
Multivariate Submodular Optimization

Richard Santiago * 1 F. Bruce Shepherd * 2

Abstract
Submodular functions have found a wealth of new
applications in data science and machine learn-
ing models in recent years. This has been coupled
with many algorithmic advances in the area of sub-
modular optimization: (SO) min /max f(S) :
S ∈ F , where F is a given family of feasible
sets over a ground set V and f : 2V → R is sub-
modular. Our focus is on a more general class of
multivariate submodular optimization (MVSO)
problems: min /max f(S1, S2, . . . , Sk) : S1 ]
S2]· · ·]Sk ∈ F . Here we use ] to denote union
of disjoint sets and hence this model is attrac-
tive where resources are being allocated across k
agents, who share a “joint” multivariate nonneg-
ative objective f(S1, S2, . . . , Sk) that captures
some type of submodularity (i.e. diminishing re-
turns) property. We provide some explicit exam-
ples and potential applications for this new frame-
work. For maximization, we show that practical
algorithms such as accelerated greedy variants
and distributed algorithms achieve good approxi-
mation guarantees for very general families (such
as matroids and p-systems). For arbitrary fami-
lies, we show that monotone (resp. nonmonotone)
MVSO admits an α(1 − 1/e) (resp. α · 0.385)
approximation whenever monotone (resp. non-
monotone) SO admits an α-approximation over
the multilinear formulation. This substantially
expands the family of tractable models. On the
minimization side we give essentially optimal ap-
proximations in terms of the curvature of f .

1. Introduction
Submodularity is a property of set functions with deep the-
oretical consequences and a wide range of applications.
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Optimizing submodular functions is a central subject in op-
erations research and combinatorial optimization (Lovász,
1983). It appears in many important optimization frame-
works including cuts in graphs, set covering problems, plant
location problems, certain satisfiability problems, combi-
natorial auctions, and maximum entropy sampling. In ma-
chine learning it has recently been identified and utilized in
domains such as viral marketing (Kempe et al., 2003), infor-
mation gathering (Krause & Guestrin, 2007), image segmen-
tation (Boykov & Jolly, 2001; Kohli et al., 2009; Jegelka
& Bilmes, 2011), document summarization (Lin & Bilmes,
2011), and speeding up satisfiability solvers (Streeter &
Golovin, 2009).

A set function f : 2V → R is submodular if f(S)+f(T ) ≥
f(S∪T )+f(S∩T ) for any S, T ⊆ V . We call f monotone
if f(S) ≤ f(T ) for S ⊆ T . Throughout, all functions
are nonnegative, and we usually assume f(∅) = 0. Our
functions are given by a value oracle, where for a given set
S an algorithm can query the oracle to find its value f(S).

We consider the following broad class of submodular opti-
mization (SO) problems:

SO(F) Min / Max f(S) : S ∈ F

where f is a nonnegative submodular set function on a finite
ground set V , andF ⊆ 2V is a family of feasible sets. These
problems have been well studied for a variety of set families
F . We explore the connections between these (single-agent)
problems and their more general multivariate incarnations.
In the multivariate (MV) version, we have k agents and a
“joint” multivariate nonnegative objective f(S1, S2, . . . , Sk)
that captures some type of submodularity (i.e. diminish-
ing returns) property (see Section 1.1). As before, we are
looking for sets S ∈ F , however, we now have a 2-phase
task: the elements of S must also be partitioned amongst
the agents. Hence we have set variables Si and seek to
optimize f(S1, S2, . . . , Sk). This leads to the multivariate
submodular optimization (MVSO) versions:

MVSO(F) Min / Max f(S1, S2, . . . , Sk) :

S1 ] S2 ] · · · ] Sk ∈ F .

Our main objective is to study the approximability of the
multivariate problems in terms of their single-agent versions.
We refer to the multivariate (MV) gap as the approximation
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factor loss incurred by moving to the multivariate setting. To
the best of our knowledge, neither the MVSO(F ) framework
for general families F nor the notion of MV gap have been
considered before.

