
Multivariate Submodular Optimization
(paper full version)
Richard Santiago
School of Computer Science, McGill University, Montreal, Canada
richard.santiagotorres@mail.mcgill.ca

F. Bruce Shepherd
Department of Computer Science, University of British Columbia, Vancouver, Canada
fbrucesh@cs.ubc.ca

Abstract
Submodular functions have found a wealth of new applications in data science and machine
learning models in recent years. This has been coupled with many algorithmic advances in the
area of submodular optimization: (SO) min /max f(S) : S ∈ F , where F is a given family of
feasible sets over a ground set V and f : 2V → R is submodular. Our focus is on a more general
class of multivariate submodular optimization (MVSO) problems: min /max f(S1, S2, . . . , Sk) :
S1] S2] · · ·] Sk ∈ F . Here we use] to denote union of disjoint sets and hence this model is
attractive where resources are being allocated across k agents, who share a “joint” multivariate
nonnegative objective f(S1, S2, . . . , Sk) that captures some type of submodularity (i.e. diminish-
ing returns) property. We provide some explicit examples and potential applications for this new
framework.

For maximization, we show that practical algorithms such as accelerated greedy variants and
distributed algorithms achieve good approximation guarantees for very general families (such as
matroids and p-systems). For arbitrary families, we show that monotone (resp. nonmonotone)
MVSO admits an α(1 − 1/e) (resp. α · 0.385) approximation whenever monotone (resp. non-
monotone) SO admits an α-approximation over the multilinear formulation. This substantially
expands the family of tractable models for submodular maximization. For minimization, we show
that if SO admits a β-approximation over modular functions, then MVSO admits a β·n

1+(n−1)(1−c) -
approximation where c ∈ [0, 1] denotes the curvature of f . We show that this approximation is
essentially tight even for F = {V }. Finally, we give a bound in terms of k and prove that MVSO
has an αk-approximation whenever SO admits an α-approximation over the convex formulation.

2012 ACM Subject Classification Theory of computation → Submodular optimization and
polymatroids

Keywords and phrases submodular optimization, machine learning, multi-agent optimization,
multivariate optimization, approximation algorithms

mailto:richard.santiagotorres@mail.mcgill.ca
mailto:fbrucesh@cs.ubc.ca

23:2 Multivariate Submodular Optimization (paper full version)

1 Introduction

Submodularity is a property of set functions with deep theoretical consequences and a wide
range of applications. Optimizing submodular functions is a central subject in operations
research and combinatorial optimization [47]. It appears in many important optimization
frameworks including cuts in graphs, set covering problems, plant location problems, certain
satisfiability problems, combinatorial auctions, and maximum entropy sampling. In machine
learning it has recently been identified and utilized in domains such as viral marketing [35],
information gathering [39], image segmentation [4, 37, 34], document summarization [46],
and speeding up satisfiability solvers [59].

A set function f : 2V → R is submodular if f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for any
S, T ⊆ V . We say that f is monotone if f(S) ≤ f(T) for S ⊆ T . Throughout, all submodular
functions are nonnegative, and we usually assume f(∅) = 0. Our functions are given by a
value oracle, where for a given set S an algorithm can query the oracle to find its value f(S).

We consider the following broad class of submodular optimization (SO) problems:

SO(F) Min / Max f(S) : S ∈ F (1)

where f is a nonnegative submodular set function on a finite ground set V , and F ⊆ 2V
is a family of feasible sets. These problems have been well studied for a variety of set
families F . We explore the connections between these (single-agent) problems and their
more general multivariate incarnations. In the multivariate (MV) version, we have k agents
and a “joint” multivariate nonnegative objective f(S1, S2, . . . , Sk) that captures some type
of submodularity (i.e. diminishing returns) property (see Section 1.1). As before, we are
looking for sets S ∈ F , however, we now have a 2-phase task: the elements of S must also
be partitioned amongst the agents. Hence we have set variables Si and seek to optimize
f(S1, S2, . . . , Sk). This leads to the multivariate submodular optimization (MVSO) versions:

MVSO(F) Min / Max f(S1, S2, . . . , Sk) : S1] S2] · · ·] Sk ∈ F . (2)

Our main objective is to study the approximability of the multivariate problems in terms
of their single-agent versions. We refer to the multivariate (MV) gap as the approximation
factor loss incurred by moving to the multivariate setting. To the best of our knowledge,
neither the MVSO(F) framework for general families F nor the notion of MV gap have been
considered before in the literature.

An important special case of MVSO occurs when the function f(S1, . . . , Sk) can be
separated as f(S1, . . . , Sk) =

∑
i∈[k] fi(Si) where the fi are all submodular; in this case we

say that f is separable. This leads to the class of multi-agent submodular optimization
(MASO) problems

MASO(F) Min / Max
∑k
i=1 fi(Si) : S1] S2] · · ·] Sk ∈ F , (3)

which have been widely studied (see related work section).

1.1 Multivariate submodular optimization
We consider functions of several variables which satisfy the following type of submodularity
property. A multivariate function f : 2kV → R is k-multi-submodular if for all pairs of tuples
(S1, S2, ..., Sk), (T1, T2, ..., Tk) ∈ 2kV we have

f(S1, ..., Sk)+f(T1, ..., Tk) ≥ f(S1∪T1, S2∪T2, .., Sk∪Tk)+f(S1∩T1, S2∩T2, ..., Sk∩Tk).

R. Santiago and F. B. Shepherd 23:3

Moreover, we say that f is normalized if f(∅, ∅, . . . , ∅) = 0, and monotone if f(S1, . . . , Sk) ≤
f(T1, . . . , Tk) for all tuples (S1, . . . , Sk) and (T1, . . . , Tk) satisfying Si ⊆ Ti for all i ∈ [k].

In the special case of k = 1 a k-multi-submodular function is just a submodular function. In
Appendix A we discuss how k-multi-submodular functions can also be naturally characterized
(or defined) in terms of diminishing returns. This notion of multivariate submodularity has
been considered before ([16, 58]) and we discuss this in detail on Section 1.4.

Two explicit examples of (non-separable) k-multi-submodular functions (see Appendix B
for proofs) are the following.

I Example 1. Consider a multilinear function h : Zk+ → R given by h(z) =
∑
S⊆[k] aS

∏
m∈S zm.

Let f : 2kV → R be a multivariate set function defined as f(S1, . . . , Sk) = h(|S1|, . . . , |Sk|).
Then f is k-multi-submodular if and only if aS ≤ 0 for all S ⊆ [k].

I Example 2. Let h : Zk+ → R be a quadratic function given by h(z) = zTAz. Let
f : 2kV → R be a multivariate set function defined as f(S1, . . . , Sk) = h(|S1|, . . . , |Sk|). Then
f is k-multi-submodular if and only if A = (aij) satisfies aij + aji ≤ 0 for all i, j ∈ [k].

We believe the above examples are useful for modelling “competition” between agents in
many domains. In Section 1.3 we discuss one application to sensor placement problems.

1.2 Our contributions
Our first contribution is to show that the MV framework can model much more general
problems than the separable multi-agent (i.e. MASO) framework. This is quantitatively
captured in the following information theoretic result (see Section 3.3) where we establish a
large gap between the two problems:

(MV−Min) min f(S1, . . . , Sk)
s.t. S1] · · ·] Sk = V

(MA−Min) min
∑k
i=1 fi(Si)

s.t. S1] · · ·] Sk = V

I Theorem 3. The MV-Min problem with a nonnegative monotone k-multi-submodular
objective function cannot be approximated to a ratio o(n/ logn) in the value oracle model with
polynomial number of queries, whereas its separable version MA-Min has a tight O(logn)-
approximation polytime algorithm for nonnegative monotone submodular functions fi.

The above result shows that the MV model may also potentially face roadblocks in
terms of tractability. Fortunately, we can show that the multivariate problem remains very
well-behaved in the maximization setting. Our main result establishes that if the single-agent
problem for a family F admits approximation via its multilinear relaxation (see Section 2.2),
then we may extend this to its multivariate version with a constant factor loss.

I Theorem 4. If there is a (polytime) α(n)-approximation for monotone SO(F) maximization
via its multilinear relaxation, then there is a (polytime) (1− 1/e) · α(n)-approximation for
monotone MVSO(F) maximization. Furthermore, given a downwards closed family F , if
there is a (polytime) α(n)-approximation for nonmonotone SO(F) maximization via its
multilinear relaxation, then there is a (polytime) 0.385 ·α(n)-approximation for nonmonotone
MVSO(F) maximization.

We note that the multilinear relaxation can be efficiently evaluated for a large class of
practical and useful submodular functions [32], thus making these algorithms viable for many
real-world machine learning problems.

We remark that the MV gap of 1 − 1/e for monotone objectives is tight, in the sense
that there are families where this cannot be improved. For instance, F = {V } has a trivial

23:4 Multivariate Submodular Optimization (paper full version)

1-approximation for the single-agent problem, and a 1 − 1/e inapproximability factor for
the separable multi-agent (i.e. MASO) version [36, 48], and hence also for the more general
MVSO problem.

An immediate application of Theorem 4 is that it provides the first constant (and in
fact optimal) (1 − 1/e)-approximation for the monotone generalized submodular welfare
problem max f(S1, S2, . . . , Sk) : S1] · · ·]Sk = V . This problem generalizes the well-studied
submodular welfare problem [45, 64, 38], which captures several allocation problems and has
important applications in combinatorial auctions, Internet advertising, and network routing.
The MV objectives can capture much more general interactions among the agents/bidders,
where now a bidder’s valuation does not only depend on the set S of items that she gets, but
also on the items that her strategic partners and competitors get. For instance, in a bandwidth
spectrum auction, this could capture a company’s interest to maximize compatibility and
prevent cross-border interference.

In Section 2 we describe a simple reduction that shows that for some families 1 an
(optimal) MV gap of 1 holds. We also discuss how for those families, practical algorithms
(such as accelerated greedy variants and distributed algorithms) can be used and lead to
good approximation guarantees.

I Theorem 5. Let F be a matroid, a p-matroid intersection, or a p-system. Then, if there is
a (polytime) α-approximation algorithm for monotone (resp. nonmonotone) SO(F) maximiz-
ation, there is a (polytime) α-approximation algorithm for monotone (resp. nonmonotone)
MVSO(F) maximization.

