards some .. This hap-
pens when both integrals in (16) are zero, i.e. . must
satisfy the first equation in (17) as well as (18). What re-
mains to be shown is that p, must also satisfy the second
equation in (17), which we check in Appendix E.

Regarding the rate of convergence, we have the following
result:

Theorem 4.4 (Asymptotic Convergence Rate: Interacting
Case). Under the same conditions as in Theorem 4.3, AC' >
0 andtc > 0 such that E(t) = Elu] — Epx] > 0 satisfies

Et)y<cCt™ if t>tc (19)

The proof of this theorem is given in Appendix F where we
show that
lim tE(t) < C € (0, 00)]. (20)

t—o0

5. From Mean-field to Particle Dynamics with
Birth-Death

In practice the number of units n is finite, so we must verify
that we can implement dynamics at finite particle numbers
that is consistent with the PDEs with birth-death terms in-
troduced in Sec. 3 in the mean-field limit n — co. We must
also ensure that the fluctuations arising from the discrete par-
ticles do not pose a problem for the optimization dynamics.
In this section, we carry out this program in the context of
the PDE (13). Analogous calculations can be performed in
the case of (2). These results rely on the theory of measure-
valued Markov processes (Dawson, 2006), and are detailed
in Appendix G.

The dynamics of the particles {0;(t)}_; is specified by a
Markov process defined as follows: the birth-death part of

the evolution is realized by equipping each particle 8; with

an independent exponential clock with (signed) rate

7(0:) = F(0) + %imm, )

5 (o

such that:

21

1 n
+ﬁZK 0;,01) >

=1

1. If V(8;(t)) > 0, the particle 6; is duplicated with in-
stantaneous rate aV'(6;(t)), and a particle 6 ; chosen at
random in the stack is killed to preserve the population
size.

2. If V(,(t)) < 0, the particle ; is killed with instan-
taneous rate oV (8;(t))|, and a particle 6, chosen at
random in the stack is duplicated to preserve the popu-
lation size.

Between these birth events the particles evolve by the GD
flow (6).

Due to the interchangeability of the particles, the evolution
of their empirical distribution /~Lt ") defined in (7) is also
Markovian: it is referred to in the probability literature as a
measured-valued Markov process (Dawson, 2006). We can
write down the generator of this process, which specifies
the evolution of the expectation of functionals of M,E”), and
analyze its behavior as n — oo. These calculations are
performed in Appendix G, and they lead to:

Proposition 5.1 (Law of Large Numbers). Let the empirical

distribution of the initial position of the particles be uén) =

-1 El 190, (0) and assume that ,u( " Lo as n — oo.
Then, Sor all fort € [0, 00), ui“’ =n"1Y" B, 1) —
in law as n — oo, where i, satisfies (13) with the initial
condition [1;—g = [p.

This statement verifies that, to leading order, the large parti-
cle limit recovers the mean-field PDE (13).

While the limit gives rise to the birth-death term of the
PDE as expected, we can also quantify the scale and asymp-
totic behavior of the higher order fluctuations at finite n.
This computation ensures that finite n fluctuations do not
overcome the convergence expected from the mean-field
analysis. To do so, we we introduce the discrepancy distri-
bution defined by the difference, scaled by 1/n, between the
empirical distribution and its mean-field limit

W™ = v/ (" = ) (22)
(n)

where 1, is the empirical distribution defined in (7) and
1 1s limit satisfying (1). We can then analyze the generator
of the joint process (fit, w; (n )) and deduce the following

proposition:
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Proposition 5.2 (Central Limit Theorem). In the limit as
n — oo, we have

win) — Wy in law (23)
where w; is Gaussian random distribution with zero mean
and whose covariance satisfies a linear equation with a
source term proportional to |V (0, [u]) |, see (117) in

Appendix G.

The key consequence of this proposition is that it specifies
the scale of the fluctuations of ugn) above its mean field
limit 1. First it shows that these fluctuations are on a scale
O(y/a/n). This is why « should be kept O(1) relative to n.
While it may appear that increasing « accelerates the rate
of convergence at mean-field level, the fluctuations would
grow and the n — oo and a@ — oo limit do not commute.
Second, the relation between the scale of the noise and
the magnitude of |f/| 1+ has an important consequence for
the convergence of the dynamics: because \f/\ ue — 0 as
t — o0, the fluctuations are “self-quenching” in the sense
that their amplitude diminishes and eventually vanishes as
Wt — ps. In particular, for both the interacting and non-
interacting cases, the only stable fixed point of the equation
for the covariance of wy is zero.

6. Algorithms

Numerical schemes that converge to the PDEs presented
in Sec. 3 are both straightforward to design and easy to
implement. In absence of the GD part of the dynamics, we
could use Kinetic Monte Carlo (also called the Gillespie al-
gorithm) to simulate birth-death without time-discretization
error. However, in the large parameter regime, this would be
computationally expensive: every particle has its own expo-
nential clock, and the time between successive birth-death
events scales like 1/n. Because we must time-discretize the
GD flow, we carry out the birth-death dynamics using the
same time-discretization.