An important special case of MVSO occurs when the func-
tion f(S1, . . . , Sk) can be separated as f(S1, . . . , Sk) =∑k
i=1 fi(Si) where the fi are all submodular; in this case

we say that f is separable. This leads to the class of multi-
agent submodular optimization (MASO) problems (see re-
lated work section)

MASO(F) Min / Max
∑k
i=1 fi(Si) :

S1 ] S2 ] · · · ] Sk ∈ F .

1.1. Multivariate Submodular Optimization

We consider functions of several variables which satisfy the
following type of submodularity property. A multivariate
function f : 2kV → R is k-multi-submodular if for all pairs
of tuples (S1, S2, ..., Sk), (T1, T2, ..., Tk) ∈ 2kV we have

f(S1, ..., Sk) + f(T1, ..., Tk) ≥ f(S1 ∪ T1, S2 ∪ T2, .., Sk ∪ Tk)

+f(S1 ∩ T1, S2 ∩ T2, ..., Sk ∩ Tk).

We call f normalized if f(∅, ∅, . . . , ∅) = 0, and monotone if
f(S1, . . . , Sk) ≤ f(T1, . . . , Tk) for all tuples (S1, . . . , Sk)
and (T1, . . . , Tk) satisfying Si ⊆ Ti for all i ∈ [k].

For k = 1 a k-multi-submodular function is just a sub-
modular function. In Appendix A of the paper full version
we discuss how k-multi-submodular functions can also be
characterized (or defined) in terms of diminishing returns.

Two explicit examples of (non-separable) k-multi-
submodular functions (see Appendix B in the full version
for proofs) are the following.

Example 1. Consider a multilinear function h : Zk+ → R
given by h(z) =

∑
S⊆[k] aS

∏
m∈S zm. Let f : 2kV → R

be a multivariate set function defined as f(S1, . . . , Sk) =
h(|S1|, . . . , |Sk|). Then f is k-multi-submodular if and only
if aS ≤ 0 for all S ⊆ [k].

Example 2. Let h : Zk+ → R be a quadratic function given
by h(z) = zTAz. Let f : 2kV → R be a multivariate
set function defined as f(S1, . . . , Sk) = h(|S1|, . . . , |Sk|).
Then f is k-multi-submodular if and only if A = (aij)
satisfies aij + aji ≤ 0 for all i, j ∈ [k].

We believe the above examples are useful for modelling
“competition” between agents in many domains. In Section
1.3 we discuss an application to sensor placement problems.

1.2. Our Contributions

Our first contribution is to show that the MV framework
can model much more general problems than the separable

multi-agent (i.e. MASO) framework. This is quantitatively
captured in the next information theoretic result (see Sec-
tion 3.1) where we establish a large gap between the two
problems:

(MV −Min)
min f(S1, . . . , Sk)
s.t. S1 ] · · · ] Sk = V

(MA−Min)
min

∑k
i=1 fi(Si)

s.t. S1 ] · · · ] Sk = V

Theorem 3. The MV-Min problem with a nonnegative
monotone k-multi-submodular objective function cannot
be approximated to a ratio o(n/ log n) in the value oracle
model with polynomial number of queries, whereas its sepa-
rable version MA-Min has a tight O(log n)-approximation
polytime algorithm for nonnegative monotone submodular
functions fi.

The above result shows that the MV model may also poten-
tially face roadblocks in terms of tractability. Fortunately,
we can show that the multivariate problem remains very
well-behaved in the maximization setting. Our main result
establishes that if the single-agent problem for a family F
admits approximation via its multilinear relaxation (see Sec-
tion 2.2), then we may extend this to its multivariate version
with a constant factor loss.
Theorem 4. If there is a (polytime) α(n)-approximation
for monotone SO(F) maximization via its multilinear re-
laxation, then there is a (polytime) (1 − 1/e) · α(n)-
approximation for monotone MVSO(F ) maximization. Fur-
thermore, given a downwards closed family F , if there is
a (polytime) α(n)-approximation for nonmonotone SO(F)
maximization via its multilinear relaxation, then there is
a (polytime) 0.385 · α(n)-approximation for nonmonotone
MVSO(F) maximization.