On the minimization side our approximation results and MV gaps are larger. This
is somewhat expected due to the strong hardness results already existing for single-agent
submodular minimization (see Section 1.4). However, we give essentially tight approximations
in terms of the objective’s curvature. The notion of curvature has been widely used for
univariate functions [10, 65, 33, 2], since it allows for better approximations and it is linear
time computable.

Given a tuple (S1, . . . , Sk) ∈ 2kV and (i, v) ∈ [k]× V , we denote by (S1, . . . , Sk) + (i, v)
the new tuple (S1, . . . , Si−1, Si + v, Si+1, . . . , Sk). Then, it is natural to think of the quantity

f(S1,...,Sk)((i, v)) := f((S1, . . . , Sk) + (i, v))− f(S1, . . . , Sk)

as the marginal gain of assigning element v to agent i in the tuple (S1, . . . , Sk). We also use
f((i, v)) to denote the quantity f(∅, . . . , ∅, v, ∅, . . . , ∅) where v appears in the ith component.
Then given a normalized monotone k-multi-submodular function f : 2kV → R we define its
total curvature c and its curvature c(S1, . . . , Sk) with respect to a tuple (S1, . . . , , Sk) ⊆ V k as

c = 1− min
i∈[k],v∈V

f(V,V,...,V)−(i,v)((i, v))
f((i, v)) , c(S1, . . . , Sk) = 1− min

i∈[k],v∈Si

f(S1,...,Sk)−(i,v)((i, v))
f((i, v)) .

We prove the following curvature dependent result for k-multi-submodular objectives. We
note the gap is stronger in the sense that it is relative to the single-agent modular problem. 2

1 A family of sets F is a p-system if for all S ∈ F and v ∈ V there exists a set T ⊆ S such that |T | ≤ p
and S \ T ∪ {v} ∈ F . A matroid is a 1-system. Cardinality and partition constraints are examples of
matroids. We refer the reader to [57, 7, 8] for a comprehensive discussion.

2 A function f : 2V → R is modular if f(A) + f(B) = f(A ∪B) + f(A ∩B) for all A,B ⊆ V . Modular
functions can always be expressed in the form f(S) =

∑
v∈S

w(v) for some weight function w : V → R.

R. Santiago and F. B. Shepherd 23:5

I Theorem 6. Let f be a monotone k-multi-submodular function, and let F be a family
that admits a (polytime) β-approximation over modular functions. Denote by (S∗1 , . . . , S∗k) an
optimal solution to monotone MVSO(F) minimization, and by c(S∗1 , . . . , S∗k) the curvature

of f with respect to (S∗1 , . . . , S∗k). Then there is a (polytime)
β

∑
i∈[k]

|S∗i |

1+(
∑

i∈[k]
|S∗

i
|−1)(1−c(S∗1 ,...,S∗k))

-

approximation algorithm for monotone MVSO(F) minimization.

In some situations the above result leads to approximation factors highly preferable to
those obtained for general functions, given the strong polynomial hardness that most of these
problems present for objectives with curvature 1. Examples of such situations include families
like F = {V }, spanning trees, or perfect matchings, where exact algorithms are available for
modular objectives (i.e. β = 1 in those cases) and any optimal solution (S∗1 , . . . , S∗k) satisfies∑
i∈[k] |S∗i | = Ω(n). Thus, we go from polynomial approximation factors (for objectives with

curvature 1) to constant or logarithmic factors (for constant or order 1− 1
logn curvature).

Moreover, having the curvature c(S∗1 , . . . , S∗k) can be much more beneficial than having
the total curvature c. For instance, for the problem min f(S1, . . . , Sk) : S1] · · ·] Sk = V

with f(S1, . . . , Sk) = min{n,
∑k
i=1 |Si|}. Here the total curvature of f is 1 (hence leading to

an n-approximation in Theorem 6), while the curvature c(S∗1 , . . . , S∗k) with respect to any
partition (S∗1 , . . . , S∗k) is 0 (and thus leading to an exact approximation via Theorem 6).

In Section 3.3 we give evidence that Theorem 6 is essentially tight, even for F = {V }
where we show the following curvature dependent information-theoretic lower bound.

I Theorem 7. The monotone MVSO(F) minimization problem over F = {V } and objectives
f with total curvature c cannot be approximated to a ratio o(n/ logn

1+(n
log n−1)(1−c)) in the value

oracle model with polynomial number of queries.

Finally, we give an approximation in terms of the number of agents k, which may become
preferable in settings where k is not too large.

I Theorem 8. Suppose there is a (polytime) α(n)-approximation for monotone SO(F)
minimization based on rounding the convex relaxation. Then there is a (polytime) kα(n)-
approximation for monotone MVSO(F) minimization.

1.3 The multivariate model and applications
Our second objective is to extend the multivariate model and show that in some cases this
larger class remains tractable. Specifically, we define the capacitated multivariate submodular
optimization (CMVSO) problem as follows:

CMVSO(F)
max /min f(S1, S2, . . . , Sk)

s.t. S1] · · ·] Sk ∈ F
Si ∈ Fi , ∀i ∈ [k]

(4)

where we are supplied with subfamilies Fi.
Our results imply that one maintains good approximations even while adding interesting

side constraints. For example, for a monotone maximization instance of CMVSO where F is
a p-matroid intersection and the Fi are all matroids, our results from Section 2 lead to a
(1
p+1−ε)-approximation algorithm via the multilinear relaxation, or a 1/(p+2)-approximation
via a simple greedy algorithm. We believe that these, combined with other results from
Section 2, substantially expand the family of tractable models (both in theory and practice)
for maximization.

23:6 Multivariate Submodular Optimization (paper full version)

Many existing applications fit into the CMVSO framework and some of these can be
enriched through the added flexibility of the capacitated model. For instance, one may
include set bounds on the variables: Li ⊆ Si ⊆ Ui for each i, or simple cardinality constraints:
|Si| ≤ bi for each i. A well-studied ([17, 23, 8]) application of CMVSO in the maximization
setting is the Separable Assignment Problem (SAP), which corresponds to the setting where
the objective is separable and modular, the Fi are downward closed (i.e. hereditary) families,
and F = 2V . The following example illustrates CMVSO’s potential as a general model.

I Example 9 (Sensor Placement with Multivariate Objectives). The problem of placing sensors
and information gathering has been popular in the submodularity literature [39, 41, 40]. We
are given a set of sensors V and a set of possible locations {1, 2, . . . , k} where the sensors
can be placed. There is also a budget constraint restricting the total number of sensors that
can be deployed. The goal is to place sensors at some of the locations so as to maximize the
“informativeness” gathered. This application is well suited to a k-multi-submodular objective
function f(S1, ..., Sk) which measures the “informativeness” of placing sensors Si at location
i. A natural mathematical formulation for this is given by

max f(S1, S2, ..., Sk)
s.t. S1] S2] · · ·] Sk ∈ F

Si ∈ Fi,

where F := {S ⊆ V : |S| ≤ b} imposes the budget constraint and Fi gives additional
modelling flexibility. For instance, we could impose Fi = {S ⊆ Vi : |S| ≤ bi} to constrain the
types and number of sensors that can be placed at location i. Notice that in these cases both
F and the Fi are matroids and hence the algorithms from Section 2.4 apply. One may form
a multivariate objective by defining f(S1, S2, . . . , Sn) =

∑
i fi(Si)−R(S1, S2, . . . , Sn) where

the fi’s measure the benefit of placing sensors Si at location i, and R() is a redundancy
function. If the fi’s are submodular and R() is k-multi-supermodular, then f is k-multi-
submodular. In this setting, it is natural to take the fi’s to be coverage functions (i.e. fi(Si)
measures the coverage of placing sensors Si at location i). We next propose a family of
“redundancy” functions which are k-multi-supermodular.

Supermodular penalty measures via Quadratic functions. We denote S :=
(S1, S2, . . . , Sn) and define zS := (|S1|, |S2|, . . . , |Sn|). One can show (see Lemma 28 in
Appendix B) that if A is a matrix satisfying aij + aji ≥ 0, then R(S) := zTSAzS is k-multi-
supermodular. Then for this particular example one could for instance take redundancy
coefficients aij as Θ(1

d(i,j)2) where d(i, j) denotes the distance between locations i and j.
This can be further extended so that different sensor types contribute different weights to
the vector zS, e.g., define zS(i) =

∑
j∈Si

w(j) for an associated sensor weight vector w.

1.4 Related work
Submodularity naturally arises in many machine learning applications such as viral marketing
[35], information gathering [39], image segmentation [4, 37, 34], document summarization
[46], news article recommendation [11], active learning [22], and speeding up satisfiability
solvers [59].

Single Agent Optimization. The high level view of the tractability status for uncon-
strained (i.e., F = 2V) submodular optimization is that both maximization and minimization
generally behave well. Minimizing a submodular set function is a classical combinatorial
optimization problem which can be solved in polytime [24, 56, 30]. Unconstrained maximiza-
tion, on the other hand, is known to be inapproximable for general submodular set functions
but admits a polytime constant-factor approximation algorithm when f is nonnegative [6, 14].

R. Santiago and F. B. Shepherd 23:7

In the constrained maximization setting, the classical work [51, 52, 16] already estab-
lished an optimal (1− 1/e)-approximation factor for maximizing a nonnegative monotone
submodular function subject to a cardinality constraint, and a (1/(k + 1))-approximation for
maximizing a nonnegative monotone submodular function subject to k matroid constraints.
This approximation is almost tight in the sense that there is an (almost matching) factor
Ω(log(k)/k) inapproximability result [27]. For nonnegative monotone functions, [64, 8] give
an optimal (1−1/e)-approximation based on multilinear extensions when F is a matroid; [42]
provides a (1− 1/e− ε)-approximation when F is given by a constant number of knapsack
constraints, and [44] gives a local-search algorithm that achieves a (1/k − ε)-approximation
(for any fixed ε > 0) when F is a k-matroid intersection. For nonnegative nonmonotone
functions, a 0.385-approximation is the best factor known [5] for maximization under a
matroid constraint, in [43] a 1/(k +O(1))-approximation is given for k matroid constraints
with k fixed. A simple “multi-greedy” algorithm [25] matches the approximation of Lee et al.
but is polytime for any k. Vondrak [66] gives a 1

2 (1− 1
ν)-approximation under a matroid base

constraint where ν denotes the fractional base packing number. Finally, Chekuri et al [67]
introduce a general framework based on relaxation-and-rounding that allows for combining
different types of constraints. This leads, for instance, to 0.38/k and 0.19/k approximations
for maximizing nonnegative submodular monotone and nonmonotone functions respectively
under the combination of k matroids and ` = O(1) knapsacks constraints.