Denote by {6;}?_, the current configuration of n particles
in the interacting potential ¢ in (1). To update the state of
these particles, we first consider the effect of the GD flow
alone, using a time-discretized approximation of this flow
with step of size At > 0. With the forward Euler scheme,
this amounts to updating the particle positions as

17L
0, — VF(0,)At — = K(6;,0,)At (24
0; — 6; — VF(0;)At nZv (8:,0,)At  (24)

j=1

While this type of update is standard in machine learning,
more accurate integration schemes could be used.

To implement the birth-death part of the dynamics, we cal-
culate the probability of survival of the particles assuming
that their position was fixed at the current values {0;}" ;

using the empirical value ‘7(0,) given in (21) for the rate
V — V. If V(6;) > 0 the probability that particle 6; be
killed in the time interval of size At is

1 —exp(V(8;)At) (25)
Similarly, the probability that it is duplicated in that time
interval if V(0;) < 01is

1 — exp(|V(6;)|At) (26)

Particles are killed and duplicated in a loop according to
this rule. Since S, V(8;) = 0 by construction, this
operation preserves the number of particles on average. To
enforce strict population control, we add an additional loop
that guarantees the total population remains fixed after the
dynamics above. The details are given in Algorithm 1.

The corresponding particle system is a discretized version,
both in particle number and time, of the PDE (13) and it
converges to this equation as n — oo and At — 0. The
error we make at finite n is analyzed in Sec. 5; the error
we make at finite At can be deduced from standard results
about time discretization of differential equations: with the
Euler scheme used above, this error scales as O(At).

Algorithm 1 Parameter birth-death dynamics consistent
with (13)
At, initial {0;}7, given
€ = €01, the tolerance
while € > ¢, do
fori=1:ndo
set 02 — GZ—VF(GZ)At—% Z;L:l VK(GZ, 0])At
calculate V(8;) = F(0;)+n~" > K(6:,0;) -
n-! Z?:1 (F(8;) +n~" 32_, K(6;,6y))
if V(8;) >0 then
kill 8; w/ prob 1 — exp(—a'V (0;)At)
elseif if V(6;) <0 then
duplicate ; w/ prob 1 — exp(—a|V (8;)|At)
end if
end for
Nj: total number of particles after the loop
if N; > N then
kill N; — N randomly selected particles
elseif if N; < N then
duplicate N — N7 randomly selected particles
end if
end while

In the case of neural network parameter optimization, the
birth-death algorithm does not incur any significant com-
putational cost beyond regular stochastic gradient descent.
Denoting the parameters ; = (¢;, z;) and writing the neu-
ral network function as

1 n
falw{enzibiy) = = > cidl@,z:), @D
1=1
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the potential V/(0;) = F(6;) +n~' > 7| K(6;,0;) is
given by V(8;) = ¢;V (2;) where

V(z) = [ o,z (@i e 2)i) = f@) v(de)
2 (28)
Note that V is the gradient of the loss with respect to the
linear coefficient vector 0.,V = ‘A/(zq) Because we do not
typically have access to the exact loss function, the integrals
required to compute V are estimated using a finite number
of data points. Using a batch of P points in an update
leads to an estimate Vp of V, which is used to determine
the rate of killing/duplication. In this particular case, the
only change to Algorithm 1 is that the computation of V is
replaced with ¢;Vp(z;) —n~! Z;;l ¢;Vp(z;) with

Vp(2i) = -

el

> (@, z0) (fulayi {ei ziti) — flay)

(29)
where the “batch™ is {2, }1_, . Since this quantity is com-
puted in the SGD update, the only additional computation is
the sum of Vp over the n particles. The cost of the algorithm
is O(nP) at every iteration.

For neural networks of the form given in Eq. (27) a partic-
ularly simple modification of Algorithm 1 enables particle
creation from a prior distribution. The algorithm proceeds
through the initial birth-death loop as in Algorithm 1. At the
end of the initial loop, if the total population has decreased,
then additional particle are sampled with configurations
(¢, z) distributed according to the prior distribution

wn(de, dz) = dg(de)p(z)dz (30)

so that a reinjected particle makes no contribution to the
energy. Finally, one can alternatively implement the same
dynamics using the proximal interpretation of unbalanced
transport. This is discussed in Appendix B.1.

7. Numerical Experiments
7.1. Mixture of Gaussians

We take as an illustrative example a mixture of Gaussians
in dimension d,

2.5 E‘é)df/ze_'w_z”z/@”f% 31
oy

which we approximate as a neural network with Gaussian
nonlinearities with fixed standard deviation o < min; o;,

1 ~ C; 2 2
o 1) — ,E 7 lmezaT/(207)
fn(wv {Clazl}) - n 4 (271.0.2)d/2ne !
(32)

This is a useful test of our results because we can do ex-
act gradient descent dynamics on the mean-squared loss
function:

enzd) = 5 [ 17@) = @i lenz))P iz G

Because all the integrals are Ga~ussian, this loss can be com-
puted analytically, and so can V" and its gradient.

