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Appendices

A. Distributional Reinforcement Learning Algorithms
For completeness, we give full descriptions of CDRL and QDRL algorithms in this section, complementing the details given
in Section 2.2. We also summarise CDRL, QDRL, the exact approach to distributional RL, and our proposed algorithm
EDRL, in Figure 9 at the end of this section.

A.1. The Distributional Bellman Operator

In accordance with the distributional Bellman equation (3), the distributional Bellman operator T π : P(R)X×A →
P(R)X×A is defined by Bellemare et al. (2017) as

(T πη)(x, a) = Eπ [(fR0,γ)#η(X1, A1)|X0 =x,A0 =a] ,

for all η ∈P(R)X×A.

A.2. Categorical Distributional Reinforcement Learning

As described in Section 2.2, CDRL algorithms are an approach to distributional RL that restrict approximate distributions
to the parametric family of the form {∑K

k=1 pkδzk |
∑K
k=1 pk = 1, pk ≥ 0∀k} ⊆ P(R), where z1 < · · · < zK are an

evenly spaced, fixed set of supports. For evaluation of a policy π : X → P(A), given a collection of approximations
(η(x, a)|(x, a) ∈ X ×A), the approximation at (x, a) ∈ X ×A is updated according to:

η(x, a)← ΠCEπ [(fR0,γ)#η(X1, A1)|X0 =x,A0 =a] .

Here, ΠC : P(R)→P({z1, . . . , zK}) is a projection operator defined for a single Dirac delta as

ΠC(δw) =


δz1 w ≤ z1
w−zk+1

zk−zk+1
δzk + zk−w

zk−zk+1
δk+1 zk ≤ w ≤ zk+1

δzK w ≥ zK ,
(11)

and extended affinely and continuously. In the language of operators, the CDRL update may be neatly described as
η ← ΠCT πη, where we abuse notation by interpreting ΠC as an operator on collections of distributions indexed by
state-action pairs, applying the transformation in Expression (11) to each distribution. The supremum-Cramér distance is
defined as

`2(η1, η2) = sup
(x,a)∈X×A

`2(η1(x, a), η2(x, a)) = sup
(x,a)∈X×A

(∫
R
|Fη1(x,a)(t)− Fη2(x,a)(t)|2dt

) 1
2

.

for all η1, η2 ∈P(R)X×A, where for any µ ∈P(R), Fµ denotes the CDF of µ. The operator ΠCT π is a
√
γ-contraction

in the supremum-Cramér distance, and so by the contraction mapping theorem, repeated CDRL updates converge to a unique
limit point, regardless of the initial approximate distributions. For more details on these results and further background, see
Bellemare et al. (2017); Rowland et al. (2018).

Stochastic approximation. The update η ← ΠCT πη is typically not computable in practice, due to unknown/intractable
dynamics. An unbiased approximation to (T πη)(x, a) may be obtained by interacting with the environment to obtain a
transition (x, a, r, x′, a′), and computing the target

(fr,γ)#η(x′, a′) .

It can be shown (Rowland et al., 2018) that the following is an unbiased estimator for the CDRL update (ΠCT πη)(x, a):

ΠC(fr,γ)#η(x′, a′) .

Finally, the current estimate η(x, a) can be moved towards the stochastic target by following the (semi-)gradient of some
loss, in analogy with semi-gradient methods in classical RL. Bellemare et al. (2017) consider the KL loss

KL(ΠC(fr,γ)#η(x′, a′) || η(x, a)) ,
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and update η(x, a) by taking the gradient of the loss through the second argument with respect to the parameters p1:K(x, a).
Other losses, such as the Cramér distance, may also be considered (Rowland et al., 2018).

Control. All variants of CDRL for evaluation may be modified to become control algorithms. This is achieved by
adjusting the distribution of the action A1 in the backup in an analogous way to classical RL algorithms. Instead of having
A1 ∼ π(·|X1), we instead select A1 based on the currently estimated expected returns for each of the actions at the state
X1. For Q-learning-style algorithms, the action corresponding to the highest estimated expected return is selected:

A1 = arg max
a∈A

EZ∼η(X1,a)[Z] .

However, other choices are possible, such as SARSA-style ε-greedy action selection.

A.3. Quantile Distributional Reinforcement Learning

As described in Section 2.2, QDRL algorithms are an approach to distributional RL that restrict approximate distributions to
the parametric family of the form { 1

K

∑K
k=1 δzk |z1:K ∈ RK} ⊆P(R). For evaluation of a policy π : X →P(A), given

a collection of approximations (η(x, a)|(x, a) ∈ X ×A), the approximation at (x, a) ∈ X ×A is updated according to:

η(x, a)← ΠW1Eπ [(fR0,γ)#η(X1, A1)|X0 =x,A0 =a] , .

Here, ΠW1
: P(R)→P(R) is a projection operator defined by

ΠC(µ) =
1

K

K∑
k=1

δF−1
µ (τk) ,

where τk = 2k−1
2K , and Fµ is the CDF of of µ. As noted in Section 2.2, F−1

µ (τ) may also be characterised as the minimiser
(over q ∈ R) of the quantile regression loss QR(q;µ, τ) = EZ∼µ [[τ1Z>q + (1− τ)1Z≤q] |Z − q|]; this perspective turns
out to be crucial in deriving a stochastic approximation version of the algorithm.

