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Abstract

We present a provably optimal differentially pri-
vate algorithm for the stochastic multi-arm ban-
dit problem, as opposed to the private analogue
of the UCB-algorithm (Mishra and Thakurta,
2015; Tossou and Dimitrakakis, 2016) which
doesn’t meet the recently discovered lower-
bound of € (Klog(T)/c) (Shariff and Sheffet,
2018). Our construction is based on a differ-
ent algorithm, Successive Elimination (Even-Dar
et al., 2002), that repeatedly pulls all remaining
arms until an arm is found to be suboptimal and
is then eliminated. In order to devise a private
analogue of Successive Elimination we visit the
problem of private stopping rule, that takes as in-
put a stream of i.i.d samples from an unknown
distribution and returns a multiplicative (1 + «)-
approximation of the distribution’s mean, and
prove the optimality of our private stopping rule.
We then present the private Successive Elimina-
tion algorithm which meets both the non-private
lower bound (Lai and Robbins, 1985) and the
above-mentioned private lower bound. We also
compare empirically the performance of our al-
gorithm with the private UCB algorithm.

1. Introduction

The well-known stochastic multi-armed bandit (MAB) is
a sequential decision-making task in which a learner re-
peatedly chooses an action (or arm) and receives a noisy
reward. The learner’s objective is to maximize cumula-
tive reward by exploring the actions to discover optimal
ones (having the highest expected reward), balanced with
exploiting them. The problem, originally stemming from

“Equal contribution 'Department of Computing Science, Uni-
versity of Alberta, Edmonton AB, Canada. Correspondence
to: Touqir Sajed <touqir@ualberta.ca>, Or Sheffet <oshef-
fet@ualberta.ca>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

experiments in medicine (Robbins, 1952), has applications
in fields such as ranking (Kveton et al., 2015), recommen-
dation systems (collaborative filtering) (Caron and Bhagat,
2013), investment portfolio design (Hoffman et al., 2011)
and online advertising (Schwartz et al., 2017), to name a
few. Such applications, relying on sensitive data, raise pri-
vacy concerns.

Differential privacy (Dwork et al., 2006) has become in re-
cent years the gold-standard for privacy preserving data-
analysis alleviating such concerns, as it requires that the
output of the data-analysis algorithm has a limited depen-
dency on any single datum. Differentially private variants
of online learning algorithms have been successfully de-
vised in various settings (Smith and Thakurta, 2013), in-
cluding a private UCB-algorithm for the MAB problem
(details below) (Mishra and Thakurta, 2015; Tossou and
Dimitrakakis, 2016) as well as UCB variations in the lin-
ear (Kannan et al., 2018) and contextual (Shariff and Shef-
fet, 2018) settings.

More formally, in the MAB problem at every round ¢ the
learner selects an arm a out of K available arms, pulls it,
and receives a random reward 7, ; drawn i.i.d from a dis-
tribution P, — of support [0, 1] and unknown mean .
The Upper Confidence Bound (UCB) algorithm for the
MAB problem was developed in a series of works (Berry
and Fristedt, 1985; Agrawal, 1995) culminating into (Auer
et al., 2002a), which is provably optimal for the MAB
problem (Lai and Robbins, 1985). The UCB algorithm
maintains a time-dependent high-probability upper-bound
B, for each arm’s mean, and at each timestep opti-
mistically pulls the arm with the highest bound. The
above-mentioned e-differentially private (¢-DP) analogues
of the UCB-algorithm follow the same procedure except for
maintaining noisy estimations B, ; using the “tree-based
mechanism” (Chan et al., 2010; Dwork et al., 2010). This
mechanism continuously releases aggregated statistics over
a stream of T observations, introducing only polylog(T)/s
noise in each timestep. The details of this poly-log factor
are the focus of this work.

It was recently shown (Shariff and Sheffet, 2018) that
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any £-DP stochastic MAB algorithm' must incur an added
pseudo regret of Q(Klog(T)/c). However, it is com-
monly known that any algorithm that relies on the tree-
based mechanism must incur an added pseudo regret of
w (K log(T)/). Indeed, the tree-based mechanism maintains
a binary tree over the T' streaming observations, a tree of
depth log,(T'), where each node in this tree holds an i.i.d
sample from a Lap(%) distribution. At each timestep
t, the mechanism outputs the sum of the first ¢ observa-
tions added to the sum of the log,(T") nodes on the root-
to-tth-leaf path in the binary tree. As a result, the variance
of the added noise at each timestep is @(logs#), making
the noise per timestep w(l°s(T)/<). (In fact, most analy-
es”? of the tree-based mechanism rely on the union bound
over all T" timesteps, obtaining a bound of log®/ Z(T)/s; con-
sequentially the added-regret bound of the DP-UCB algo-

rithm is O(%).) Thus, in a setting where each of
the K tree-mechanisms (one per arm) is run over poly(7')
observations (say, if all arms have suboptimality gap of
T—91), the private UCB-algorithm must unavoidably ob-
tain an added regret of w(% 108(T)/<) (on top of the regret of
the UCB-algorithm). It is therefore clear that the challenge
in devising an optimal DP algorithm for the MAB problem,
namely an algorithm with added regret of O(Klos(T)/<),
is algorithmic in nature — we must replace the tree-based
mechanism with a different, simpler, mechanism.