For constrained minimization, the news is worse [19, 60, 31]. If F consists of spanning
trees (bases of a graphic matroid) Goel et al [19] show a lower bound of Ω(n), while in the
case where F corresponds to the cardinality constraint {S : |S| ≥ k} Svitkina and Fleischer
[60] show a lower bound of Ω̃(

√
n). There are a few exceptions. The problem can be solved

exactly when F is a ring family ([56]), triple family ([24]), or parity family ([21]). In the
context of NP-Hard problems, there are almost no cases where good (say O(1) or O(logn))
approximations exist. We have that the submodular vertex cover admits a 2-approximation
([19, 31]), and the k-uniform hitting set has O(k)-approximation.

Multivariate Problems. The notion of k-multi-submodularity already appeared (under
the name of multidimensional submodularity) in the classical work of Fisher et al [16], where
they consider the multivariate monotone maximization problem with F = {V } as a motivating
example for submodular maximization subject to a matroid constraint. They show that for
this problem a simple greedy algorithm achieves a 1/2-approximation. The work of Singh
et al [58] considers the special case of 2-multi-submodular functions (they call them simple
bisubmodular). They give constant factor approximations for maximizing monotone 2-multi-
submodular functions under cardinality and partition constraints, and provide applications
to coupled sensor placement and coupled feature selection problems.

Other different extensions of submodular functions to multivariate settings have been
studied. Some of these include bisubmodular functions [54, 1, 18, 3], k-submodular functions
[28, 68, 53], or skew bisubmodular functions [29, 63, 62].

Finally, as mentioned in the introduction, an important class of (multi-agent submodular
optimization) problems arises when f(S1, . . . , Sk) =

∑
i∈[k] fi(Si). These problems have

been widely studied in the case where F = {V }, both for minimization ([26, 61, 13, 9]) and
maximization ([16, 45, 64]), and have also been considered for more general families [19, 55].

2 Multivariate submodular maximization

We describe two different reductions. The first one reduces the capacitated multivariate
problem CMVSO to a single-agent SO problem, and it is based on the simple idea of taking

23:8 Multivariate Submodular Optimization (paper full version)

k disjoint copies of the original ground set. We use this to establish an (optimal) MV gap of
1 for families such as spanning trees, matroids, and p-systems. The second reduction is based
on the multilinear extension of a set function. We show that if the single-agent problem
admits approximation via its multilinear relaxation (see Section 2.2), then we may extend
this to its multivariate version with a constant factor loss, in the monotone and nonmonotone
settings. For the monotone case the MV gap is tight.

2.1 The lifting reduction
We describe a generic reduction of CMVSO to a single-agent SO problem

max /min f̄(S) : S ∈ L.

The argument is based on the idea of viewing assignments of elements v to agents i in
a multi-agent bipartite graph. This simple idea (which is equivalent to making k disjoint
copies of the ground set) already appeared in the classical work of Fisher et al [16], and
has since then been widely used [45, 64, 8, 58, 55]. We review briefly the reduction here for
completeness and to fix notation.

Consider the complete bipartite graph G = ([k] + V,E). Every subset of edges S ⊆ E

can be written uniquely as S =]i∈[k]({i} × Si) for some sets Si ⊆ V . This allows us to go
from a multivariate objective (such as the one in (4)) to a univariate objective f̄ : 2E → R
over the lifted space. Namely, for each set S ⊆ E we define f̄(S) = f(S1, S2, . . . , Sk). The
function f̄ is well-defined because of the one-to-one correspondence between sets S ⊆ E and
tuples (S1, . . . , Sk) ⊆ V k.

We consider two families of sets over E that capture the original constraints:

F ′ := {S ⊆ E : S1] · · ·] Sk ∈ F} and H := {S ⊆ E : Si ∈ Fi, ∀i ∈ [k]}.

We now have:

max /min f(S1, S2, . . . , Sk) = max /min f̄(S) = max /min f̄(S)
s.t. S1] · · ·] Sk ∈ F s.t. S ∈ F ′ ∩H s.t. S ∈ L

Si ∈ Fi , ∀i ∈ [k]
,

where in the last step we just let L := F ′ ∩H.
Clearly, this reduction is interesting if our new function f̄ and the family of sets L have

properties which allow us to handle them computationally. This depends on the original
structure of the function f , and the set families F and Fi. The following is straightforward.

I Claim 10. If f is a (nonnegative, respectively monotone) k-multi-submodular function,
then f̄ as defined above is also (nonnegative, respectively monotone) submodular.

In Section 2.4 we discuss several properties of the families F and Fi that are preserved
under this reduction, as well as their algorithmic consequences.

2.2 Multilinear extensions for MV problems
Given a set function f : 2V → R (or equivalently f : {0, 1}n → R), we say that g : [0, 1]n → R
is an extension of f if g(χS) = f(S) for each S ⊆ V . Clearly, there are many possible
extensions that one could consider for any given set function. One that has been very useful
in the submodular maximization setting due to its nice properties is the multilinear extension.

R. Santiago and F. B. Shepherd 23:9

For a set function f : {0, 1}V → R we define its multilinear extension fM : [0, 1]V → R
(introduced in [7]) as

fM (z) =
∑
S⊆V

f(S)
∏
v∈S

zv
∏
v/∈S

(1− zv).

An alternative way to define fM is in terms of expectations. Given a vector z ∈ [0, 1]V let
Rz denote a random set that contains element vi independently with probability zvi . Then
fM (z) = E[f(Rz)], where the expectation is taken over random sets generated from the
probability distribution induced by z. One very useful property of the multilinear extension
is the following.

I Proposition 11. Let f : 2V → R be a submodular function and fM : [0, 1]n → R its
multilinear extension. Then fM is convex along any direction d = evi − evj for i, j ∈
{1, 2, . . . , n}, where ev denotes the characteristic vector of {v}, i.e. the vector in RV which
has value 1 in the v-th component and zero elsewhere.

This now gives rise to natural single-agent and multivariate relaxations. The single-agent
multilinear extension relaxation is:

(SA-ME) max fM (z) : z ∈ P ∗(F), (5)

and the multivariate multilinear extension relaxation is:

(MV-ME) max f̄M (z1, z2, . . . , zk) : z1 + z2 + · · ·+ zk ∈ P ∗(F), (6)

where P ∗(F) denotes some relaxation of the polytope conv({χS : S ∈ F}) 3 , and f̄ the lifted
univariate function from the reduction in Section 2.1. Note that f̄ is defined over vectors
z̄ = (z1, z2, . . . , zk) ∈ [0, 1]E , where we think of zi ∈ Rn as the vector associated to agent i.

The relaxation SA-ME has been used extensively [8, 43, 15, 12, 5] in the submodular
maximization literature. The following result shows that when f is nonnegative submodular
and the relaxation P ∗(F) is downwards closed and admits a polytime separation oracle, the
relaxation SA-ME can be solved approximately in polytime.

I Theorem 12 ([5, 64]). Let f : 2V → R+ be a nonnegative submodular function and
fM : [0, 1]V → R+ its multilinear extension. Let P ⊆ [0, 1]V be any downwards closed
polytope that admits a polytime separation oracle, and denote OPT = max fM (z) : z ∈ P .
Then there is a polytime algorithm ([5]) that finds z∗ ∈ P such that fM (z∗) ≥ 0.385 ·OPT .
Moreover, if f is monotone there is a polytime algorithm ([64]) that finds z∗ ∈ P such that
fM (z∗) ≥ (1− 1/e)OPT .

For monotone objectives the assumption that P is downwards closed is without loss of
generality. This is not the case, however, when the objective is nonmonotone. Nonetheless,
this restriction is unavoidable, as Vondrák [66] showed that no algorithm can find z∗ ∈ P
such that fM (z∗) ≥ c ·OPT for any constant c > 0 when P admits a polytime separation
oracle but it is not downwards closed.

We can solve the MV-ME relaxation to the same approximation factor that SA-ME.
To see this note that the multivariate problem has the form {max g(w) : w ∈ W ⊆ Rnk}

3 conv(X) denotes the convex hull of a set X of vectors, and χS denotes the characteristic vector of the
set S.

23:10 Multivariate Submodular Optimization (paper full version)

where W is the downwards closed polytope {w = (z1, ..., zk) :
∑
i zi ∈ P ∗(F)} and g(w) =

f̄M (z1, z2, . . . , zk). Clearly we have a polytime separation oracle for W given that we have
one for P ∗(F). Moreover, g is the multilinear extension of a nonnegative submodular function
(since by Claim 10 we know f̄ is nonnegative submodular), and we can now use Theorem 12.

2.3 A tight 1− 1/e MV gap
In this section we prove Theorem 4. The main idea is that we start with an (approximate)
optimal solution z∗ = z∗1 + z∗2 + · · ·+ z∗k to the MV-ME relaxation and build a new feasible
solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk where the ẑi have supports Vi that are pairwise disjoint. We
think of Vi as the set of items associated (or pre-assigned) to agent i. Once we have such a
pre-assignment we consider the single-agent problem max g(S) : S ∈ F where

g(S) = f(S ∩ V1, S ∩ V2, . . . , S ∩ Vk). (7)

It is clear that g is nonnegative monotone submodular since f is nonnegative monotone
k-multi-submodular. Moreover, for any feasible solution S ∈ F for this single-agent problem,
we obtain a multivariate solution of the same cost by setting Si = S ∩ Vi, since then
g(S) = f(S ∩ V1, S ∩ V2, . . . , S ∩ Vk) = f(S1, S2, . . . , Sk).

For a set S ⊆ V and a vector z ∈ [0, 1]V we denote by z|S the truncation of z to elements
of S. That is, we set z|S(v) = z(v) for each v ∈ S and to zero otherwise. Then by definition
of g we have that gM (z) = f̄M (z|V1 , z|V2 , . . . , z|Vk

), where f̄ is the lifted function from
Section 2.1. Moreover, if the sets Vi are pairwise disjoint, then f̄M (z|V1 , z|V2 , . . . , z|Vk

) =
f̄M (z1, z2, . . . , zk). The next result formalizes this observation.