Stochastic approximation. As for CDRL, the update η ← ΠW1T πη is typically not computable in practice, due to
unknown/intractable dynamics. Instead, a stochastic target may be computed by using a transition (x, a, r, x′, a′), and
updating each atom location zk(x, a) at the current state-action pair (x, a) by following the gradient of the QR loss:

∇qQR(q; (fr,γ)#η(x′, a′), τk)
∣∣
q=zk(x,a)

.

Because the QR loss is affine in its second argument, this yields an unbiased estimator of the true gradient

∇qQR(q; (T πη)(x, a), τk)
∣∣
q=zk(x,a)

.

Control. The methods for evaluation described above may be modified to yield control methods in exactly the same as
described for CDRL in Section A.2.

A.4. Quantiles versus Expectiles

e⌧ q⌧

Pr{Z  q⌧}

Pr{Z > q⌧}Expectiles

Quantiles
Pr{Z  q⌧}

Pr{Z  q⌧} + Pr{Z > q⌧}
FZ(q⌧ ) = ⌧=FZ

R0

1
E [⌅]

E [⌅ + ⌅]
=

E [(e⌧ � Z)+]

E [|Z � e⌧ |]
= ⌧

Figure 8. Diagram illustrating the similarities
and differences of quantiles and expectiles.

Quantiles of a distribution are given by the inverse of the cumulative distribu-
tion function. As such, they fundamentally represent threshold values for the
cumulative probabilities. That is, the quantile at τ , qτ , is greater than or equal
to τ × 100% of the outcome values. In contrast, expectiles also take into
account the magnitude of outcomes; the expectile at τ , eτ , is such that the
expectation of the deviations below eτ of the random variable Z is equal to
τ

1−τ of the expectation of the deivations above eτ . We illustrate these points
in Figure 8.
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Figure 9. Illustration of distributional RL, with exact updates, expectile updates (EDRL), quantile updates (QDRL), and categorical
updates (CDRL).



Statistics and Samples in Distributional Reinforcement Learning

B. Proofs
B.1. Proofs of Results from Section 3

Lemma 3.2. CDRL updates, with distributions supported on z1 < . . . < zK , can be interpreted as learning the values of
the following statistical functionals of return distributions:

szk,zk+1
(µ)=EZ∼µ

[
hzk,zk+1

(Z)
]

for k=1, . . . ,K−1 ,

where for a < b, ha,b : R→ R is a piecewise linear function defined so that ha,b(x) is equal to 1 for x ≤ a, equal to 0 for
x ≥ b, and linearly interpolating between ha,b(a) and ha,b(b) for x ∈ [a, b].

Proof. We first observe that the projection operator ΠC , defined in Section A.2, preserves the values of each of the
statistical functionals sz1,z2 , . . . , szK−1,zK , in the sense that for any distribution µ, we have szk,zk+1

(µ) = szk,zk+1
(ΠCµ)

for all k = 1, . . . ,K. Secondly, we observe that that the map {∑K
k=1 pkδzk |

∑K
k=1 pk = 1, pk ≥ 0∀k} 3 µ 7→

(sz1,z2(µ), . . . , szK−1,zK (µ)) ∈ RK−1 is injective; each distribution has a unique vector of statistics. Thus, CDRL can
indeed be interpreted as learning precisely the set of statistical functionals sz1,z2 , . . . , szK−1,zK .

B.2. Proofs of Results from Section 4.1

Lemma 4.2. For each K ∈ N, the set of statistical functionals consisting of the first K moments is Bellman closed.

Proof. We begin by introducing notation. Let sk : µ 7→ EZ∼µ
[
Zk
]

be the kth moment functional, for k = 1, . . . ,K. We
now compute

sk(ηπ(x, a)) = EZ∼ηπ(x,a)

[
Zk
]

=
∑

(x′,a′)∈X×A

∫
R
R(dr|x, a)p(x′|x, a)π(a′|x′)EZ∼ηπ(x′,a′)

[
(r + γZ)k

]
=

∑
(x′,a′)∈X×A

∫
R
R(dr|x, a)p(x′|x, a)π(a′|x′)

k∑
m=0

(
k

m

)
γk−mEZ∼ηπ(x′,a′)

[
Zk−m

]
rm

=
∑

(x′,a′)∈X×A

∫
R
R(dr|x, a)p(x′|x, a)π(a′|x′)

k∑
m=0

(
k

m

)
γk−msk−m(ηπ(x′, a′))rm

= E

[
k∑

m=0

(
k

m

)
γk−msk−m(ηπ(X1, A1))Rm0

∣∣∣∣∣X0 = x,A0 = a

]
.

Thus, sk(ηπ(x, a)) can be expressed in terms of R0 and s1:K(ηπ(X1, A1)), as required.

Theorem 4.3. The only finite sets of SFs of the form s(µ) = EZ∼µ[h(Z)] that are Bellman closed are given by collections
of SFs s1, . . . , sK : P(R)→ R with the property that the linear span {∑K

k=0 αksk|αk ∈ R ∀k} is equal to the linear span
of the set of moment functionals {µ 7→ EZ∼µ

[
Zl
]
|l = 0, . . . , L}, for some L ≤ K, where s0 is the constant functional

equal to 1.