Our Contribution and Organization. In this work, we
present an optimal algorithm for the stochastic MAB-
problem, which meets both the non-private lower-bound
of (Lai and Robbins, 1985) and the private lower-bound
of (Shariff and Sheffet, 2018). Our algorithm is a DP vari-
ant of the Successive Elimination (SE) algorithm (Even-
Dar et al., 2002), a different optimal algorithm for stochas-
tic MAB. SE works by pulling all arms sequentially, main-
taining the same confidence interval around the empiri-
cal average of each arm’s reward (as all remaining arms
are pulled the exact same number of times); and when an
arm is found to be noticeably suboptimal in comparison
to a different arm, it is then eliminated from the set of vi-
able arms (all arms are viable initially). To design a DP-
analogue of SE we first consider the case of 2 arms and ask
ourselves — what is the optimal way to privately discern
whether the gap between the mean rewards of two arms
is positive or negative? This motivates the study of pri-
vate stopping rules which take as input a stream of i.i.d
observations from a distribution of support [—R, R] and

'In this work, we focus on pure e-DP, rather than (&, §)-DP.

?(Tossou and Dimitrakakis, 2016) claim a O (1o8(T)/c) bound,
but (i) rely on (£, d)-DP rather than pure-DP and more impor-
tantly (ii) “sweep under the rug” several factors that are them-
selves on the order of log(T').

3(Mishra and Thakurta, 2015) shows a bound of O (10g*(T)/c)

unknown mean g, and halt once they obtain a (1 £ «)-
approximation of p with confidence of at least 1 — f.
Note that due to the multiplicative nature of the required
approximation, it is impossible to straight-forwardly use
the Hoeffding or Bernstein bounds; rather a stopping rule
must alter its halting condition with time. (Domingo et al.,
2002) proposed a stopping rule known as the Nonmono-
tonic Adaptive Sampling (NAS) algorithm that relies on the
Hoeffding’s inequality to maintain a confidence interval at
each timestep. They showed a sample complexity bound of

0 (R—Q <log( L)) ) , later improved slightly by (Mnih

a?p? B-apl
et al., 2008) to O (Og—;z (log(%) + log log(ﬁ))). The
work of (Dagum et al., 2000) shows an essentially match-
ing sample complexity lower-bound. Stopping Rules have
also been applied to Reinforcement Learning and Racing
algorithms (See Sajed et al. (2018); Mnih et al. (2008)).

In this work we introduce a e-DP analogue of the NAS al-
gorithm that is based on the sparse vector technique (SVT),

with added sample complexity of (roughly) O(%ﬁ‘/m).
Moreover, we show that this added sample complexity is
optimal in the sense that any e-DP stopping rule has a
matching sample complexity lower-bound. After we intro-
duce preliminaries in Section 2, we present the private NAS
in Section 3. We then turn our attention to the design of the
private SE algorithm. Note that straight-forwardly apply-
ing K private stopping rules yields a suboptimal algorithm
whose regret bound is proportional to K2, Instead, we par-
tition the algorithm’s arm-pulls into epochs, where epoch e
is set to eliminate all arms with suboptimality-gaps greater
than 27¢. By design each epoch must be at least twice as
long as the previous epoch, and so we can reset (compute
empirical means from fresh reward samples) the algorithm
in-between epochs while incurring only a constant-factor
increase to the regret bound. Details appear in Section 4.
We also assess the empirical performance of our algorithm
in comparison to the DP-UCB baseline and show that the
improvement in analysis (despite the use of large constants)
is empirically evident; details provided in Section 5. Lastly,
future directions for this work are discussed in Section 6.

Discussion. Some may find the results of this work un-
derwhelming — after all the improvement we put forth is
solely over poly log-factors, and admittedly they are al-
ready subsumed by the non-private regret bound of the al-
gorithm under many “natural” settings of parameters. Our
reply to these is two-fold. First, our experiments (see Sec-
tion 5) show a significantly improved performance empir-
ically, which is only due to the different algorithmic ap-
proach. Second, as the designers of privacy-preserving
learning algorithms it is our “moral duty” to quantify the
added cost of privacy on top of the already existing cost,
and push this added cost to its absolute lowest.
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We would also like to emphasize a more philosophical
point arising from this work. Both the UCB-algorithm and
the SE-algorithm are provably optimal for the MAB prob-
lem in the non-private setting, and are therefore equiva-
lent. But the UCB-algorithm makes in each timestep an
input-dependent choice (which arm to pull); whereas the
SE-algorithm input-dependent choices are reflected only in
K — 1 special timesteps in which it declares “eliminate arm
a” (in any other timestep it chooses the next viable arm).
In that sense, the SE-algorithm is simpler than the UCB-
algorithm, making it the less costly to privatize between the
two. In other words, differential privacy gives quantitative
reasoning for preferring one algorithm to another because
“simpler is better.” While not a full-fledged theory (yet),
we believe this narrative is of importance to anyone who
designs differentially private data-analysis algorithms.