I Proposition 13. Let z =
∑
i∈[k] zi be a feasible solution to MV-ME such that the vectors

zi have pairwise disjoint supports Vi. Then gM (z) = f̄M (z1, z2, . . . , zk).

We now have all the ingredients to prove our main result for maximization. We note that a
gap of 1− 1/e appeared in [55] for the case of separable objectives f(S1, . . . , Sk) =

∑
i fi(Si).

That argument uses the component-wise linearity of the multilinear extension, while our
proof for non-separable objectives strongly uses the convexity property from Proposition 11.
I Theorem 4. If there is a (polytime) α(n)-approximation for monotone SO(F) maximization
based on rounding SA-ME, then there is a (polytime) (1 − 1/e) · α(n)-approximation for
monotone MVSO(F) maximization. Furthermore, given a downwards closed family F , if
there is a (polytime) α(n)-approximation for nonmonotone SO(F) maximization based on
rounding SA-ME, then there is a (polytime) 0.385 · α(n)-approximation for nonmonotone
MVSO(F) maximization.

Proof. We discuss first the case of monotone objectives.
STEP 1. Let z∗ = z∗1 +z∗2 + · · ·+z∗k denote an approximate solution to MV-ME obtained

via Theorem 12, and let OPTfrac be the value of an optimal solution. We then have that
fM (z∗1 , z∗2 , . . . , z∗k) ≥ (1− 1/e)OPTfrac ≥ (1− 1/e)OPTMV .

STEP 2. For an element v ∈ V let ev denote the characteristic vector of {v}, i.e.
the vector in RV which has value 1 in the v-th component and zero elsewhere. Then by
Proposition 11 we have that the function

h(t) = f̄M (z∗1 , z∗2 , . . . , z∗i−1, z
∗
i + tev, z

∗
i+1, . . . , z

∗
i′−1, z

∗
i′ − tev, z

∗
i′+1, . . . , z

∗
k)

is convex for any v ∈ V and i 6= i′ ∈ [k]. In particular, given any v ∈ V such that there exist
i 6= i′ ∈ [k] with z∗i (v), z∗i′(v) > 0, there is always a choice so that increasing one component
and decreasing the other by the same amount does not decrease the objective value.

R. Santiago and F. B. Shepherd 23:11

Let v ∈ V be such that there exist i 6= i′ ∈ [k] with z∗i (v), z∗i′(v) > 0. Then, we either
set z∗i (v) = z∗i (v) + z∗i′(v) and z∗i′(v) = 0, or z∗i′(v) = z∗i (v) + z∗i′(v) and z∗i (v) = 0, whichever
does not decrease the objective value. We repeat until the vectors z∗i have pairwise disjoint
support. Let us denote these new vectors by ẑi and let ẑ =

∑
i∈[k] ẑi. Then notice that

the vector z∗ =
∑
i∈[k] z

∗
i remains invariant after performing each of the above updates (i.e.

ẑ = z∗), and hence the new vectors ẑi remain a feasible solution.
STEP 3. In the last step we use the function g defined in (7), with sets Vi corresponding

to the supports of the ẑi. Given our α-approximation rounding assumption for SA-ME, we
can round ẑ to find a set Ŝ such that g(Ŝ) ≥ αgM (ẑ). Then, by setting Ŝi = Ŝ ∩Vi we obtain
a multivariate solution satisfying

f(Ŝ1, . . . , Ŝk) = g(Ŝ) ≥ αgM (ẑ) = αfM (ẑ1, . . . , ẑk) ≥ αfM (z∗1 , . . . , z∗k) ≥ α(1−1/e)OPTMV ,

where the second equality follows from Proposition 13. This completes the monotone proof.
For the nonmonotone case the argument is very similar. Here we restrict our attention

to downwards closed families, since then we can get a 0.385-approximation at STEP 1 via
Theorem 12. We then apply STEP 2 and 3 in the same fashion as we did for monotone
objectives. This leads to a 0.385 · α(n)-approximation for the multivariate problem. J

2.4 Invariance under the lifting reduction
In Section 2.3 we established a MV gap of 1− 1/e for monotone objectives and of 0.385 for
nonmonotone objectives and downwards closed families based on the multilinear formulations.
In this section we describe several families with an (optimal) MV gap of 1. Examples of such
family classes include spanning trees, matroids, and p-systems.

We saw in Section 2.1 that if the original function f is k-multi-submodular then the lifted
function f̄ is submodular. We now discuss some properties of the original families Fi and F
that are also preserved under the lifting reduction; these were already proved in [55]. It is
shown there, for instance, that if F induces a matroid (or more generally a p-system) over
the ground set V , then so does the family F ′ over the lifted space E. We summarize these
results in Table 1, and discuss next some of the algorithmic consequences.

Table 1 Invariant properties under the lifting reduction

Multivariate problem Single-agent (i.e. reduced) problem Result
1 f k-multi-submodular f̄ submodular Section 2.1
2 f monotone f̄ monotone Section 2.1
3 (V,F) a p-system (E,F ′) a p-system [55]
4 F = bases of a p-system F ′ = bases of a p-system [55]
5 (V,F) a matroid (E,F ′) a matroid [55]
6 F = bases of a matroid F ′ = bases of a matroid [55]
7 (V,F) a p-matroid intersection (E,F ′) a p-matroid intersection [55]
8 (V,Fi) a matroid for all i ∈ [k] (E,H) a matroid [55]
9 Fi a ring family for all i ∈ [k] H a ring family [55]
10 F = forests (resp. spanning trees) F ′ = forests (resp. spanning trees) [55]
11 F = matchings (resp. perfect matchings) F ′ = matchings (resp. perfect matchings) [55]
12 F = st-paths F ′ = st-paths [55]

In the setting of MVSO (i.e. (2)) this invariance allows us to leverage several results from
the single-agent to the multivariate setting. These are based on the following result, which
uses the fact that the size of the lifted space E is nk.

23:12 Multivariate Submodular Optimization (paper full version)

I Theorem 14. Let F be a matroid, a p-matroid intersection, or a p-system. If there
is a (polytime) α(n)-approximation algorithm for monotone (resp. nonmonotone) SO(F)
maximization (resp. minimization), then there is a (polytime) α(nk)-approximation algorithm
for monotone (resp. nonmonotone) MVSO(F) maximization (resp. minimization).

For both monotone and nonmonotone maximization the approximation factors α(n) for
the family classes described in Theorem 14 are independent of (the size of the ground set)
n. Hence, we immediately get that α(nk) = α(n) for those cases, and thus approximation
factors for the corresponding multivariate and single-agent problems are the same. In our
MV gap terminology this implies an MV gap of 1 for such problems. This proves Theorem 5.

In the setting of CMVSO (i.e. (4)) the results described on entries 8 and 9 of Table 1
provide additional modelling flexibility. This allows us to maintain decent approximations
while combining several constraints. For instance, for a monotone maximization instance of
CMVSO where F corresponds to a p-matroid intersection and the Fi are all matroids, the
above invariance results lead to a (1

p+1 − ε)-approximation.
The results from this section also imply that algorithms that behave very well in practice

(such as accelerated greedy variants [49] and distributed algorithms [50]) for the corresponding
single-agent problems, can also be used for the more general multivariate setting while
preserving the same approximation guarantees. We believe this makes the CMVSO framework
a good candidate for potential applications in large-scale machine learning problems.

3 Multivariate submodular minimization

In this section we present different approximation factors in terms of n (i.e. the number of
items) and k (i.e. the number of agents) for the monotone multivariate problem. Moreover,
the approximation factors in terms of n are essentially tight.

3.1 A β·n
1+(n−1)(1−c)-approximation

Let fS(v) = f(S + v)− f(S) denote the marginal gain of adding v to S. Given a normalized
monotone submodular function f : 2V → R, its total curvature c and its curvature c(S) with
respect to a set S ⊆ V are defined as (in [10, 65])

c = max
j∈V

f(j)− fV−j(j)
f(j) = 1−min

j∈V

fV−j(j)
f(j) and c(S) = 1−min

j∈S

fS−j(j)
f(j) .

We may think of this number as indicating how far the function f is from being modular
(with c = 0 corresponding to being modular). The notion of curvature has been widely used
for univariate functions [10, 65, 33, 2], since it allows for better approximations and it is
linear time computable.

Given a tuple (S1, . . . , Sk) ∈ 2kV and (i, v) ∈ [k]× V , we denote by (S1, . . . , Sk) + (i, v)
the new tuple (S1, . . . , Si−1, Si + v, Si+1, . . . , Sk). It is natural to think of the quantity

f(S1,...,Sk)((i, v)) := f((S1, . . . , Sk) + (i, v))− f(S1, . . . , Sk)

as the marginal gain of assigning element v to agent i in the tuple (S1, . . . , Sk). We also use
f((i, v)) to denote the quantity f(∅, . . . , ∅, v, ∅, . . . , ∅) where v appears in the ith component.

Given a normalized monotone k-multi-submodular function f : 2kV → R we define its
total curvature c and its curvature c(S1, . . . , Sk) with respect to a tuple (S1, . . . , Sk) ⊆ V k as

c = 1− min
i∈[k],v∈V

f(V,V,...,V)−(i,v)((i, v))
f((i, v)) , c(S1, . . . , Sk) = 1− min

i∈[k],v∈Si

f(S1,...,Sk)−(i,v)((i, v))
f((i, v))

R. Santiago and F. B. Shepherd 23:13

There is a straightforward correspondence between the curvature of f and the curvature
of its lifted version f̄ .

I Claim 15. Let f : 2kV → R+ be a normalized nonnegative monotone k-multi-submodular
function, and f̄ : 2E → R+ the corresponding lifted function. Then, f has total curvature c if
and only if f̄ has total curvature c. Also, f has curvature c(S1, . . . , Sk) with respect to a tuple
if and only if f̄ has curvature c(S) with respect to the set S in the lifted space corresponding
to the tuple (S1, . . . , Sk).

The following curvature dependent result for univariate functions was proved in [33].

I Proposition 16 ([33]). Let f : 2V → R be a nonnegative monotone submodular function,
and w : V → R+ the modular function given by w(v) = f(v). Let c(S) denote the curvature
of f with respect to S, and S∗ denote an optimal solution to min f(S) : S ∈ F . Let Ŝ ∈ F be
a β-approximation for the problem minw(S) : S ∈ F . Then

f(Ŝ) ≤ β|S∗|
1 + (|S∗| − 1)(1− c(S∗))f(S∗).