Proof. Suppose s1, . . . , sK : P(R) → R form a Bellman closed set of statistical functionals of the form sk(µ) =
EZ∼µ [hk(Z)] for some measurable hk : R→ R, for each k = 1, . . . ,K. Now note that for any MDP (X ,A, p, γ,R), we
have the following equation:

sk(ηπ(x, a)) =
∑

(x′,a′)∈X×A

∫
R
R(dr|x, a)p(x′|x, a)π(a′|x′)sk((fr,γ)#ηπ(x′, a′)) ,

for all (x, a) ∈ X × A, and for each k = 1, . . . ,K. By assumption of Bellman closedness, the right-hand side of this
equation may be written as a function of R(x, a), γ, and the collection of statistics (s1:K(ηπ(x′, a′))|(x′, a′) ∈ X × A).
Since this must hold across all valid sets of return distributions, it must the case that each sk((fr,γ)#ηπ(x′, a′)) may be
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written as a function of r, γ and s1:K(ηπ(x′, a′)); we will write sk((fr,γ)#ηπ(x′, a′)) = g(r, γ, s1:K(ηπ(x′, a′))) for some
g.

We next claim that g(r, γ, s1:K(ηπ(x′, a′))) is affine in s1:K(ηπ(x′, a′)). To see this, note that both sk((fr,γ)#ηπ(x′, a′))
and s1:K(ηπ(x′, a′)) are affine as functions of the distribution ηπ(x′, a′), by assumption on the form of the statistical
functionals s1:K . Therefore g(r, γ, ·) too is affine on the (convex) codomain of s1:K .

Thus, we have

EZ∼ηπ(x′,a′) [hk(r + γZ)] = a0(r, γ) +

K∑
k′=1

ak′(r, γ)EZ∼ηπ(x′,a′) [hk′(Z)] , (12)

for some functions a0:K : R× [0, 1)→ R. By taking ηπ(x′, a′) to be a Dirac delta at an arbitrary real number, we obtain

hk(r + γx) = a0(r, γ) +

K∑
k′=1

ak′(r, γ)hk′(x) for all x ∈ R . (13)

In particular, the function hk(γx) lies in the span of the functions h1, . . . , hK ,1, where 1 is the constant function at 1.
Further, hk(r + γx) lies in this span for all r ∈ R, and so the collection of functions {x 7→ hk(r + γx)|r ∈ R} lies in
a finite-dimensional subspace of functions. We may now appeal to Theorem 1 of Engert (1970), which states that any
finite-dimensional space of functions which is closed under translation is spanned by a set of functions of the form

J⋃
j=1

{x 7→ x` exp(λjx) | 0 ≤ ` ≤ Lj} , (14)

for some finite subset {λ1, . . . , λJ} of C. From this, we deduce that each function x 7→ hk(x) may be expressed as a
linear combination of functions of the form appearing in the set in expression (14). Further, enforcing the condition that
the linear span must be closed under composition with fr,γ with γ ∈ [0, 1) rules out any values of λj above which are not
zero. Therefore, the linear span of the functions h1, . . . , hK ,1 must be equal to the span of some set of monomials x 7→ x`,
0 ≤ ` ≤ L, for some L ∈ N, and hence the statement of the theorem follows.

Lemma 4.4. The sets of statistical functionals learnt under (i) CDRL, and (ii) QDRL, are not Bellman closed.

Proof. (i) This follows as a special case of Theorem 4.3, since the statistical functionals learnt by CDRL are expectations,
as shown in Lemma 3.2.

(ii) Quantiles cannot be expressed as expectations, and so we cannot appeal to Theorem 4.3. We instead proceed by
describing a concrete counterexample to Bellman closedness. Fix a number K ∈ N of quantiles. Consider an MDP with a
single action, and an initial state x0 which transitions to one of two terminal states x1, x2 with equal probability. Suppose
there is no immediate reward at state x0. We consider two different possibilities for reward distributions at states x1, x2,
and show that these two possibilities yield the same quantiles for the return distributions at states x1 and x2, but different
quantiles for the return distribution at state x0; thus demonstrating that finite sets of quantiles are not Bellman closed.

Firstly, suppose rewards are drawn from Unif([0, 1]) at state x1 and Unif([1/K, 1 + 1/K]) at x2, so that the 2k−1
2K -quantile

of the return at states x1 and x2 are 2k−1
2K and 2k+1

2K , for each k = 1, . . . ,K. Then the return distribution at state x0 is the
mixture 1

2Unif([0, γ]) + 1
2Unif([γ/K, γ + γ/K]), and hence the 1

2K -quantile is γ
K . Now, suppose instead that the reward

distribution at state x1 is 1
K

∑K
k=1 δ 2k−1

2K
and the reward distribution at x2 is 1

K

∑K
k=1 δ 2k+1

2K
. Then the 1

2K -quantile of the

return distribution at state x0 is 3γ
2K .