2. Preliminaries

Stopping Rules. In the stopping rule problem, the input
consists of a stream of i.i.d samples {X,};>1 drawn from
a distribution over an a-priori known support [—R, R] and
with unknown mean p. Given «, 8 € (0,1), the goal of
the stopping rule is to halt after seeing as few samples as
possible while releasing a (1 & «)-approximation of 1 at
halting time. Namely, a («, /3)-stopping rule halts at some
time ¢* and releases i such that Pr[|g — p| > alp|] <

(. (It should be clear that the halting time t* increases as

. . def
|¢¢| decreases.) During any timestep ¢, we denote X =

2221 X, and X, def X1.¢/t.

Stochastic MAB and its optimal bounds. The formal de-
scription of the stochastic MAB problem was provided in

the introduction. Formally, the bound maintained by the

UCB-algorithm for each arm a at a given round t is By, ¢ def

T, + +/2los()/t, with [i,, denoting the empirical mean re-
ward from pulling arm @ and ¢, denoting the number of
times a was pulled thus far. We use a* to denote the lead-
ing arm, namely, an arm of highest mean reward: (o« =

max’_ {11, }. Given any arm a we denote the mean-gap as

A, def ta* — lha, With Ay« = 0 by definition. Additionally

we denote the horizon with 7" - the number of rounds that a
MAB algorithm will be run for. An algorithm that chooses
arm a; at timestep t incurs an expected regret or pseudo-
regret of >, A,,. It is well-known (Lai and Robbins,
1985) that any consistent* regret-minimization algorithm
must incur a pseudo-regret of Q3 - loi(aT) ); and in-
deed the UCB-algorithm meets this bound and has pseudo-

regret of O}, - loi(aT ).

However, the minimax re-

4 A regret minimization algorithm is called consistent if its re-
gret is sub-polynomial, namely in o(n?) for any p > 0.

gret bound of the UCB-algorithm is O(+/ KT log(T)), ob-
tained by an adversary that knows 7" and sets all suboptimal
arms’ gaps to /K log(T)/7, whereas the minimax lower-
bound of any algorithm is slightly smaller: Q(+/ KT') (Auer
et al., 2002a).

Differential Privacy. In this work, we preserve event-level
privacy under continuous observation (Dwork et al., 2010).
Formally, we say two streams are neighbours if they differ
on a single entry in a single timestep ¢, and are identical
on any other timestep. An algorithm M is e-differentially
private if for any two neighboring streams S and S’ and for
any set O of decisions made from timestep 1 through 7', it
holds that Pr[M(S) € O] < ef Pr[M(S’) € O]. Note
that much like its input, the output M (S) is also released
in a stream-like fashion, and the requirement should hold
for all decisions made by M in all timesteps.

In this work, we use two mechanisms that are known to
be -DP. The first is the Laplace mechanism (Dwork et al.,
2006). Given a function f that takes as input a stream S
and releases an output in R? we denote its global sen-
sitivity as GS(f) = maxg s ||f(S) — f(57)||1; and the
Laplace mechanism adds a random (independent) sample
from Lap(GS(f)/¢) to each coordinate of f(.S). The other
mechanism we use is the sparse-vector technique (SVT),
that takes in addition to S a sequence of queries {g; }; (each
query has a global sensitivity < G.5), and halts with the
very first query whose value exceeds a given threshold. The
SVT works by adding a random noise sampled i.i.d from
Lap(3GS/e) to both to the threshold and to each of the
query-values. See (Dwork et al., 2014) for more details.

Concentration bounds. A Laplace r.v. X ~ Lap(}) is
sampled from a distribution with PDF(z) oc e="*/*. It is
known that E[X] = 0, Var[X] = 2A? and that for any
7 > 0 it holds that Pr[|X| > 7] = e~ />

Throughout this work we also rely on the Hoeffding in-
equality (Hoeffding, 1963). Given a collection {X,}7_; of
i.i.d random variables that take value in a finite interval of
length R with mean i, it holds that Pr [|X; — p| > o] <
2exp (—20°T/R?).