We extend the above result to the setting of k-multi-submodular objectives.

I Theorem 6. Let f be a nonnegative monotone k-multi-submodular function, and let
F be a family that admits a (polytime) β-approximation over modular functions. De-
note by (S∗1 , . . . , S∗k) an optimal solution to monotone MVSO(F) minimization, and by
c(S∗1 , . . . , S∗k) the curvature of f with respect to (S∗1 , . . . , S∗k). Then there is a (polytime)

β
∑

i∈[k]
|S∗i |

1+(
∑

i∈[k]
|S∗

i
|−1)(1−c(S∗1 ,...,S∗k))

-approximation algorithm for monotone MVSO(F) minimiza-
tion.

Proof. Let f̄ : 2E → R+ and F ′ be the lifted function and family described in the lifting
reduction from Section 2.1. We then have

min f(S1, S2, . . . , Sk) = min f̄(S)
s.t. S1] · · ·] Sk ∈ F s.t. S ∈ F ′ .

Define a modular function w̄ : E → R+ over the edges of the bipartite graph by
w̄(i, v) = f̄(i, v). Also, let OPT = min f̄(S) : S ∈ F ′ and denote by S∗ such a minimizer.
Then by Proposition 16 we have that any β-approximation for the modular minimization
problem min w̄(S) : S ∈ F ′ is a β|S∗|/(1 + (|S∗| − 1)(1 − c(S∗)))-approximation for the
problem min f̄(S) : S ∈ F ′ (and hence also for our original multivariate problem). Moreover,
notice that by Claim 15 the curvature c(S∗) of f̄ with respect to S∗ is the same as the
curvature c(S∗1 , . . . , S∗k) of f with respect to (S∗1 , . . . , S∗k), where (S∗1 , . . . , S∗k) is the tuple
associated to S∗. Thus, we immediately get the desired approximation assuming that a
(polytime) β-approximation is available for min w̄(S) : S ∈ F ′.

However, the lifted family F ′ could be more complicated than F , and hence we would
like to have an assumption depending on the original F (and not F ′). This can be achieved
at no extra loss using the modularity of w̄. Indeed, we can define a new modular function
w : V → R+ as w(v) = argmini∈[k] w̄(i, v) for each v ∈ V , breaking ties arbitrarily. It is then
clear that min w̄(S) : S ∈ F ′ = minw(S) : S ∈ F , since w̄ always uses the cheapest copy of
v (i.e. assign v to the agent i with the smallest cost for it).

We then get that any β-approximation for minw(S) : S ∈ F is also a β-approximation
for min w̄(S) : S ∈ F ′, and hence the desired result in terms of F follows. J

23:14 Multivariate Submodular Optimization (paper full version)

3.2 MV gap of k

Due to monotonicity, one may often assume that we are working with a family F which is
upwards-closed, aka a blocking family. This can be done without loss of generality even if
we seek polytime algorithms, since separation over a polytope with vertices {χF : F ∈ F}
implies separation over its dominant. We refer the reader to Appendix C for details.

For a normalized set function f : {0, 1}V → R one can define its Lovász extension
fL : RV+ → R (introduced in [47]) as follows. Let 0 < v1 < v2 < ... < vm be the distinct
positive values taken in some vector z ∈ RV+, and let v0 = 0. For each i ∈ {0, 1, ...,m} define
the set Si := {j : zj > vi}. In particular, S0 is the support of z and Sm = ∅. One then
defines:

fL(z) =
m−1∑
i=0

(vi+1 − vi)f(Si).

It follows from the definition that fL is positively homogeneous, that is fL(αz) = αfL(z)
for any α > 0 and z ∈ RV+. Moreover, it is also straightforward to see that fL is a monotone
function if f is. We have the following result due to Lovász.

I Lemma 17. [Lovász [47]] The function fL is convex if and only if f is submodular.

This now gives rise to natural convex relaxations for the single-agent and multivariate
problems based on some fractional relaxation P ∗(F) of the integral polyhedron conv({χS :
S ∈ F}). The single-agent Lovász extension formulation (used in [31, 32]) is:

(SA-LE) min fL(z) : z ∈ P ∗(F), (8)

and the multivariate Lovász extension formulation is:

(MV-LE) min f̄L(z1, z2, . . . , zk) : z1 + z2 + · · ·+ zk ∈ P ∗(F), (9)

where f̄ is the lifted univariate function from Section 2.1.
By standard methods (e.g. see [55]) one may solve SA-LE in polytime if one can separate

over the relaxation P ∗(F). This is often the case for many natural families such as spanning
trees, perfect matchings, st-paths, and vertex covers.

We can also solve MV-LE as long as we have polytime separation of P ∗(F). This follows
from the fact that the multivariate problem has the form {min g(w) : w ∈ W ⊆ Rnk}
where W is the full-dimensional convex body {w = (z1, ..., zk) :

∑
i zi ∈ P ∗(F)} and

g(w) = f̄L(z1, z2, . . . , zk). Clearly we have a polytime separation oracle for W given that
we have one for P ∗(F). Moreover, by Lemma 17 and Claim 10, g is convex since it is the
Lovász extension of a nonnegative submodular function f̄ . Hence we may apply Ellipsoid as
in the single-agent case.

We now give an approximation in terms of the number of agents, which becomes preferable
when k is not too large. The high-level idea behind our reduction is the same as in
the maximization setting (see Section 2.3). That is, we start with an optimal solution
z∗ = z∗1 + z∗2 + · · · + z∗k to the multivariate MV-LE relaxation and build a new feasible
solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk where the ẑi have supports Vi that are pairwise disjoint. We
then use for the rounding step the single-agent problem (as previously defined in (7) for the
maximization setting) min g(S) : S ∈ F where g(S) = f(S ∩ V1, S ∩ V2, . . . , S ∩ Vk).

Similarly to Proposition 13 which dealt with the multilinear extension, we have the
following result for the Lovász extension.

R. Santiago and F. B. Shepherd 23:15

I Proposition 18. Let z = z1 + z2 + · · ·+ zk be a feasible solution to MV-LE such that the
vectors zi have pairwise disjoint supports Vi. Then gL(z) = f̄L(z1, z2, . . . , zk).

I Theorem 8. Suppose there is a (polytime) α(n)-approximation for monotone SO(F)
minimization based on rounding SA-LE. Then there is a (polytime) kα(n)-approximation for
monotone MVSO(F) minimization.

Proof. Let z∗ = z∗1 +z∗2 + · · ·+z∗k denote an optimal solution to MV-LE with value OPTfrac.
We build a new feasible solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk as follows. For each element v ∈ V
let i′ = argmaxi∈[k] z

∗
i (v), breaking ties arbitrarily. Then set ẑi′(v) = kz∗i (v) and ẑi(v) = 0

for each i 6= i′. By construction we have ẑ ≥ z∗, and hence this is indeed a feasible solution.
Moreover, by construction we also have that ẑi ≤ kz∗i for each i ∈ [k]. Hence, given the
monotonicity and homogeneity of f̄L it follows that

f̄L(ẑ1, ẑ2, . . . , ẑk) ≤ f̄L(kz∗1 , kz∗2 , . . . , kz∗k) = kf̄L(z∗1 , z∗2 , . . . , z∗k) = k·OPTfrac ≤ k·OPTMV .

Since the ẑi have disjoint supports Vi, for the single-agent rounding step we can now use the
function g defined in (7) with the sets Vi. Given our α-approximation rounding assumption
for SA-LE, we can round ẑ to find a set Ŝ such that g(Ŝ) ≤ αgL(ẑ). Then, by setting
Ŝi = Ŝ ∩ Vi we obtain a multivariate solution satisfying

f(Ŝ1, Ŝ2, . . . , Ŝk) = g(Ŝ) ≤ αgL(ẑ) = αf̄L(ẑ1, ẑ2, . . . , ẑk) ≤ αk ·OPTMV ,

where the second equality follows from Proposition 18. This completes the proof. J

The above theorem has interesting consequences. We now discuss one that leads to a
polytime k-approximation for a much more general version of the submodular facility location
problem considered by Sviktina and Tardos [61], where k denotes the number of facilities.

I Corollary 19. There is a polytime k-approximation for the monotone MVSO(F) minimiz-
ation problem over F = {V }.

Proof. Notice that the single-agent version of the above multivariate problem is the trivial
min f(S) : S ∈ {V }. Hence a polytime exact algorithm is available for the single-agent
problem and thus a polytime k-approximation is available for the multivariate version. J

3.3 An o(n
logn) lower bound hardness for F = {V }

In this section we focus on the special case where F = {V }. That is, we are looking for
the optimal splitting of all the elements among the agents. We show that the curvature
dependent approximation factors obtained in Theorem 6 are essentially tight.

We follow a technique from [20, 14, 60] and build two multivariate submodular functions
that are hard to distinguish with high probability for any (even randomized) algorithm.

Assume that k = n, and let R := (R1, R2, . . . , Rn) ⊆ V n be a random partition of V .
Notice that

∑n
i=1 |Ri| = n. Let β = ω(logn) and such that β is integer. Consider the two

nonnegative monotone n-multi-submodular functions f1, f2 : 2nV → R+ given by:

f1(S1, . . . , Sn) = min{n,
n∑
i=1
|Si|} , f2(S1, . . . , Sn) = min{f1(S1, . . . , Sn), β+

n∑
i=1
|Si∩R̄i|},

(10)

where R̄i denotes the complement of the set Ri, i.e. R̄i = V −Ri.
The work of Svitkina and Fleischer [60] show the following result for univariate functions.

23:16 Multivariate Submodular Optimization (paper full version)

I Lemma 20 ([60]). Let f1 and f2 be two set functions, with f2, but not f1, parametrized
by a string of random bits r. If for any set S, chosen without knowledge of r, the probability
(over r) that f1(S) 6= f2(S) is n−ω(1), then any algorithm that makes a polynomial number
of oracle queries has probability at most n−ω(1) of distinguishing f1 and f2.

The above clearly generalizes to the setting of tuples (i.e. multivariate objectives) in a
natural and straightforward way. The only difference is that our ground set in the lifted
space has now size n2 instead of n.