B.3. Proofs of Results from Section 4.2

In this section, we use operator notation reviewed in Section A. In both proofs, the supremum-Wasserstein distance will
be of use, defined as W 1(µ1, µ2) = sup(x,a)∈X×AW1(µ1(x, a), µ2(x, a)) for all µ1, µ2 ∈ P1(R)X×A. Before proving
theorem 4.6, we state and prove an auxiliary lemma.
Lemma B.1. Let ΠC be the Cramér projection for equally-spaced support points z1 < · · · < zK , defined in Appendix
Section A.2. (i) ΠC is a non-expansion in W1. (ii) For any distribution µ ∈ P(R) supported on [z1, zK ], we have
W1(ΠCµ, µ) ≤ zK−z1

2(K−1) .
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Proof. In the proof of the first claim, we use the following characeterisation of the Cramér projection (Rowland et al.,
2018). For any distribution µ ∈P(R) with CDF Fµ, the CDF of ΠCµ is given by FΠCµ(v) = 1

zk+1−zk
∫ zk+1

zk
Fµ(t)dt for

v ∈ [zk, zk+1), k = 1, . . . ,K − 1, with FΠCµ equal to 0 on (∞, z1) and equal to 1 on [zK ,∞).

(i) Let µ1, µ2 ∈P(R). We compute

W1(µ1, µ2) ≥
K−1∑
k=1

∫ zk+1

zk

|Fµ1
(t)− Fµ1

(t)|dt ≥
K∑
k=1

(zk+1 − zk)|FΠCµ1
(zk)− FΠCµ1

(k)| = W1(ΠCµ1,ΠCµ2) ,

as required. The first inequality comes from expressing the Wasserstein distance between two distributions as the L1 distance
between their CDFs, and truncating the corresponding integral at z1 and zK . The second inequality follows from Jensen’s
inequality.

(ii) We first introduce some notation. Let l, u : [z1, zK ]→ {z1, . . . , zK} be functions such that l(y) is the largest element of
{z1, . . . , zK} which is less than or equal to y, and u(y) is the smallest element of {z1, . . . , zK} which is greater than or
equal to y, for all y ∈ [z1, zK ]. A valid coupling between µ and ΠC is then given as follows. Let Y ∼ µ, and conditional on
Y , let p ∼ Bernoulli

(
Y−l(Y )

u(Y )−l(Y )

)
if Y 6∈ {z1, . . . , zK}, and p = 1 almost surely conditional on Y ∈ {z1, . . . , zK}. Then

define Z = pl(Y ) + (1 − p)u(Y ). It is straightforward to check that the marginal distribution of Z is ΠCµ, and we can
straightforwardly upper-bound the transport cost associated with this coupling, by observing that for each possible value
y of Y , the contribution to the transport cost is 0 if y ∈ {z1, . . . , zK}, and u(y)−y

u(y)−l(y) (y − l(y)) + y−l(y)
u(y)−l(y) (u(y) − y) ≤

u(y)−l(y)
2 = zK−z1

2(K−1) . Therefore, integrating over the distribution of Y gives a transport cost of at most zK−z1
2(K−1) , which gives

the required bound on the Wasserstein distance.

Theorem 4.6. Consider the classM of MDPs with a fixed discount factor γ ∈ [0, 1), and immediate reward distributions
supported on [−Rmax, Rmax]. The set of SFs and imputation strategy corresponding to CDRL with evenly spaced bin locations
at −Rmax/(1− γ) = z1 < · · · < zK = Rmax/(1− γ) is ε-approximately Bellman closed forM, where ε = γ

2(1−γ)(K−1) .

Proof. For the CDRL statistical functionals, we have szk,zk+1
(ηπ(x, a)) = szk,zk+1

(ΠCηπ(x, a)) for k = 1, . . . ,K and
all (x, a) ∈ X × A. Further, since ΠCηπ(x, a) is supported on {z1, . . . , zK} for all (x, a) ∈ X × A, we have that
szk,zk+1

(ΠCηπ(x, a)) = F−1
ΠCηπ(x,a)(zk). Let (η(x, a)|(x, a) ∈ X × A) be the set of approximate distributions learnt by

CDRL. As noted in Appendix Section A.2, η is the fixed point of the projected Bellman operator ΠCT π , and ηπ is the fixed
point of the Bellman operator T π . We now compute:

1

K − 1

K−1∑
k=1

∣∣szk,zk+1
(η(x, a))− szk,zk+1

(ηπ(x, a))
∣∣

=
1

K − 1

K−1∑
k=1

∣∣szk,zk+1
(η(x, a))− szk,zk+1

(ΠCηπ(x, a))
∣∣

=
1

K − 1

K−1∑
k=1

∣∣∣F−1
η(x,a)(zk)− F−1

ΠCηπ(x,a)(zk)
∣∣∣

=
1

2Rmax/(1− γ)

2Rmax/(1− γ)

K − 1

K−1∑
k=1

∣∣∣F−1
η(x,a)(zk)− F−1

ΠCηπ(x,a)(zk)
∣∣∣

=
1

2Rmax/(1− γ)
W1(η(x, a),ΠCηπ(x, a)) .
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Further, note that

1

2Rmax/(1− γ)
W1(η(x, a),ΠCηπ(x, a))

(a)
=

1

2Rmax/(1− γ)
W1(ΠCT πη(x, a),ΠCT πηπ(x, a))

(b)

≤ 1

2Rmax/(1− γ)
γW 1(η, ηπ)

(c)

≤ 1

2Rmax/(1− γ)
γ

1

1− γW 1(ΠCηπ, ηπ)

(d)

