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8. Preliminaries
For any x, y ∈ Rd, write 〈x, y〉 = xT y for the inner product. We say a function f : Rd → R ∪ {∞} is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for any x, y ∈ Rd and θ ∈ [0, 1]. A convex function is closed if it is lower semi-continuous and proper if it is finite
somwhere. We say f is µ-strongly convex for µ > 0 if f(x)− (µ/2)‖x‖2 is a convex function. Given a convex function
f : Rd → R ∪ {∞} and α > 0, define its proximal operator Proxf : Rd → Rd as

Proxαf (z) = argmin
x∈Rd

{
αf(x) + (1/2)‖x− z‖2

}
.

When f is convex, closed, and proper, the argmin uniquely exists, and therefore Proxf is well-defined. An mapping
T : Rd → Rd is L-Lipschitz if

‖T (x)− T (y)‖ ≤ L‖x− y‖

for all x, y,∈ Rd. If T is L-Lipschitz with L ≤ 1, we say T is nonexpansive. If T is L-Lipschitz with L < 1, we say T is a
contraction. A mapping T : Rd → Rd is θ-averaged for θ ∈ (0, 1), if it is nonexpansive and if

T = θR+ (1− θ)I,

where R : Rd → Rd is another nonexpansive mapping.

Lemma 4 (Proposition 4.35 of (Bauschke & Combettes, 2017)). T : Rd → Rd is θ-averaged if and only if

‖T (x)− T (y)‖2 + (1− 2θ)‖x− y‖2 ≤ 2(1− θ)〈T (x)− T (y), x− y〉

for all x, y ∈ Rd.

Lemma 5 ((Ogura & Yamada, 2002; Combettes & Yamada, 2015)). Assume T1 : Rd → Rd and T2 : Rd → Rd are θ1 and
θ2-averaged, respectively. Then T1T2 is θ1+θ2−2θ1θ2

1−θ1θ2 -averaged.

Lemma 6. Let T : Rd → Rd. −T is θ-averaged if and only if T ◦ (−I) is θ-averaged.

Proof. The lemma follows from the fact that

T ◦ (−I) = θR+ (1− θ)I ⇔ −T = θ(−R) ◦ (−I) + (1− θ)I

for some nonexpansive R and that nonexpansiveness of R and implies nonexpansivenes of −R ◦ (−I).

Lemma 7 ((Taylor et al., 2018)). Assume f is µ-strongly convex and ∇f is L-Lipschitz. Then for any x, y ∈ Rd, we have

‖(I − α∇f)(x)− (I − α∇f)(y)‖ ≤ max{|1− αµ|, |1− αL|}‖x− y‖.

Lemma 8 (Proposition 5.4 of (Giselsson, 2017)). Assume f is µ-strongly convex, closed, and proper. Then

−(2Proxαf − I)

is 1
1+αµ -averaged.

References. The notion of proximal operator and its well-definedness were first presented in (Moreau, 1965). The notion
of averaged mappings were first introduced in (Bailion et al., 1978). The idea of Lemma 6 relates to “negatively averaged”
operators from (Giselsson, 2017). Lemma 7 is proved in a weaker form as Theorem 3 of (Polyak, 1987) and in Section 5.1
of (Ryu & Boyd, 2016). Lemma 7 as stated is proved as Theorem 2.1 in (Taylor et al., 2018).
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9. Proofs of main results
9.1. Equivalence of PNP-DRS and PNP-ADMM

We show the standard steps that establish equivalence of PNP-DRS and PNP-ADMM. Starting from PNP-DRS, we substitute
zk = xk + uk to get

xk+1/2 = Proxαf (x
k + uk)

xk+1 = Hσ(x
k+1/2 − (uk + xk − xk+1/2))

uk+1 = uk + xk − xk+1/2.

We reorder the iterations to get the correct dependency

xk+1/2 = Proxαf (x
k + uk)

uk+1 = uk + xk − xk+1/2

xk+1 = Hσ(x
k+1/2 − uk+1).

We label ỹk+1 = xk+1/2 and x̃k+1 = xk

x̃k+1 = Hσ(ỹ
k − uk)

ỹk+1 = Proxαf (x̃
k+1 + uk)

uk+1 = uk + x̃k+1 − ỹk+1,

and we get PNP-ADMM.

9.2. Convergence analysis

Lemma 9. Hσ : Rd → Rd satisfies Assumption (A) if and only if

1

1 + ε
Hσ

is nonexpansive and ε
1+ε -averaged.

Proof. Define θ = ε
1+ε , which means ε = θ

1−θ . Clearly, θ ∈ [0, 1). Define G = 1
1+εHσ , which means Hσ = 1

1+θG. Then

‖(Hσ − I)(x)− (Hσ − I)(y)‖2 −
θ2

(1− θ)2
‖x− y‖2︸ ︷︷ ︸

(TERM A)

=
1

(1− θ)2
‖G(x)−G(y)‖2 +

(
1− θ2

(1− θ)2

)
‖x− y‖2 − 2

1− θ
〈G(x)−G(y), x− y〉

=
1

(1− θ)2

(
‖G(x)−G(y)‖2 + (1− 2θ)‖x− y‖2 − 2(1− θ)〈G(x)−G(y), x− y〉︸ ︷︷ ︸

(TERM B)

)
.