I Lemma 21. Let f1 and f2 be two n-multivariate set functions, with f2, but not f1,
parametrized by a string of random bits r. If for any tuple (S1, . . . , Sn), chosen without
knowledge of r, the probability (over r) that f1(S1, . . . , Sn) 6= f2(S1, . . . , Sn) is n−ω(1), then
any algorithm that makes a polynomial number of oracle queries has probability at most
n−ω(1) of distinguishing f1 and f2.

We can use Lemma 21 to show the following result for the functions defined in (10).

I Lemma 22. Any algorithm that makes a polynomial number of oracle calls has probability
n−ω(1) of distinguishing the functions f1 and f2 above.

Proof. By Lemma 21 it suffices to show that for any tuple (S1, . . . , Sn) the probability (over
the random choice of the partition R) that f1(S1, . . . , Sn) 6= f2(S1, . . . , Sn) is at most n−ω(1).

Let us denote this probability by p(S1, . . . , Sn). We first show that p(S1, . . . , Sn) is
maximized for tuples (S1, . . . , Sn) satisfying

∑n
i=1 |Si| = n. First suppose that

∑n
i=1 |Si| > n.

Then p(S1, . . . , Sn) = P[β +
∑n
i=1 |Si ∩ R̄i| < n]. But this probability can only increase if

an element is removed from some set Si. Similarly, in the case where
∑n
i=1 |Si| < n, we

get p(S1, . . . , Sn) = P[β +
∑n
i=1 |Si ∩ R̄i| <

∑n
i=1 |Si|] = P[

∑n
i=1 |Si ∩ Ri| > β]. But this

probability can only increase if an element is added to some set Si.
So let (S1, . . . , Sn) be any fixed tuple satisfying

∑n
i=1 |Si| = n, and let mv :=

∑
i:Si3v 1

denote the number of sets Si that contain a copy of v. Note that
∑
v∈V mv =

∑n
i=1 |Si| = n.

Let us consider a random partition R = (R1, R2, . . . , Rn) which is obtained by placing each
element v ∈ V independently and uniformly at random into one of the sets R1, R2, . . . , Rn.
Let Xv be a random variable for each v ∈ V , defined by Xv =

∑n
i=1 |Si ∩Ri ∩ {v}|. That is,

Xv = 1 if v is assigned to an Ri such that Si 3 v (which happens with probability mv/n),
and Xv = 0 otherwise. Clearly, the random variables {Xv}v∈V are pairwise independent.
Moreover, we have that the expected value of

∑n
i=1 |Si ∩Ri| is given by

µ := E[
n∑
i=1
|Si ∩Ri|] = E[

∑
v∈V

Xv] =
∑
v∈V

E[Xv] =
∑
v∈V

mv

n
= 1.

Then, by Chernoff bounds and using that β is an integer we obtain

p(S1, . . . , Sn) =P[
n∑
i=1
|Si ∩Ri| > β] = P[

n∑
i=1
|Si ∩Ri| ≥ β + 1]

=P[
∑
v∈V

Xv ≥ (1 + β)µ] ≤ e−µβ/3 = e−β/3 = e−ω(logn) = n−ω(1).

J

We now prove our (curvature independent) lower bound result.

I Theorem 23. The monotone MVSO(F) minimization problem over F = {V } cannot be
approximated to a ratio o(n/ logn) in the value oracle model with polynomially many queries.

R. Santiago and F. B. Shepherd 23:17

Proof. Assume there is a polytime algorithm achieving an approximation factor of α =
o(n/ logn). Choose β = ω(logn) such that αβ < n. Consider the output of the algorithm
when f2 is given as input. The optimal solution in this case is the partition R = (R1, . . . , Rk),
with f2(R1, . . . , Rk) = β. So the algorithm produces a feasible solution (i.e. a partition)
(S∗1 , . . . , S∗k) satisfying f2(S∗1 , . . . , S∗k) ≤ αβ < n. However, since f1 takes value exactly n over
any partition, there is no feasible solution (S1, . . . , Sn) such that f1(S1, . . . , Sn) < n. This
means that if the input is the function f1 then the algorithm produces a different answer,
thus distinguishing between f1 and f2, contradicting Lemma 22. J

The above result contrasts with the known O(logn) approximation ([61]) for the case
where the multivariate objective is separable, that is f(S1, . . . , Sk) =

∑
i fi(Si). These two

facts combined now prove Theorem 3.
We use a construction from Iyer et al [33] to explicitly introduce the effect of curvature

into the lower bound. Their work is for univariate functions, but it can be naturally extended
to the multivariate setting. We modify the functions f1, f2 from (10) as follows:

f ci (S1, . . . , Sk) = c · fi(S1, . . . , Sk) + (1− c)
n∑
i=1
|Si| , for i = 1, 2.

It is then straightforward to check that both f c1 and f c2 have total curvature c. Moreover, since
f1(S1, . . . , Sk) = f2(S1, . . . , Sk) if and only if f c1 (S1, . . . , Sk) = f c2 (S1, . . . , Sk), by Lemma 22
it follows that any algorithm that makes polynomially many queries is not able to distinguish
between f c1 and f c2 with high probability. In addition, the gap between the optimal solutions
for these two functions is given by

OPT1

OPT2
= cn+ (1− c)n
cβ + (1− c)n = n

cβ + (1− c)n = n

β + (n− β)(1− c) = n/β

1 + (n/β − 1)(1− c) .

Then, since β = ω(logn), the (curvature dependent) lower bound follows.

I Theorem 7. The monotone MVSO(F) minimization problem over F = {V } and objectives
f with total curvature c cannot be approximated to a ratio o(n/ logn

1+(n
log n−1)(1−c)) in the value

oracle model with polynomial number of queries.

4 Conclusions

We introduce a new class of multivariate submodular optimization problems, and give inform-
ation theoretic evidence that this class encodes much more than the separable versions arising
in multi-agent objectives. We provide some explicit examples and potential applications.

For maximization, we show that practical algorithms such as accelerated greedy variants
and distributed algorithms achieve good approximation guarantees under very general
constraints. For arbitrary families, we show MV gaps of 1− 1/e and 0.385 for the monotone
and nonmonotone problems respectively, and the MV gap for monotone objectives is tight.

For minimization the news is worse. However, we give (essentially tight) approximation
factors with respect to the curvature of the multivariate objective function. This may lead
to significant gains in several settings.

References
1 Kazutoshi Ando, Satoru Fujishige, and Takeshi Naitoh. A characterization of bisubmodular

functions. Discrete Mathematics, 148(1-3):299–303, 1996.

23:18 Multivariate Submodular Optimization (paper full version)

2 Wenruo Bai and Jeffrey A Bilmes. Greed is still good: Maximizing monotone submodular+
supermodular functions. arXiv preprint arXiv:1801.07413, 2018.

3 André Bouchet and William H Cunningham. Delta-matroids, jump systems, and bisub-
modular polyhedra. SIAM Journal on Discrete Mathematics, 8(1):17–32, 1995.

4 Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary & region
segmentation of objects in nd images. In Computer Vision, 2001. ICCV 2001. Proceedings.
Eighth IEEE International Conference on, volume 1, pages 105–112. IEEE, 2001.

5 Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a non-
symmetric technique. arXiv preprint arXiv:1611.03253, 2016.

6 Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing,
44(5):1384–1402, 2015.

7 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodu-
lar set function subject to a matroid constraint. In Integer programming and combinatorial
optimization, pages 182–196. Springer, 2007.

8 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a mono-
tone submodular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

9 Chandra Chekuri and Alina Ene. Submodular cost allocation problem and applications.
In International Colloquium on Automata, Languages, and Programming, pages 354–366.
Springer, 2011. Extended version: arXiv preprint arXiv:1105.2040.

10 Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the
greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds
theorem. Discrete applied mathematics, 7(3):251–274, 1984.

11 Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. Turning down the noise
in the blogosphere. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 289–298. ACM, 2009.

12 Alina Ene and Huy L Nguyen. Constrained submodular maximization: Beyond 1/e. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
248–257. IEEE, 2016.

13 Alina Ene and Jan Vondrák. Hardness of submodular cost allocation: Lattice matching
and a simplex coloring conjecture. Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), 28:144–159, 2014.

14 Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular
functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

15 Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm
for submodular maximization. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 570–579. IEEE, 2011.

16 Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An analysis of approx-
imations for maximizing submodular set functions-II. Springer, 1978.

17 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight ap-
proximation algorithms for maximum general assignment problems. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 611–620. Society
for Industrial and Applied Mathematics, 2006.

18 Satoru Fujishige and Satoru Iwata. Bisubmodular function minimization. SIAM Journal
on Discrete Mathematics, 19(4):1065–1073, 2005.

19 Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Approximability of com-
binatorial problems with multi-agent submodular cost functions. In Foundations of Com-
puter Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages 755–764. IEEE,
2009.

R. Santiago and F. B. Shepherd 23:19

20 Michel X Goemans, Nicholas JA Harvey, Satoru Iwata, and Vahab Mirrokni. Approximat-
ing submodular functions everywhere. In Proceedings of the twentieth annual ACM-SIAM
symposium on Discrete algorithms, pages 535–544. Society for Industrial and Applied Math-
ematics, 2009.

21 Michel X. Goemans and VS Ramakrishnan. Minimizing submodular functions over families
of sets. Combinatorica, 15(4):499–513, 1995.

22 Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications
in active learning and stochastic optimization. Journal of Artificial Intelligence Research,
42:427–486, 2011.

23 Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to submodular
set function maximization. Optimization online, pages 1–25, 2007.

24 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2. Springer Science & Business Media, 2012.

25 Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In International
Workshop on Internet and Network Economics, pages 246–257. Springer, 2010.

26 Ara Hayrapetyan, Chaitanya Swamy, and Éva Tardos. Network design for information
networks. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 933–942. Society for Industrial and Applied Mathematics, 2005.

27 Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set
packing. computational complexity, 15(1):20–39, 2006.

28 Anna Huber and Vladimir Kolmogorov. Towards minimizing k-submodular functions. In
International Symposium on Combinatorial Optimization, pages 451–462. Springer, 2012.

29 Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and valued csps.
SIAM Journal on Computing, 43(3):1064–1084, 2014.

30 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–
777, 2001.

31 Satoru Iwata and Kiyohito Nagano. Submodular function minimization under covering
constraints. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE
Symposium on, pages 671–680. IEEE, 2009.

32 Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Monotone closure of relaxed constraints in
submodular optimization: Connections between minimization and maximization: Extended
version. 2014.