≤ 1

2Rmax/(1− γ)
γ

1

1− γ
Rmax

(1− γ)(K − 1)

=
γ

2(1− γ)(K − 1)
,

as required. Here, (a) follows since η is the fixed point of ΠCT π and ηπ is the fixed point of T π . (b) follows since ΠC is a
non-expansion in W 1, by Lemma B.1.(i), and T π is a γ-contraction in W 1. (c) follows from the following argument:

W 1(η, ηπ) ≤W 1(η,ΠCηπ) +W 1(ΠCηπ, ηπ)

=W 1(ΠCT πη,ΠCT πηπ) +W 1(ΠCηπ, ηπ)

≤γW 1(η, ηπ) +W 1(ΠCηπ, ηπ)

=⇒ W 1(η, ηπ) ≤ 1

1− γW 1(ΠCηπ, ηπ) .

Finally, (d) follows from Lemma B.1.(ii).

Before giving a proof of Theorem 4.7, we first state and prove a lemma that will be useful.

Lemma B.2. Let τk = 2k−1
2K for k = 1, . . . ,K, and consider the corresponding Wasserstein-1 projection operator

ΠW1
: P(R)→P(R), defined by

ΠW1
(µ) =

1

K

K∑
k=1

δF−1
µ (τk) ,

for all µ ∈P(R), where F−1
µ is the inverse c.d.f. of µ. Let η1, η2 ∈P(R), such that sup(supp(ηi))− inf(supp(ηi)) ≤ I

for i = 1, 2. Then we have:

(i) W1(ΠW1
η1, η1) ≤ I

K
;

(ii) W1(ΠW1
η1,ΠW1

η2) ≤W1(η1, η2) +
2I

K
.

Proof. We start by proving (i). Let F−1
η1 be the inverse c.d.f of η1. We have

W1(µ,ΠW1
µ) =

K−1∑
i=0

1

K
EX∼µ

[∣∣∣∣X − F−1
η1

(
2i+ 1

2K

)∣∣∣∣
∣∣∣∣∣F−1
η1

(
i

K

)
≤ X ≤ F−1

η1

(
i+ 1

K

)]

≤ 1

K

(
F−1
η1 (1)− F−1

η1 (0)
)

=
I

K

We can now prove (ii), using the triangle inequality and (i):

W1(ΠW1
η1,ΠW1

η2) ≤W1(ΠW1
η1, η1) +W1(η1, η2) +W1(η2,ΠW1

η2)

≤W1(η1, η2) +
2I

K
.
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Theorem 4.7. Consider the class of MDPsM with a fixed discount factor γ ∈ [0, 1), and immediate reward distributions
supported on [−Rmax, Rmax]. Then the collection of quantile SFs sk(µ) = F−1

µ ( 2k−1
2K ) for k = 1, . . . ,K, with the standard

QDRL imputation strategy, is ε-approximately Bellman closed forM, where ε = 2Rmax(5−2γ)
(1−γ)2K .

Proof. Let (ŝ1:K(x, a)|(x, a) ∈ X × A) be the collection of statistics learnt under QDRL. We denote by η(x, a) the
distribution imputed from the statistics ŝ1:K(x, a), for each (x, a) ∈ X ×A. As noted in Appendix Section A.3, η is the
fixed point of the projected Bellman operator ΠW1T π, and ηπ is the fixed point of T π. We begin by noting that if all
immediate reward distributions have support contained within [−Rmax, Rmax], then the true and learnt reward distributions
are supported on [−Rmax/(1− γ), Rmax/(1− γ)], and further, so are the distributions T πη(x, a) for each (x, a) ∈ X ×A.
We thus compute

sup
(x,a)∈X×A

1

K

K∑
k=1

|sk(ηπ(x, a))− ŝk(x, a)|

= sup
(x,a)∈X×A

W1(ΠW1
η(x, a),ΠW1

ηπ(x, a))

≤ sup
(x,a)∈X×A

W1(η(x, a), ηπ(x, a)) +
4Rmax

K(1− γ)
,

with the inequality following from Lemma B.2(ii). From here, we note that

sup
(x,a)∈X×A

W1(η(x, a), ηπ(x, a))
(a)

≤ sup
(x,a)∈X×A

[W1(η(x, a),ΠW1
ηπ(x, a)) +W1(ΠW1

ηπ(x, a), ηπ(x, a))]

(b)

≤ sup
(x,a)∈X×A

W1(η(x, a),ΠW1
ηπ(x, a)) +

2Rmax

K(1− γ)

(c)
= sup

(x,a)∈X×A
W1(ΠW1T πη(x, a),ΠW1T πηπ(x, a)) +

2Rmax

K(1− γ)

(d)

≤ sup
(x,a)∈X×A

W1(T πη(x, a), T πηπ(x, a)) +
4Rmax

K(1− γ)
+

2Rmax

K(1− γ)

(e)

≤ sup
(x,a)∈X×A

γW1(η(x, a), ηπ(x, a)) +
6Rmax

K(1− γ)

=⇒ sup
(x,a)∈X×A

W1(η(x, a), ηπ(x, a)) ≤ 6Rmax

K(1− γ)2
.