In Fig. 6, we show convergence to the energy minimizer for
a mixture of three Gaussians (details and source code are
provided in the SM). The non-local mass transport dynamics
dramatically accelerates convergence towards the minimizer.
While gradient descent eventually converges in this setting—
there is no metastability—the dynamics are particularly slow
as the mass concentrates near the minimum and maxima of
the target function. However, with the birth-death dynamics,
this mass readily appears at those locations. The advantage
of the birth-death dynamics with a reinjection distribution
Ly is highlighted by choosing an unfavorable initialization
in which the particle mass is concentrated around y = —2.
In this case, both GD and GD with birth-death (12) do
not converge on the timescale of the dynamics. With the
reinjection distribution, new mass is created near y = 2 and
convergence is achieved.

7.2. Student-Teacher ReLU Network

In many optimization problems, it is not possible to evaluate
14 exactly. Instead, typically V is estimated as a sample
mean over a batch of data. We consider a student-teacher
set-up similar to (Chizat & Bach, 2018a) in which we use
single hidden layer ReLLU networks to approximate a net-
work of the same type with fewer neurons. We use as
the target function a ReLU network with 50-d input and
10 hidden units. We approximate the teacher with neural
networks with n = 50 neurons (see SM). The networks
are trained with stochastic gradient descent (SGD) and the
mini-batch estimate of the gradient of output layer, which is
computed at each step of SGD, is used to compute V, which
determines the rate of birth-death. In experiments with the
reinjection distribution, we use (30) with Gaussian p.

As shown in Fig. 2, we find that the birth-death dynamics
accelerates convergence to the teacher network. We em-
phasize that because the birth-death dynamics is stochastic
at finite particle numbers, the fluctuations associated with
the process could be unfavorable in some cases. In such
situations, it is useful to reduce « as a function of time. On
the other hand, in some cases we have observed much more
dramatic accelerations from the birth-death dynamics.

8. Conclusions

The success of gradient descent requires good coverage of
the parameter space so that local updates can reach the min-
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Figure 1. Top left: Convergence of the gradient descent dynamics without birth-death, with birth-death, and using a reinjection distribution.
Top right: For appropriate initialization, the three dynamical schemes all converge to the target function. Bottom left: For bad initialization
(narrow Gaussian distributed around y=-2), GD and GD+birth-death do not converge on this timescale. Interestingly, with the reinjection
via distribution pp, convergence to the global minimum is rapidly achieved. Bottom right: The configuration of the particles in @ = (y, c).

Only with the reinjection distribution does mass exist near y = 2.
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Figure 2. The batch loss as a function of training time for the
student-teacher ReLU network described in Sec. 7.2. The birth-
death dynamics accelerates convergence, both with and without
the reinjection distribution.

ima of the loss function quickly. Our approach liberates
the parameters from a purely local dynamics and allows
rapid reallocation to values at which they can best reduce
the approximation error. At the mean-field level, our dy-
namics amount to a form of unbalanced transport, that we
implement at finite-particle level using a birth/death process.
These new dynamics provably converge to the minimiz-
ers of the loss function for a general class of minimization
problems.Remarkably, for interacting systems with we can
guarantee global convergence for sufficiently regular initial
conditions. We have also computed the asymptotic rate of
convergence with birth-death dynamics.

These theoretical results translate into significant reductions
in convergence time for our illustrative examples. Impor-
tantly, the schemes we have described are straightforward
to implement and come with little computational overhead.
Extending this type of dynamics to deep neural network ar-

chitectures could accelerate the slow dynamics at the initial
layers often observed in practice. Hyperparameter selec-
tion strategies based on evolutionary algorithms (Such et al.,
2017) provide another interesting potential application of
our approach.

While we have characterized the basic behavior of opti-
mization under the birth-death dynamics, many theoretical
questions remain. First, we did not address generalization;
understanding the role of the additional birth-death term
in controlling the generalization gap is an important fu-
ture question, in particular relating it to the “lazy-training”
regime of (Chizat & Bach, 2018a). Next, we need to as-
sume the existence of weak solutions via (14) with an initial
measure [ that has full support, though it may be possible
to certify that the dynamics exist for all times if po decays
sufficiently fast. In addition, more explicit calculations of
global convergence rates for the interacting case and also
tighter rates for the non-interacting case would be excit-
ing additions. The proper choice of py, is another question
worth exploring because, as highlighted in our simple exam-
ple, favorable reinjection distributions can rapidly overcome
slow dynamics. Finally, a mean-field perspective on deep
neural networks would enable us to translate some of the
guarantees here to deep architectures.
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