Miscellaneous. We emphasize we made no ef-
fort to minimize constants throughout this work.
We use log(z) to denote the base-e logarithm
of z. Given two distributions P and Q, we de-
note their total-variation distance as dpy(P,Q) =
sgp (| Prx~p[X € S] — Prx.g[X € S]|). We also rely

on the following fact (proof omitted).

Fact 2.1. Fixany a > 1 and 0 < b < 1/16. Then for any

e<x< w it holds that M > b, and

for any x > %ﬁg(l/b)) it holds that M < b.
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3. Differentially Private Stopping Rule

In this section, we derive a differentially private stop-
ping rule algorithm, DP-NAS, which is based on the non-
private NAS (Nonmonotonic Adaptive Sampling). The
non-private NAS is rather simple. Given 3, denote h; as
confidence interval derived by the Hoeffding bound with
confidence 1 — 8/2¢* for ¢ iid random samples bounded
in magnitude by R; thus, w.p. > 1 — f it holds that
Vt,| Xy — p| < hy. The NAS algorithm halts at the first
¢ for which [X;| > hy (£ + 1). Indeed, such a stopping
rule assures that | X; — u| < hy < | X¢| —hy) < o, the

last inequality follows from || X;| — |u|| < | Xy — p| < hy.

In order to make NAS differentially private we use the
sparse vector technique, since the algorithm is basically

def |
qt = |Xt|*

o
he (L +1) > 0. Recall that the sparse-vector technique
adds random noise both to the threshold and to the answer
of each query, and so we must adjust the naive threshold of
0 to some ¢; in order to make sure that X, is sufficiently
close to p when the threshold is crossed. Lastly, since our
goal is to provide a private approximation of the distribu-
tion mean, we also apply the Laplace mechanism to X, to
assert the output is differentially private. Details appear in
Algorithm 1.

asking a series of threshold queries:

Algorithm 1 DP-NAS

Set o1 12R/5, 09 12R/s, o3 < 4R/s.
Sample B ~ Lap(o1).
Initialize ¢ < 0.
repeat
t—t+1
Ay ~ Lap(o2) _
Get a new sample X; and update the mean X,.

hi < R %1og(1%t2)

¢y <= o1 log(4/) + 02 log(5+"/s) + % log(4/s)
10: wntil | Xy| > by (14 1) + atBtde

11: Sample L ~ Lap(os).

12: return X; + %

e A A S

b

Theorem 3.1. Algorithm 1 is a e-DP («, 3)-stopping rule.

Proof. First, we argue that Algorithm 1 is e-differentially
private. This follows immediately from the fact that the
algorithm is a combination of the sparse-vector technique
with the Laplace mechanism. The first part of the algorithm
halts when | 3°0_, X, — hy - t(2 +1) — ¢, > Ay + B. In-
deed, this is the sparse-vector mechanism for a sum-query
of sensitivity of no more than 2R. It follows that sampling
both the threshold-noise B and the query noise A; from
Lap(3- 2 -2R) suffices to maintain £-DP. Similarly, adding

a sample from Lap(% - 2R) suffices to release the mean
with §-DP at the very last step of the algorithm.

Since Zt>1 t=2 < 2, under the assumption that all
{X:} are i.i.d samples from a distribution of mean p, the
Hoeffding-bound and union-bound give that Pr[3¢, |X; —
| > hy] < B/4. Standard concentration bound on the
Laplace distribution give that Pr[|B| > o log(4/s)] < /4,
Pr[3t, |Ay > oolog(8t?/s)] < B/, and Pr[|L| >
o3log(4/8)] < B/a. Tt follows that w.p. > 1 — [ none of
these events happen, and so V¢, ¢; > |B| + |A¢| + |L|/ .

It follows that at the time we halt we have that

Hoeffding

- —_— «
[ Xe — pf he < a|Xe] = he) = (et + A + B)

(*) o
< alul = (e + A+ B) < afp| -

where () is due to

|X15—M|’ < |X;—p| < hy. Therefore,

we have that [X; + £ — p| < IE—MJr@ <alpl. O

Rather than analyzing the utility of Algorithm 1, namely,
the high-probability bounds on its stopping time, we now
turn our attention to a slight modification of the algorithm
and analyze the revised algorithm’s utility. The modifica-
tion we introduce, albeit technical and non-instrumental in
the utility bounds, plays a conceptual role in the descrip-
tion of later algorithms. We introduce Algorithm 2 where
we exponentially reduce the number of SVT queries using
standard doubling technique. Instead of querying the mag-
nitude of the average at each timestep, we query it at ex-
ponentially growing intervals, thus paying no more than a
constant factor in the utility guarantees while still reducing
the number of SVT queries dramatically.

Algorithm 2 DP exponential NAS
1: Seto; < IQR/E, 09 4— 12R/s, o3 < 4R/s.
2: Sample B ~ Lap(o)
3: Initialize k < O and ¢ < 0.