Here, (a) follows from the triangle inequality, (b) follows from Lemma B.2(i). (c) follows since η is the fixed point of ΠW1T π
and ηπ is the fixed point of T π . (d) follows from Lemma B.2(ii), where we use the fact that the support of the distributions
constituting the fixed points of ΠW1

T π and T π necessarily are supported on [−Rmax/(1− γ), Rmax/(1− γ)]. (e) follows
from the γ-contractivity of the Bellman operator T π with respect to the metric sup(x,a)∈X×AW1(µ1(x, a), µ2(x, a)), for
µ1, µ2 ∈P(R)X×A (Bellemare et al., 2017). Hence, we obtain

sup
(x,a)∈X×A

1

K

K∑
k=1

|sk(ηπ(x, a))− ŝk(x, a)| ≤ 6Rmax

K(1− γ)2
+

4Rmax

K(1− γ)

=
2Rmax(5− 2γ)

K(1− γ)2
.

B.4. Proofs of Results from Section 4.3

Lemma 4.8. (i) Under CDRL updates using support locations z1 < · · · < zK , if all approximate reward distributions have
support bounded in [z1, zK ], expected returns are exactly learnt. (ii) Under QDRL updates, expected returns are not exactly
learnt.
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Proof. (i) The statistical functionals learnt by CDRL are of the form sk(µ) = EZ∼µ
[
hzk,zk+1

(Z)
]
, for k = 1, . . . ,K − 1.

We observe that the mean functional m(µ) = EZ∼µ [Z] is contained in the linear span of s0:K−1, where s0(µ) = 1 for all
µ. Indeed,

m = Rmaxs0 −
(
Rmax −Rmin

K

)K−1∑
k=1

sk ,

since

x = Rmax −
(
Rmax −Rmin

K

)K−1∑
k=1

hzk,zk+1
(x)

for all x ∈ [−Rmin, Rmax]. Since the singleton set consisting of the mean functional is Bellman closed, it follows that
whatever distribution is imputed, the effective update to the mean of the distribution at the current state is the same as
updating according to the classical Bellman update for the mean.

(ii) We note that the mean is not encoded by a finite set of quantiles, and hence it is impossible for expected returns to be
correctly in general. To make this concrete, fix a number K of quantiles to be learnt, and consider a single state, two action
MDP, with reward distribution 4K−1

4K δ0 + 1
4K δ1 for the first action, and reward distribution δ1/8K for the second action.

Fitting quantiles at τ ∈ { 2k−1
2K |k = 1, . . . ,K} results in all quantiles for the first distribution being equal to 0, and thus the

imputed distribution is δ0, resulting in a imputed mean of 0. By constrast, for the second distribution, all quantiles are fitted
at 1/8K, resulting in an imputed distribution of δ1/8K and an imputed mean of 1/8K. Thus, a QDRL control algorithm
will act greedily with respect to these imputed means and select the second action, which is sub-optimal as the first action
has higher expected reward.

C. Additional Theoretical Results
In this section, we provide several examples to illustrate the point made in Section 4.2 that in general, it is not possible to
simultaneously achieve low approximation error on all statistics in a non-Bellman closed collection.
Lemma C.1. For a fixed K ∈ N, let s1:K−1 be the statistical functionals corresponding to CDRL (with fixed discount factor
γ ∈ [0, 1)) with equally spaced support Rmin = z1 < . . . < zK = Rmax. As earlier in the paper, we denote by ŝk(x, a) the
relevant learnt value of the statistical functional concerned. Then we have:

sup
M MDP
π policy

sup
x∈X
a∈A

sup
k=1,...,K−1

|ŝk(x, a)− sk(ηπ(x, a))| 6→ 0

as K →∞.

Proof. We work with a particular family of MDPs with two states x1, x2, one action in each state, with x1 transitioning
to x2 with probability 1, and x2 terminal. In such MDPs, there is only one policy, which we denote by π; and we drop
notational dependence on actions for clarity. No rewards are received at state x1; we specify the rewards received at state x2

below. We take a discount factor γ = 2m

2m+1 for some k ∈ N. Fix L ∈ N, and consider CDRL updates with bin locations at
zk = k

2L
for k = 0, . . . , 2L. Specifically, consider learning the statistical functional

EZ∼ηπ(x1)

[
h 1

2 ,
1
2 + 1

2L
(Z)
]
.

Since there are no rewards received at state x1, at convergence the estimate of this statistic (which we denote by ŝ(x1)) is
equal to

EZ∼η̂(x2)

[
h 1

2 ,
1
2 + 1

2L
(γZ)

]
= EZ∼η̂(x2)

[
h γ−1

2 , γ
−1

2 + γ−1

2L

(Z)

]
= EZ∼η̂(x2)

[
h 1

2 + 1

2m+1 ,
1
2 + 1

2m+1 + 1

2L
+ 1

2L+m
(Z)
]

where η̂(x2) is the approximate return distribution learnt at state x2. Now, consider two possible reward distributions at
state x2:

ρA = δ 1
2 + 1

2m+1 + 3

2L+1
, and ρB =

1

2

(
δ 1

2 + 1

2m+1 + 1

2L
+ δ 1

2 + 1

2m+1 + 2

2L

)
.
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Under these two reward distributions, the fitted distribution η(x2) is the same, namely ρB , and thus the estimate ŝ(x1) is the
same. Our aim is to show that for these two different reward distributions, the difference of the true values of the statistical
functional ŝ(x1) is independent of L, and hence the value of ŝ(x1) cannot converge to the true statistic as L → ∞. To
achieve this, and finish the proof, we calculate directly. In the case where the reward distribution at state x2 is ρA, we have
(assuming L > m+ 1)

s(ηπ(x1)) = EZ∼ρA
[
h 1

2 + 1

2m+1 ,
1
2 + 1

2m+1 + 1

2L
+ 1

2L+m
(Z)
]

= 0 .