33 Rishabh K Iyer, Stefanie Jegelka, and Jeff A Bilmes. Curvature and optimal algorithms
for learning and minimizing submodular functions. In Advances in Neural Information
Processing Systems, pages 2742–2750, 2013.

34 Stefanie Jegelka and Jeff Bilmes. Submodularity beyond submodular energies: coupling
edges in graph cuts. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 1897–1904. IEEE, 2011.

35 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146. ACM, 2003.

36 Subhash Khot, Richard J Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproximab-
ility results for combinatorial auctions with submodular utility functions. In International
Workshop on Internet and Network Economics, pages 92–101. Springer, 2005.

37 Pushmeet Kohli, M Pawan Kumar, and Philip HS Torr. P3 & beyond: Move making
algorithms for solving higher order functions. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(9):1645–1656, 2009.

23:20 Multivariate Submodular Optimization (paper full version)

38 Nitish Korula, Vahab Mirrokni, and Morteza Zadimoghaddam. Online submodular wel-
fare maximization: Greedy beats 1/2 in random order. SIAM Journal on Computing,
47(3):1056–1086, 2018.

39 Andreas Krause and Carlos Guestrin. Near-optimal observation selection using submodular
functions. In AAAI, volume 7, pages 1650–1654, 2007.

40 Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos Falout-
sos. Efficient sensor placement optimization for securing large water distribution networks.
Journal of Water Resources Planning and Management, 134(6):516–526, November 2008.

41 KW Krause, MA Goodwin, and RW Smith. Optimal software test planning through auto-
mated network analysis. TRW Systems Group, 1973.

42 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set functions sub-
ject to multiple linear constraints. In Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 545–554. Society for Industrial and Applied
Mathematics, 2009.

43 Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 323–332. ACM, 2009.

44 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over mul-
tiple matroids via generalized exchange properties. Mathematics of Operations Research,
35(4):795–806, 2010.

45 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with de-
creasing marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006. URL:
http://EconPapers.repec.org/RePEc:eee:gamebe:v:55:y:2006:i:2:p:270-296.

46 Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 510–520. Association for Computational
Linguistics, 2011.

47 László Lovász. Submodular functions and convexity. In Mathematical Programming The
State of the Art, pages 235–257. Springer, 1983.

48 Vahab Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In Proceedings of the 9th ACM
conference on Electronic commerce, pages 70–77. ACM, 2008.

49 Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained
submodular maximization: Personalized data summarization. In ICML, pages 1358–1367,
2016.

50 Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization. The Journal of Machine Learning Research, 17(1):8330–8373,
2016.

51 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of ap-
proximations for maximizing submodular set functions - i. Mathematical Programming,
14(1):265–294, 1978.

52 George L Nemhauser and Leonard A Wolsey. Best algorithms for approximating the max-
imum of a submodular set function. Mathematics of operations research, 3(3):177–188,
1978.

53 Naoto Ohsaka and Yuichi Yoshida. Monotone k-submodular function maximization with
size constraints. In Advances in Neural Information Processing Systems, pages 694–702,
2015.

54 Liqun Qi. Directed submodularity, ditroids and directed submodular flows. Mathematical
Programming, 42(1-3):579–599, 1988.

http://EconPapers.repec.org/RePEc:eee:gamebe:v:55:y:2006:i:2:p:270-296

R. Santiago and F. B. Shepherd 23:21

55 Richard Santiago and F. Bruce Shepherd. Multi-Agent Submodular Optimization. Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018), 116:23:1–23:20, 2018.

56 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

57 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

58 Ajit Singh, Andrew Guillory, and Jeff Bilmes. On bisubmodular maximization. In Artificial
Intelligence and Statistics, pages 1055–1063, 2012.

59 Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular
functions. In Advances in Neural Information Processing Systems, pages 1577–1584, 2009.

60 Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algorithms
and lower bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.

61 Zoya Svitkina and ÉVA Tardos. Facility location with hierarchical facility costs. ACM
Transactions on Algorithms (TALG), 6(2):37, 2010.

62 Johan Thapper and Stanislav Zivny. The power of linear programming for valued csps. In
Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages
669–678. IEEE, 2012.

63 Johan Thapper and Stanislav Živnỳ. The complexity of finite-valued csps. Journal of the
ACM (JACM), 63(4):37, 2016.

64 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value or-
acle model. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 67–74. ACM, 2008.

65 Jan Vondrák. Submodularity and curvature: The optimal algorithm (combinatorial optim-
ization and discrete algorithms). 2010.

66 Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM
Journal on Computing, 42(1):265–304, 2013.

67 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization
via the multilinear relaxation and contention resolution schemes. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 783–792. ACM, 2011.

68 Justin Ward and Stanislav Živnỳ. Maximizing bisubmodular and k-submodular functions.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1468–1481. SIAM, 2014.

A Properties of k-multi-submodular functions

In this section we discuss several properties of k-multi-submodular functions. We see that
some of the characterizations and results that hold for univariate submodular functions
extend naturally to the multivariate setting.

We start by showing that our definition of submodularity in the multivariate setting
captures the diminishing return property. Recall that we usually think of the pair (i, v) ∈
[k]× V as the assignment of element v to agent i. We use this to introduce some notation
for adding an element to a tuple.

I Definition 24. Given a tuple (S1, . . . , Sk) ∈ 2kV and (i, v) ∈ [k] × V , we denote by
(S1, . . . , Sk) + (i, v) the new tuple (S1, . . . , Si−1, Si + v, Si+1, . . . , Sk).

Then, it is natural to think of the quantity

f(S1, . . . , Si−1, Si + v, Si+1, . . . , Sk)− f(S1, . . . , Si−1, Si, Si+1, . . . , Sk) (11)

23:22 Multivariate Submodular Optimization (paper full version)

as the marginal gain of assigning element v to agent i in the tuple (S1, . . . , Sk). Notice that
with the notation introduced in Definition 24 we have that (11) can be also written as

f((S1, . . . , Sk) + (i, v))− f(S1, . . . , Sk).

This leads to the following diminishing returns characterizations in the multivariate setting.

I Proposition 25. A multivariate function f : 2kV → R is k-multi-submodular if and only
if for all tuples (S1, . . . , Sk) ⊆ (T1, . . . , Tk) and (i, v) ∈ [k]× V such that v /∈ Ti we have

f((S1, . . . , Sk) + (i, v))− f(S1, . . . , Sk) ≥ f((T1, . . . , Tk) + (i, v))− f(T1, . . . , Tk). (12)

Proof. We make use of the lifting reduction presented in Section 2.1. Let f̄ : 2E → R denote
the lifted function, and let S, T ⊆ E be the sets in the lifted space corresponding to the
tuples (S1, . . . , Sk) and (T1, . . . , Tk) respectively. Then, since (S1, . . . , Sk) ⊆ (T1, . . . , Tk), we
know that S ⊆ T . Moreover, notice that

f((S1, . . . , Sk) + (i, v))− f(S1, . . . , Sk) = f̄(S + (i, v))− f̄(S)

and

f((T1, . . . , Tk) + (i, v))− f(T1, . . . , Tk) = f̄(T + (i, v))− f̄(T).

In addition, from Claim 10 in Section 2.1 we know that f is k-multi-submodular if and only
if f̄ is submodular. Then the result follows by observing the following.

f is k-multi-submodular
⇐⇒ f̄ is submodular
⇐⇒ f̄(S + (i, v))− f̄(S) ≥ f̄(T + (i, v))− f̄(T) for all S ⊆ T and (i, v) /∈ T
⇐⇒ f((S1, . . . , Sk) + (i, v))− f(S1, . . . , Sk) ≥ f((T1, . . . , Tk) + (i, v))− f(T1, . . . , Tk)

for all (S1, . . . , Sk) ⊆ (T1, . . . , Tk) and v /∈ Ti.

J

The proof of the above result also shows the following characterization of k-multi-
submodular functions.

I Proposition 26. A multivariate function f : 2kV → R is k-multi-submodular if and only
if for all tuples (S1, . . . , Sk) and (i, v), (j, u) ∈ [k]× V such that v /∈ Si and u /∈ Sj we have

f((S1, . . . , Sk)+(i, v))−f(S1, . . . , Sk) ≥ f((S1, . . . , Sk)+(j, u)+(i, v))−f((S1, . . . , Sk)+(j, u)).
(13)

B Examples of k-multi-submodular functions

We now provide some explicit examples of k-multi-submodular functions that lead to inter-
esting applications.

I Lemma 27. Consider a multilinear function h : Zk+ → R given by h(z) =
∑
S⊆[k] aS

∏
m∈S zm.

Let f : 2kV → R be a multivariate set function defined as f(S1, . . . , Sk) = h(|S1|, . . . , |Sk|).
Then, f is k-multi-submodular if and only if

aS ≤ 0 ∀S ⊆ [k]. (14)

R. Santiago and F. B. Shepherd 23:23

Proof. By Proposition 26 we know that f is k-multi-submodular if and only if condition
(13) is satisfied. Let (S1, . . . , Sk) be an arbitrary tuple and let (i, v), (j, u) ∈ [k] × V such
that v /∈ Si, u /∈ Sj . Denote by z0 the integer vector with components z0

i = |Si|. That
is, z0 = (|S1|, |S2|, . . . , |Sk|) ∈ Zk+. We call z0 the cardinality vector associated to the
tuple (S1, . . . , Sk). In a similar way, let z1 be the cardinality vector associated to the tuple
(S1, . . . , Sk) + (i, v), z2 the cardinality vector associated to (S1, . . . , Sk) + (j, u), and z3 the
cardinality vector associated to (S1, . . . , Sk) + (i, v) + (j, u). Now notice that condition (13)
can be written as

h(z1)− h(z0) ≥ h(z3)− h(z2) (15)

for all z0, z1, z2, z3 ∈ Zk+ such that z1 = z0 + ei, z2 = z0 + ej, and z3 = z0 + ei + ej, where
ei is the characteristic vector on the ith component, and similarly for ej.