4: repeat

50 k<« k+1

6:  repeat

7: t+—t+1

8: Sample X; and update X.
9: until t = 2F

10: Ay ~ Lap(o2)

11: ¢« o1log(4/s) + 02 log(8k?/8) + 2 log(4/s)
12 By = Ry/%log(1%7)

13: until [X;| > hy(1 4 1) 4 ctBra

14: L ~ Lap(os)

15: return X; + %
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Corollary 3.2. Algorithm 2 is a e-DP («, 3)-stopping rule.
Proof. The only difference between Algorithms 1 and 2
lies in checking the halting condition at exponentially in-
creasing time-intervals, namely during times ¢t = 2* for
k € N. The privacy analysis remains the same as in the
proof of Theorem 3.1, and the algorithm correctness anal-
ysis is modified by considering only the timesteps during
which we checking for the halting condition. Formally, we
denote £ as the event where (i) Vk, |Xor — p| < how, (ii)
|B| < o1log(4/), (iii) Vk, |Agx| < o2log(8%*/s), and
(iv) |L| < o3log(4/8). Analogous to the proof of Theo-
rem 3.1 we bound Pr[€] > 1— and the result follows. [

Theorem 3.3. Fix 8 < 0.08 and pn # 0. Let {X:}+ be

an ensemble of i.i.d samples from any distribution over

the range [—R,R]| and with mean u. Denote t def

R2log((V/s) - 10g(57)) e Rlog((Y/8) - log(5))

y L1 =

a2u? elul ’
o Rlog(t

t def g|( |/ﬁ) Then with probability at least 1 — 3,
Q|

Algorithm 2 halts by timestep ty = 2000(tg + t1 + t2).

Proof. Recall the event £ from the proof of Corollary 3.2
and its four conditions. We assume £ holds and so the al-
gorithm releases a (1 &+ «)-approximation of u. To prove
the claim, we show that under &, at time ¢y it must hold
that | X;| > he(1 + 1) + etBE4e

Under € we have that |X;| > |u| — by and @244 <
291 Jog(4/8) + 222 log(8k°/5) + 22 log(%/); and so it suf-
fices to show that |u| > (2 + 1) + 24Rlog(Y/8)

et
24R log(5k/s) AR108(48)  n fact, since o < 1 we
et acet : 4

show something slightly stronger: that at time ¢;; we have
3hy 48R log(8%%/5) 4R10g(4/(-})

!u| > % + 2 + . This however is an

immediate corollary of the followmg three facts.

1. For any ¢ > 1000ty we have “2(™2/0) <
(23!54'1{)2 implying % 1l > Sht

2. For any t > 1000¢; we have 1Og(410tg2<t)/6) < 3'25'%'}%’
implying & lel > 248Rlotg(4k/ﬁ) > 48Rlo§§8k2/5).

3. For any t > 48t, we have el 4Rlog(4/s)

- act

where the first two rely on Fact 2.1. It follows that at time
1000(to + t1 + t2) all three conditions hold. Therefore by
time ¢, = 2000(to + ¢1 + t2) Algorithm 2 reaches some
t which is a power of 2, on which it poses a query for the
SVT mechanism and halts. O

3.1. Private Stopping Rule Lower bounds

We turn our attention to proving the (near) optimality
of Algorithm 2. A non-private lower bound was proven

in (Dagum et al., 2000), who showed that no stopping
rule algorithm can achieve a sample complexity better than

§) (%f;alul} log(1/ ,8)) (with o2 denoting the variance
of the underlying distribution). In this section, we prove the

following lower bound on the additional sample complex-
ity that any e-DP stopping rule algorithm must incur.

Theorem 3.4. Any e-differentially private («, 3)-stopping
rule whose input consists of a steam of i.i.d samples
from a distribution over support [—R, R] and with mean
w # 0, must have an additional sample complexity of
Q (RIOg(l/ﬁ)/ea\M).

Proof. Fix e,a, 3 > 0 such that & < 1 and § < 1/4, and
fix R and p > 0. We define two distributions P, Q over a
support consisting of two discrete points: {—R, R}. Set-
ting Prp[R] = % + % we have that Ex.p[X] = p.
Set p’ as any number infinitesimally below the thresh-
old of {724, so that we have (1 + a)u’ < (1 — a)u;

we set the parameters of Q s.t. Prg[R] = % + 4=
Ex~o[X] = p/. By definition, the total variation di stance

—u 2a @
dov(P, Q) = 54 = sriiray < &

Let M be any e-differentially private (v, 3)-stopping rule.
Denote n = %(;/f). Let £ be the event “after seeing
at most n samples, M halts and outputs a number in the
interval [(1 — a)p, (1 + a)p].” We now apply the follow-
ing, very elegant, lemma from (Karwa and Vadhan, 2018),
stating that the group privacy loss of a differentially privacy
mechanism taking as input n i.i.d samples either from a dis-
tributions D or from a distribution D’ scales effectively as
O(sn : dTV (’D7 D,))