In the case where the reward distribution at state x2 is ρB , we have

s(ηπ(x1)) = EZ∼ρB
[
h 1

2 + 1

2m+1 ,
1
2 + 1

2m+1 + 1

2L
+ 1

2L+m
(Z)
]

=

=
1

2

(
( 1

2 + 1
2m+1 + 1

2L
)− ( 1

2 + 1
2m+1 + 1

2L
+ 1

2L+m )

( 1
2 + 1

2m+1 )− ( 1
2 + 1

2m+1 + 1
2L

+ 1
2L+m )

)

=
1

2

(
1

2m + 1

)
.

Lemma C.2. For a fixed K ∈ N, let s1:K−1 be the statistical functionals corresponding to by QDRL (with fixed discount
factor γ ∈ [0, 1)). As earlier in the paper, we denote by ŝk(x, a) the relevant learnt value of the statistical functional
concerned. Then we have:

sup
M MDP
π policy

sup
x∈X
a∈A

sup
k=1,...,K

|ŝk(x, a)− sk(ηπ(x, a))| 6→ 0

as K →∞.

Proof. We work with a particular family of MDPs with three states x0, x1, x2, one action in each state, with x0 transitioning
to x1 with probability 1

2 − ε and with x0 transitioning to x2 with probability 1
2 + ε with ε� 1. We take x1 and x2 to be

terminal, no rewards are received at state x0; we specify the rewards received at state x1 and x2 below. We suppose in the
following that K is odd.

The reward distributions at state x1 and x2 are given by

ρ1 =

(
1

2K
− ε
)
δ0 +

(
2K − 1

2K
+ ε

)
δ1 , and ρ2 =

(
1

2K
− ε
)
δ0 +

(
2K − 1

2K
+ ε

)
δ−1 .

Under these reward distributions the fitted return distributions are:

η(x1) = δ1 , and η(x2) = δ−1 .

Therefore, we have

sK+1
2

(ηπ(x0)) = 0 , and ŝK+1
2

(x0) = −γ .

D. ER-DQN Experimental Details
D.1. ER-DQN Architecture

As discussed in Section 5.3, the ER-DQN architecture matches the exact architecture of QR-DQN (Dabney et al., 2017).
The Q-network, for a given input x, outputs expectiles eτ1:K (x, a) for each a ∈ A. In our experiments with 11 expectiles,
we take τ1:11 to be linearly spaced with τ1 = 0.01, τ11 = 0.99. Note that we have τ6 = 0.5, and thus this expectile is in fact
the mean. For the purposes of control, greedy actions at a state x ∈ X are thus selected according to arg maxa∈A eτ6(x, a),
rather than averaging over statistics as in QR-DQN. For the imputation strategy, we take the root-finding problem in
Expression (6), and use a call to the SciPy root routine with default parameters.
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D.2. Training Details

We use the Adam optimiser with a learning rate of 0.00005, after testing learning rates 0.00001, 0.00003, 0.00005, 0.00007,
and 0.0001 on a subset of 6 Atari games. All other hyperparameters in training correspond to those used in (Dabney et al.,
2017). In particular, the target distribution is computed from a target network. Note that each training pass requires a call to
the SciPy optimiser to compute the imputed samples, and thus in general will be more computationally expensive than other
deep distributional Q-learning-style agents, such as C51 and QR-DQN. However, by parallelising the optimiser calls for a
minibatch of transitions across several CPUs, we found that training times when using 11 expectiles to be comparable to
training times of QR-DQN.

For ER-DQN Naive, we found that results were slightly improved by using 201 expectiles compared to 11, so include results
with this larger number of statistical functionals in the main paper. We take τ1:201 according to the same prescription as for
QR-DQN: linearly spaced, with τ1 = 1/(2× 201) and τ201 = 1− 1/(2× 201).

D.3. Environment Details

We use the Arcade Learning Environment (Bellemare et al., 2013) to train and evaluate ER-DQN on a selection of 57
Atari games. The precise parameter settings of the environment are exactly the same as in the experiments performed on
QR-DQN, to allow for direct comparison.