We show that (15) is equivalent to (14). Using that z1
m = z0

m for all m 6= i and z1
i = z0

i +1,
we have

h(z1)− h(z0) =
∑
S⊆[k]

aS
∏
m∈S

z1
m −

∑
S⊆[k]

aS
∏
m∈S

z0
m

=
∑
S⊆[k]

aS [
∏
m∈S

z1
m −

∏
m∈S

z0
m]

=
∑
S3i

aS [
∏
m∈S

z1
m −

∏
m∈S

z0
m]

=
∑
S3i

aS [(z0
i + 1)

∏
m∈S,m 6=i

z0
m −

∏
m∈S

z0
m]

=
∑
S3i

aS
∏

m∈S,m 6=i
z0
m.

Similarly, using that z3
m = z2

m for all m 6= i and z3
i = z2

i + 1, we have

h(z3)− h(z2) =
∑
S3i

aS
∏

m∈S,m 6=i
z2
m

=
∑

S3i,S3j
aS

∏
m∈S,m 6=i

z2
m +

∑
S3i,S 63j

aS
∏

m∈S,m 6=i
z2
m

=
∑

S3i,S3j
aS(z0

j + 1)
∏

m∈S,m 6=i,j
z0
m +

∑
S3i,S 63j

aS
∏

m∈S,m 6=i
z0
m

=
∑
S3i

aS
∏

m∈S,m 6=i
z0
m +

∑
S3i,S3j

aS
∏

m∈S,m 6=i,j
z0
m

=h(z1)− h(z0) +
∑

S3i,S3j
aS

∏
m∈S,m 6=i,j

z0
m,

where in the third equality we use that z2 = z0 + ej. Thus, we have

h(z1)− h(z0) ≥ h(z3)− h(z2) ⇐⇒
∑

S3i,S3j
aS

∏
m∈S,m 6=i,j

z0
m ≤ 0.

Since the above must hold for all z0, z1, z2, z3 ∈ Zk+ and i, j ∈ [k] such that z1 = z0 + ei,
z2 = z0 + ej, and z3 = z0 + ei + ej, we immediately get that (15) is equivalent to (14) as we
wanted to show. J

23:24 Multivariate Submodular Optimization (paper full version)

I Lemma 28. Consider a quadratic function h : Zk+ → R given by h(z) = zTAz for some
matrix A = (aij). Let f : 2kV → R be a multivariate set function defined as f(S1, . . . , Sk) =
h(|S1|, . . . , |Sk|). Then, f is k-multi-submodular if and only if A satisfies

aij + aji ≤ 0 ∀i, j ∈ [k]. (16)

Proof. The proof is very similar to that of Lemma 27. By Proposition 26 we know that f is
k-multi-submodular if and only if condition (13) is satisfied. Let (S1, . . . , Sk) be an arbitrary
tuple and let (i, v), (j, u) ∈ [k]× V such that v /∈ Si, u /∈ Sj . Denote by z0 the integer vector
with components z0

i = |Si|. That is, z0 = (|S1|, |S2|, . . . , |Sk|) ∈ Zk+. We call z0 the cardinality
vector associated to the tuple (S1, . . . , Sk). In a similar way, let z1 be the cardinality
vector associated to the tuple (S1, . . . , Sk) + (i, v), z2 the cardinality vector associated to
(S1, . . . , Sk) + (j, u), and z3 the cardinality vector associated to (S1, . . . , Sk) + (i, v) + (j, u).
Now notice that condition (13) can be written as

h(z1)− h(z0) ≥ h(z3)− h(z2) (17)

for all z0, z1, z2, z3 ∈ Zk+ such that z1 = z0 + ei, z2 = z0 + ej, and z3 = z0 + ei + ej, where
ei is the characteristic vector on the ith component, and similarly for ej.

We show that (17) is equivalent to (16). First notice that for a vector z = (z1, . . . , zk)
the function h can be written as h(z) =

∑k
`,m=1 a`mz`zm. Then, using that z1

` = z0
` for all

` 6= i and z1
i = z0

i + 1, we have

h(z1)− h(z0) =
k∑

`,m=1
a`mz

1
` z

1
m −

k∑
`,m=1

a`mz
0
` z

0
m =

k∑
`=1

a`iz
0
` +

k∑
m=1

aimz
0
m + aii.

Similarly, using that z3
` = z2

` for all ` 6= i and z3
i = z2

i + 1, we have

h(z3)− h(z2) =
k∑
`=1

a`iz
2
` +

k∑
m=1

aimz
2
m + aii.

Thus, using that z2 = z0 + ej we get

h(z1)− h(z0) ≥ h(z3)− h(z2)

⇐⇒
k∑
`=1

a`iz
0
` +

k∑
m=1

aimz
0
m + aii ≥

k∑
`=1

a`iz
2
` +

k∑
m=1

aimz
2
m + aii

⇐⇒
k∑
`=1

a`i(z0
` − z2

`) +
k∑

m=1
aim(z0

m − z2
m) ≥ 0

⇐⇒ − aji − aij ≥ 0
⇐⇒ aji + aij ≤ 0.

J

C Upwards-closed (aka blocking) families

In this section, we give some background for blocking families. As our work for minimization
is restricted to monotone functions, we can often convert an arbitrary set family into its
upwards-closure (i.e., a blocking version of it) and work with it instead. We discuss this

R. Santiago and F. B. Shepherd 23:25

reduction as well. The technical details discussed in this section are fairly standard and we
include them for completeness.

A set family F over a ground set V is upwards-closed if F ⊆ F ′ and F ∈ F , implies
that F ′ ∈ F ; these are sometimes referred to as blocking families. Examples of such families
include vertex covers or set covers more generally, whereas spanning trees are not.

C.1 Reducing to blocking families
Now consider an arbitrary set family F over V . We may define its upwards closure by
F↑ = {F ′ : F ⊆ F ′ for some F ∈ F}. In this section we argue that in order to solve
a monotone optimization problem over sets in F it is often sufficient to work over its
upwards-closure.

This requires two ingredients. First, we need a separation algorithm for the relaxation
P ∗(F), but indeed this is often available for many natural families such as spanning trees,
perfect matchings, st-paths, and vertex covers. The second ingredient needed is the ability
to turn an integral solution χF ′ from P ∗(F↑) or P (F↑) into an integral solution χF ∈ P (F).
We now argue that this is the case if a polytime separation algorithm is available for P ∗(F↑)
or for the polytope P (F) := conv({χF : F ∈ F}).

For a polyhedron P , we denote its dominant by P ↑ := {z : z ≥ x for some x ∈ P}. The
following observation is straightforward.

I Claim 29. Let H be the set of vertices of the hypercube in RV . Then

H ∩ P (F↑) = H ∩ P (F)↑ = H ∩ P ∗(F↑).

In particular we have that χS ∈ P (F)↑ ⇐⇒ χS ∈ P ∗(F↑).

We can now use this observation to prove the following.

I Lemma 30. Assume we have a separation algorithm for P ∗(F↑). Then for any χS ∈
P ∗(F↑) we can find in polytime χM ∈ P (F) such that χM ≤ χS.

Proof. Let S = {1, 2, . . . , k}. We run the following routine until no more elements can be
removed:

For i ∈ S
If χS−i ∈ P ∗(F↑) then S = S − i

Let χM be the output. We show that χM ∈ P (F). Since χM ∈ P ∗(F↑), by Claim 29
we know that χM ∈ P (F)↑. Then by definition of dominant there exists x ∈ P (F) such
that x ≤ χM ∈ P (F)↑. It follows that the vector x can be written as x =

∑
i λiχ

Ui for
some Ui ∈ F and λi ∈ (0, 1] with

∑
i λi = 1. Clearly we must have that Ui ⊆ M for all i,

otherwise x would have a non-zero component outside M . In addition, if for some i we have
Ui (M , then there must exist some j ∈M such that Ui ⊆M − j (M . Hence M − j ∈ F↑,
and thus χM−j ∈ P (F)↑ and χM−j ∈ P ∗(F↑). But then when component j was considered
in the algorithm above, we would have had S such that M ⊆ S and so χS−j ∈ P ∗(F↑) (that
is χS−j ∈ P (F)↑), and so j should have been removed from S, contradiction. J

We point out that for many natural set families F we can work with the relaxation
P ∗(F↑) assuming that it admits a separation algorithm. Then, if we have an algorithm which
produces χF ′ ∈ P ∗(F↑) satisfying some approximation guarantee for a monotone problem,
we can use Lemma 30 to construct in polytime F ∈ F which obeys the same guarantee.

23:26 Multivariate Submodular Optimization (paper full version)

Moreover, notice that for Lemma 30 to work we do not need an actual separation oracle
for P ∗(F↑), but rather all we need is to be able to separate over 0− 1 vectors only. Hence,
since the polyhedra P ∗(F↑), P (F↑) and P (F)↑ have the same 0− 1 vectors (see Claim 29),
a separation oracle for either P (F↑) or P (F)↑ would be enough for the routine of Lemma 30
to work. We now show that this is the case if we have a polytime separation oracle for P (F).
The following result shows that if we can separate efficiently over P (F) then we can also
separate efficiently over the dominant P (F)↑.

I Claim 31. If we can separate over a polyhedron P in polytime, then we can also separate
over its dominant P ↑ in polytime.

Proof. Given a vector y, we can decide whether y ∈ P ↑ by solving

x+ s = y

x ∈ P
s ≥ 0.

Since can we easily separate over the first and third constraints, and a separation oracle for
P is given (i.e. we can also separate over the set of constraints imposed by the second line),
it follows that we can separate over the above set of constraints in polytime. J

Now we can apply the same mechanism from Lemma 30 to turn feasible sets from F↑
into feasible sets in F .

I Corollary 32. Assume we have a separation algorithm for P (F)↑. Then for any χS ∈ P (F)↑
we can find in polytime χM ∈ P (F) such that χM ≤ χS.

We conclude this section by making the remark that if we have an algorithm which
produces χF ′ ∈ P (F↑) satisfying some approximation guarantee for a monotone problem, we
can use Corollary 32 to construct F ∈ F which obeys the same guarantee.

	Introduction
	Multivariate submodular optimization
	Our contributions
	The multivariate model and applications
	Related work

	Multivariate submodular maximization
	The lifting reduction
	Multilinear extensions for MV problems
	A tight 1-1/e MV gap
	Invariance under the lifting reduction

	Multivariate submodular minimization
	A n1+(n-1)(1-c)-approximation
	MV gap of k
	An o(nlogn) lower bound hardness for F={V}

	Conclusions
	Properties of k-multi-submodular functions
	Examples of k-multi-submodular functions
	Upwards-closed (aka blocking) families
	Reducing to blocking families