Lemma 3.5 (Lemma 6.1 from (Karwa and Vadhan, 2018)).
Let M be any e-differentially private mechanism, fix a nat-
ural n and fix two distributions D and D', and let S and S’
denote an ensemble of n i.i.d samples taken from D and D'

resp. Then for any possible set of outputs O it holds that
Pr[M(S) € O] < e8endrv(DD) PrM(S') € O

And so, applying M over n i.i.d samples taken from Q,
we must have that Prag g.on[E] < 3, since (1 — a)p >
(1+ a)u’. Applying Lemma 3.5 to our setting, we get

Pr_ [£] < fmdv(PQ) pr [g]

M,S~Pn M,5~Qn
< B -exp(6en - a—;)
B 6eap Rlog(l/s),  fB 1
= 3+ exp( R 12eapu )= VB <3

since 5 < 1/4. Since, by definition, we have that the
probability of the event £ “after seeing at most n sam-
ples, M halts and outputs a number outside the interval
[(1 = a)u, (1 + a)u]” over n iid samples from P is at
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most /3, then it must be that M halts after seeing strictly
more than n samples w.p. > 1 — (1/2+ 3) > /4. O

Combining the non-private lower bound of (Dagum et al.,
2000) and the bound of Theorem 3.4, we immediately infer
the overall sample complexity bound, which follows from
the fact that the variance of the distribution P used in the
proof of Theorem 3.4 has variance of ©(R?).

Corollary 3.6. There exists a distribution P for which any
e-differentially private («, 3)-stopping rule algorithm has
R?log(1/s) | Rlog(l/ﬁ))'

a?u? calu]

a sample complexity of () (

Discussion. How optimal is Algorithm 2? The sam-
ple complexity bound in Theorem 3.3 can be interpreted
as the sum of the non-private and private parts. The

2
aTug(log(l/B) +loglog aﬁ))
R
and the private part is Q((log(l/ﬁ) + loglog ﬁ)

el
Rlog(1
M) If we add in the assumption that
oyl

log(ﬁ) < 1/ we get that the upper-bound of Theo-

rem 3.3 matches the lower-bound in Corollary 3.6.

non-private part is Q<

How benign is this assumption? Much like in (Mnih et al.,
2008), we too believe it is a very mild assumption. Specif-
ically, in the next section, where we deal with finite se-
quences of length T', we set 3 as proportional to /7. Since
over finite-length sequence we can only retrieve an approx-
imation of u if ILRI > % requiring % < 27 is trivial.
However, we cannot completely disregard the possibility of
using a private stopping rule in a setting where, for exam-
ple, both «, 8 are constants whereas % is a sub-constant.
In such a setting, 10g(ﬁ) may dominate 1/s, and there it
might be possible to improve on the performance of Algo-
rithm 2 (or tighten the bound).

4. An Optimal Private MAB Algorithm

In this section, our goal is to devise an optimal &-
differentially private algorithm for the stochastic K -arms
bandit problem, in a setting where all rewards are between
[0,1]. We denote the mean reward of each arm as (i, the
best arm as a*, and for any a # a* we refer to the gap
Ay = g+ — lq- We seek in the optimal algorithm in
the sense that it should meet both the non-private instance-
dependent bound of (Lai and Robbins, 1985) and the lower
bound of (Shariff and Sheffet, 2018); namely an algo-
rithm with an instance-dependent pseudo-regret bound of

) (% + 2 astar 102(3)). The algorithm we devise

is a differentially private version of the Successive Elimina-
tion (SE) algorithm (Even-Dar et al., 2002). SE initializes

by setting all K arms as viable options, and iteratively pulls
all viable arms maintaining the same confidence interval
around the empirical average of each viable arm’s reward.
Once some viable arm’s upper confidence bound is strictly
smaller than the lower confidence bound of some other vi-
able arm, the arm with the lower empirical reward is elimi-
nated and is no longer considered viable. It is worth while
to note that the classical UCB algorithm and the SE algo-
rithm have the same asymptotic pseudo-regret. To design
the differentially private analouge of SE, one can use our
results from the previous section regarding stopping rules.
After all, in the special case where we have K = 2 arms,
we can straight-forwardly use the private stopping-rule to
assess the mean of the difference between the arms up to
a constant a (say a = 0.5). The question lies in applying
this algorithm in the K > 2 case.