D.4. Detailed Results

In addition to the human normalised mean/median results presented in the main paper, we include training curves for all 4
evaluated agents on all 57 Atari games in Figure 10, and raw maximum scores attained in Table 1.
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Figure 10. Training curves for DQN, QR-DQN-1, ER-DQN Naive, and ER-DQN on all 57 Atari games.
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GAMES QR-DQN-1 ER-DQN NAIVE ER-DQN
alien 7279.5 5056.2 6212.0
amidar 2235.8 1528.8 2313.0
assault 17653.9 19156.2 25826.8
asterix 306055.9 366152.1 434743.6
asteroids 3484.4 3250.9 3793.2
atlantis 947995.0 939050.0 974408.3
bank heist 1185.7 1132.5 1326.5
battle zone 33987.2 40805.3 35098.5
beam rider 25095.7 29542.5 48230.1
berzerk 2151.2 2626.6 2749.8
bowling 58.0 63.4 53.1
boxing 99.5 99.4 99.9
breakout 505.2 538.6 509.8
centipede 11465.1 12325.3 22505.9
chopper command 12767.2 11765.8 11886.1
crazy climber 159244.2 158369.9 161040.2
defender 41098.7 32225.2 36473.5
demon attack 114530.2 108496.2 111921.2
double dunk 16.5 4.0 16.3
enduro 2294.1 1923.9 2339.5
fishing derby 21.6 18.4 20.2
freeway 27.2 34.0 33.9
frostbite 4068.1 5408.0 4233.7
gopher 82060.6 86874.1 115828.3
gravitar 937.0 942.8 680.9
hero 23799.1 21916.6 20374.5
ice hockey -1.7 -1.9 -2.7
jamesbond 5298.5 5440.4 4113.6
kangaroo 14827.6 15371.1 15954.4
krull 10591.2 10738.0 11318.5
kung fu master 49695.5 52080.6 58802.2
montezuma revenge 0.1 0.0 0.0
ms pacman 5860.4 4856.1 5048.5
name this game 20509.1 17064.9 13090.9
phoenix 15475.2 25177.3 91189.4
pitfall 0.0 0.0 0.0
pong 21.0 21.0 21.0
private eye 531.3 388.3 176.3
qbert 17573.5 14536.0 17418.4
riverraid 18125.3 15726.4 18472.2
road runner 67084.8 57168.0 64577.7
robotank 58.0 56.7 54.8
seaquest 16143.3 13501.0 19401.0
skiing -16869.1 -15085.4 -10528.6
solaris 2615.3 2483.3 2810.6
space invaders 11873.3 10099.6 14265.7
star gunner 76556.3 75404.8 88900.3
surround 8.4 8.2 8.6
tennis 22.8 22.7 5.8
time pilot 9902.0 10009.6 11675.5
tutankham 282.8 256.7 237.9
up n down 44893.6 35169.7 32083.3
venture 266.5 476.7 1107.0
video pinball 570852.7 603852.1 727091.1
wizard of wor 21667.1 24397.5 36049.8
yars revenge 27264.3 26056.7 24099.4
zaxxon 11707.1 11120.2 12264.4

Table 1. Raw max test scores across all 57 Atari games, starting with 30 no-op actions.
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E. Additional Material on Tabular Experiments
E.1. Full Environment Description

We give a full description of the N -chain environment used in Section 5.1 and illustrated in Figure 3 to investigate the
properties of tabular EDRL and QDRL. This environment is a chain of length N with two possible actions at each state: (i)
forward, which moves the agent right by one step with probability 0.95 and to x0 with probability 0.05, and backward,
which moves the agent to x0 with probability 0.95 and one step to the right with probability 0.05. The reward is −1 when
transitioning to the leftmost state, +1 when transitioning to the rightmost state, and zero elsewhere. Episodes begin in the
leftmost state and terminate when the rightmost state is reached. The discount factor is γ = 0.99. For an N -Chain with
length 15, we compute the return distribution of the optimal policy π∗ which selects the forward action at each state. This
environment formulation induces an increasingly multimodal return distribution under the policy as the distance from the
goal state increases. We compute the ground truth start state expectiles from the empirical distribution of 1,000 Monte Carlo
rollouts under the policy π∗. We set the learning rate to α = 0.05, and perform 30,000 training steps.

E.2. Additional Experimental Results

In Section 5.1, we saw that the expectiles learned by EDRL-Naive on the N -Chain with length 15 collapsed, whereas the
expectiles learnt by EDRL were reasonable approximations to the true expectiles of the return distribution. This resulted
in lower average expectile estimation error with the latter expectiles, as described in Definition 4.5. In Figure 11, we
supplement this by plotting Wasserstein distance between an imputed distribution for the learnt statistics and the true
return distribution. This gives an alternate metric which additionally indicates how well the collection of learnt statistics
summarises the full return distribution. Under this metric, we observe that increasing the number of expectiles always leads
to improved performance under EDRL, whilst for EDRL-Naive, poor Wasserstein reconstruction error is observed for large
numbers of expectiles and/or distance from the goal state.

We also include results for N -chain environments with different reward distributions, observing qualitatively similar
phenomena as those noted for Figure 11. Specifically, we use two additional variants of the reward distribution at the goal
state: uniform and Gaussian. We plot average expectile error in Figure 12, and Wasserstein distance between imputed and
true return distributions in Figure 13.

(a) Expectile estimation error (b) 1-Wasserstein distance on imputed samples

Figure 11. Expectile estimation error and 1-Wasserstein distance between imputed samples and the true return distribution for varying
numbers of learned expectiles and different N -Chain lengths.
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(a) Uniform (-1, 1) reward distribution. (b) Standard Gaussian reward distribution.

Figure 12. Expectile estimation error for varying number of expectiles and different chain lengths. Different terminal reward distributions.

(a) Uniform (-1, 1) reward distribution. (b) Standard Gaussian reward distribution.

Figure 13. 1-Wasserstein distance for varying number of expectiles and different chain lengths. Different terminal reward distributions.