Remember that Assumption (A) corresponds to (TERM A) ≤ 0 for all x, y ∈ Rd. This is equivalent to (TERM B) ≤ 0 for
all x, y ∈ Rd, which corresponds to G being θ-averaged by Lemma 4.

Lemma 10. Hσ : Rd → Rd satisfies Assumption (A) if and only if

1

1 + 2ε
(2Hσ − I)

is nonexpansive and 2ε
1+2ε -averaged.
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Proof. Define θ = 2ε
1+2ε , which means ε = θ

2(1−θ) . Clearly, θ ∈ [0, 1). Define G = 1
1+2ε (2Hσ − I), which means

Hσ = 1
2(1−θ)G+ 1

2I . Then

‖(Hσ − I)(x)− (Hσ − I)(y)‖2 −
θ2

4(1− θ)2
‖x− y‖2︸ ︷︷ ︸

(TERM A)

=
1

4(1− θ)2
‖G(x)−G(y)‖2 +

(
1

4
− θ2

4(1− θ)2

)
‖x− y‖2 − 1

2(1− θ)
〈G(x)−G(y), x− y〉

=
1

4(1− θ)2

(
‖G(x)−G(y)‖2 + (1− 2θ)‖x− y‖2 − 2(1− θ)〈G(x)−G(y), x− y〉︸ ︷︷ ︸

(TERM B)

)
.

Remember that Assumption (A) corresponds to (TERM A) ≤ 0 for all x, y ∈ Rd. This is equivalent to (TERM B) ≤ 0 for
all x, y ∈ Rd, which corresponds to G being θ-averaged by Lemma 4.

Proof of Theorem 1. In general, if operators T1 and T2 are L1 and L2-Lipschitz, then the composition T1T2 is (L1L2)-
Lipschitz. By Lemma 7, I − α∇f is max{|1 − αµ|, |1 − αL|}-Lipschitz. By Lemma 9, Hσ is (1 + ε)-Lipschitz. The
first part of the theorem following from composing the Lipschitz constants. The restrictions on α and ε follow from basic
algebra.

Proof of Theorem 2. By Lemma 8,
−(2Proxαf − I)

is 1
1+αµ -averaged, and this implies

(2Proxαf − I) ◦ (−I)

is also 1
1+αµ -averaged, by Lemma 6. By Lemma 10,

1

1 + 2ε
(2Hσ − I)

is 2ε
1+2ε -averaged. Therefore,

1

1 + 2ε
(2Hσ − I)(2Proxαf − I) ◦ (−I)

is 1+2εαµ
1+αµ+2εαµ -averaged by Lemma 5, and this implies

− 1

1 + 2ε
(2Hσ − I)(2Proxαf − I)

is also 1+2εαµ
1+αµ+2εαµ -averaged, by Lemma 6.

Using the definition of averagedness, we can write

(2Hσ − I)(2Proxαf − I) = −(1 + 2ε)

(
αµ

1 + αµ+ 2εαµ
I +

1 + 2εαµ

1 + αµ+ 2εαµ
R

)
where R is a nonexpansive operator. Plugging this into the PNP-DRS operator, we get

T =
1

2
I − 1

2
(1 + 2ε)

(
αµ

1 + αµ+ 2εαµ
I +

1 + 2εαµ

1 + αµ+ 2εαµ
R

)
=

1

2(1 + αµ+ 2εαµ)︸ ︷︷ ︸
=A

I − (1 + 2εαµ)(1 + 2ε)

2(1 + αµ+ 2εαµ)︸ ︷︷ ︸
=B

R, (1)
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where define the coefficients A and B for simplicity. Clearly, A > 0 and B > 0. Then we have

‖Tx− Ty‖2 = A2‖x− y‖2 +B2‖R(x)−R(y)‖2 − 2〈A(x− y), B(R(x)−R(y))〉

≤ A2

(
1 +

1

δ

)
‖x− y‖2 +B2 (1 + δ) ‖R(x)−R(y)‖2

≤
(
A2

(
1 +

1

δ

)
+B2 (1 + δ)

)
‖x− y‖2

for any δ > 0. The first line follows from plugging in (1). The second line follows from applying Young’s inequality to the
inner product. The third line follows from nonexpansiveness of R.

Finally, we optimize the bound. It is a matter of simple calculus to see

min
δ>0

{
A2

(
1 +

1

δ

)
+B2 (1 + δ)

}
= (A+B)2.

Plugging this in, we get

‖Tx− Ty‖2 ≤ (A+B)2‖x− y‖2 =

(
1 + ε+ εαµ+ 2ε2αµ

1 + αµ+ 2εαµ

)2

‖x− y‖2,

which is the first part of the theorem.

The restrictions on α and ε follow from basic algebra.
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Figure 3. DnCNN Network Architecture
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Figure 4. SimpleCNN Network Architecture
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