Here are a few failed first-attempts. The most straight-
forward ideas is to apply (12( ) stopping rules / SVTs for
all pairs of arms; but since a reward of a single pull of
any single arm plays a role in K — 1 SVT instantiations,
it follows we would have to scale down the privacy-loss of
each SVT to ©(¢/K) resulting in an added regret scaled up
by a factor of K. In an attempt to reduce the number of
SVT-instantiations, we might consider asking for each arm
whether there exists an arm with a significantly greater re-
ward, yet it still holds that the reward from a single pull of
the leading arm a* plays a role in K SVT-instantiations.
Next, consider merging all queries into a single SVT, pos-
ing in each round K queries (one per arm) and halting once
we find that a certain arm is suboptimal; but this results in a
single SVT that may halt K — 1 times, causing us yet again
to scale € by a factor of K.

In order to avoid scaling down € by a factor of K, our so-
lution leverages on the combination of parallel decompo-
sition and geometrically increasing intervals. Namely we
partition the arm pulls of the algorithm into epochs of ge-
ometrically increasing lengths, where in epoch e we elimi-
nate all arms of optimality-gap > 27¢. In fact, it turns out
we needn’t apply the SVT at the end of each epoch’® but
rather just test for a noticeably underperforming arm using
a private histogram. The key point is that at the beginning
of each new epoch we nullify all counters (i.e delete all
prior rewards) and start the mean-reward estimation com-
pletely anew (over the remaining set of viable arms) — and
so a single reward plays a role in only one epoch, allow-
ing for e-DP mean-estimation in each epoch (rather than
g/K). Yet due to the fact that the epochs are of expo-
nentially growing lengths the total number of pulls for any
suboptimal arm is proportional to the length of the epoch
in which it eliminated, resulting in only a constant factor
increase to the regret. The full-fledged details appear in

SWe thank the anonymous referee for this elegant observation.
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Algorithm 3.

Algorithm 3 DP Successive Elimination

input K arms, confidence 3, privacy-loss €.
1: Let S« {1,...,K}.
2: Initialize: t < 0, epoch < 0.

3: repeat

4:  Increment epoch < epoch + 1.

5: Setr«+ 0

6:  Zero all means: Vi € S set ji; < 0

70 Set A, < 27¢poch , ,

6 SetR, < max (ZISU o150 t)
1

9:  whiler < R. do

10: Increment r < r + 1.

11: foreachi € S

12: Increment ¢ <— ¢ + 1

13: Sample reward of arm ¢, update mean fi;.

14:  end while
log(S\S\ -epoc}L2//3)
2R,

log(41S|-epoch?/,
16:  Sete, « e rs)

17:  foreachi € S seteﬁi « fi; + Lap(/er)
18:  Let fipax = Max;es fi;

19:  Remove all arm j from S such that:

20: ﬁmax - /7] > 2he + 206

21: until |S] =1

22: Pull the arm in S in all remaining rounds.

15:  Set h, +

Theorem 4.1. Algorithm 3 is e-differentially private.

Proof. Consider two streams of arm-rewards that differ
on the reward of a single arm in a single timestep. This
timestep plays a role in a single epoch e. Moreover, let a
be the arm whose reward differs between the two neigh-
boring streams. Since the reward of each arm is bounded
by [0, 1] it follows that the difference of the mean of arm
a between the two neighboring streams is < 1/R.. Thus,
adding noise of Lap(1/cR.) to fi, guarantees -DP. O

To argue about the optimality of Algorithm 3, we require
the following lemma, a key step in the following theorem
that bounds the pseudo-regret of the algorithm. Its proof is
deferred to the full version.

Lemma 4.2. Fix any instance of the K-MAB problem, and
denote a* as its optimal arm (of highest mean), and the
gaps between the mean of arm o™ and any suboptimal arm
a # a* as A,. Fix any horizon T. Then wp. > 1 — (it
holds that Algorithm 3 pulls each suboptimal arm a # a*
for a number of timesteps upper bounded by

min{T, O <(log(K/B) + loglog(1/a4)) <A1121 + 62@))}

Based on Lemma 4.2 we can now reason about the pseudo-
regret of the DP-SE algorithm.

Theorem 4.3. Under the same notation as in Lemma 4.2
and for sufficiently large T, the expected regret of Algo-

log (T Klog(T
(5 5) + meam).

a#a*

rithm 3 is at most O (

The proof of Theorem 4.3, which is a straight-forward cal-
culation once one sets 3 = 1/7, is deferred to the full
version. It is worth noting yet again that the expected
regret of Algorithm 3 meets both the (instance depen-
dent) non-private lower bound (Lai and Robbins, 1985) of

log(T
Q (Za;ﬁa* i(a :

and Sheffet, 2018) of ) (K log(T)/e).

) and the private lower bound (Shariff

Minimax Regret Bound. The bound of Theorem 4.3 is an
instance-dependent bound, and so we turn our attention to
the minimax regret bound of Algorithm 3 — Given horizon
bound 7', how should an adversary set the gaps between the
different arms as to maximize the expected regret of Algo-
rithm 3? We next show that in any setting of the gaps, the
following is an instance independent bound on the expected
regret of Algorithm 3.

Theorem 4.4. (Instance Independent Bound) The pseudo
regret of Algorithm 3 is O( TKlog(T) + Klog(T)/e).

Again, we comment on the optimality of the bound in The-
orem 4.4. The non-private minimax bound (Auer et al.,
2002b) is known to be Q(v/TK) and combining it with
the private bound of Q(K log(T')/e) we see that the above
minimax bound is just y/log(T)-factor away from being
optimal. The full proof of Theorem 4.4 is deferred to the
full version.

S. Empirical Evaluation

In this section, we empirically compare the existing DP-
UCB algorithm to our DP-SE algorithm (Algorithm 3). Our
goal is to assert that indeed our DP-SE algorithm outper-
forms (achieves smaller pseudo regret than) the DP-UCB
baseline under a wide range of parameters. Afterall, the
improvement we introduce is over poly log(T") factors and
does incur an increase in the constants repressed by the big-
O notation.

In our experiments we set the default values of 7' = 5x 107,
€ = 0.25 and K = 5. We assume 7T is a-priori known to
both algorithms and set 8 = 1/T. Due to space constraints,
we only present our empirical results on one instance where
the reward means of the arms are linearly spaced in the
range [0.25,0.75]°. Namely in our instance, for K = 5,

SConstraining the means within [0.25, 0.75] ensures the vari-
ance of the arms are similar (upto a constant of 4/3)
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the mean rewards are in {0.75, 0.625,0.5,0.375,0.25}. (In
the full version of this work we experiment with three ad-
ditional settings, varying both € and K.) We then vary
e € {0.1,0.25,0.5,1}. Using a* to denote the optimal arm,
we measure the algorithms’ performances in terms of their
pseudo regret, so upon pulling a suboptimal arm a # a*
each algorithm incurs a cost A, = pg+« — pg. For each
setting, 30 runs of the algorithms were carried out and their
average pseudo regrets are plotted. The results, presented
in log-scale, are given in Figure 1.

The results conclusively show that DP-SE outperforms DP-
UCB — subject to the caveat that our experiments are
proof-of-concept only and we did not conduct a thorough
investigation of the entire hyper-parameter space, we could
not find even a single setting where DP-UCB is even com-
parable to our DP-SE. l.e. in all settings we tested (the
one presented here and the additional ones presented in the
full version), we outperform DP-UCB by at least 5 times.
We also comment as to the difference in the shape of the
two pseudo-regret curves — while the DP-UCB curve is
smooth (attesting to the fact it pulls suboptimal arms even
for fairly large values of T'), the DP-SE is piece-wise lin-
ear (exhibiting the fact that at some point is eliminates all
suboptimal arms). Note also that changing ¢ affects the
performance of DP-UCB much more than DP-SE due to
the poly log T/ factor.

6. Future Directions

While it seems this work “closes the book™ on the pri-
vate stochastic-MAB problem, we want to point out a
few future research directions. First, the MAB problem
has actually multiple lower-bounds, where even low-order
terms in the lower bound have been devised under dif-
ferent setting (see for example Bubeck et al. (2013)); so
studying the lower-order terms of the bounds on the pri-
vate MAB problem may be of importance. Secondly,
much of the work on stopping rules is devoted to the
case where the variance o2 of the distribution is signif-
icantly smaller than its range. E.g. Mnih et al. (2008)
gave an algorithm whose sample complexity is actually

0 (max{ag—iz, ﬁ}(log(l/ﬂ + log log(R/a\m))). Note
that the lower-bound in Theorem 3.4 deals with a distri-
bution of variance ©(R?), so by restricting our attention
to distributions with much smaller variance we may by-
pass this lower-bound. We leave the problem of design-
ing privacy-preserving analogues of the Bernstein stopping
rule (Mnih et al., 2008) as an interesting open-problem.

Also, note that our entire analysis is restricted to e-DP.
While our results extend to the more-recent notion of con-
centrated differential privacy (Bun and Steinke, 2016), we
do not know how to extend them to (&, §)-DP, as we do not

Pseudo Regret
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Rounds
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Figure 1: Expected regret with K = 5 arms of mean re-
wards {0.75,0.625,0.5,0.375,0.25} and T' = 5 x 107

know the lower-bounds for this setting. Similarly, we do
not know the concrete privacy-utility bounds of the MAB
problem in the local-model of DP. Lastly, it would be inter-
esting to see if the overall approach of private Successive
Elimination is applicable, and yields better bounds than
currently known, for natural extensions of the MAB, such
as in the linear and contextual settings. Even-Dar et al.
(2002) themselves motivated their work by various applica-
tions in a Markov-chain related setting. It is an interesting
open problem of adjusting this work to such applications.
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