We note that the multilinear relaxation can be efficiently
evaluated for a large class of practical and useful submodular
functions (Iyer et al., 2014), thus making these algorithms
viable for many real-world machine learning problems.

We remark that the MV gap of 1− 1/e for monotone objec-
tives is tight, in the sense that there are families where this
cannot be improved. For instance, F = {V } has a trivial
1-approximation for the single-agent problem, and a 1−1/e
inapproximability factor for the separable multi-agent (i.e.
MASO) version (Khot et al., 2005; Mirrokni et al., 2008),
and hence also for the more general MVSO problem.

An immediate application of Theorem 4 is that it pro-
vides the first constant (and in fact optimal) (1 − 1/e)-
approximation for the monotone generalized submodular
welfare problem max f(S1, S2, . . . , Sk) : S1 ] · · · ] Sk =
V . This problem generalizes the well-studied submodular
welfare problem (Lehmann et al., 2006; Vondrák, 2008; Ko-
rula et al., 2018), which captures several allocation problems
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and has important applications in combinatorial auctions,
Internet advertising, and network routing. The MV objec-
tives can capture much more general interactions among
the agents/bidders, where now a bidder’s valuation does not
only depend on the set S of items that she gets, but also
on the items that her strategic partners and competitors get.
For instance, in a bandwidth spectrum auction, this could
capture a company’s interest to maximize compatibility and
prevent cross-border interference.

In Section 2 we describe a simple reduction that shows that
for some families 1 an (optimal) MV gap of 1 holds. We also
discuss how for those families, practical algorithms (such
as accelerated greedy variants and distributed algorithms)
can be used and lead to good approximation guarantees.
Theorem 5. Let F be a matroid, a p-matroid intersection,
or a p-system. Then, if there is a (polytime) α-approximation
algorithm for monotone (resp. nonmonotone) SO(F) maxi-
mization, there is a (polytime) α-approximation algorithm
for monotone (resp. nonmonotone) MVSO(F) maximiza-
tion.

On the minimization side our approximation results and
MV gaps are larger. This is somewhat expected due to the
strong hardness results already existing for single-agent sub-
modular minimization (see Section 1.4). However, we give
essentially tight approximations in terms of the objective’s
curvature. The notion of curvature has been widely used for
univariate functions (Conforti & Cornuéjols, 1984; Vondrák,
2010; Iyer et al., 2013; Bai & Bilmes, 2018), since it allows
for better approximations and it is linear time computable.

Given a tuple (S1, . . . , Sk) ∈ 2kV and (i, v) ∈ [k] ×
V , we denote by (S1, . . . , Sk) + (i, v) the new tuple
(S1, . . . , Si−1, Si + v, Si+1, . . . , Sk). Then, it is natural
to think of the quantity

f(S1,...,Sk)((i, v)) := f((S1, . . . , Sk)+(i, v))−f(S1, . . . , Sk)

as the marginal gain of assigning element v to agent i in
the tuple (S1, . . . , Sk). We also use f((i, v)) to denote the
quantity f(∅, . . . , ∅, v, ∅, . . . , ∅) where v appears in the ith
component. Then given a normalized monotone k-multi-
submodular function f : 2kV → R we define its total
curvature c and its curvature c(S1, . . . , Sk) with respect to
a tuple (S1, . . . , , Sk) ⊆ V k as

c = 1− min
i∈[k],v∈V

f(V,V,...,V )−(i,v)((i, v))

f((i, v))
(1)

c(S1, . . . , Sk) = 1− min
i∈[k],v∈Si

f(S1,...,Sk)−(i,v)((i, v))

f((i, v))
.

1A family of sets F is a p-system if for all S ∈ F and v ∈ V
there exists a set T ⊆ S such that |T | ≤ p and S \ T ∪ {v} ∈ F .
A matroid is a 1-system. Cardinality and partition constraints are
examples of matroids. We refer the reader to Schrijver (2003);
Calinescu et al. (2007; 2011) for a comprehensive discussion.

We prove the following result for k-multi-submodular ob-
jectives. We note the gap is stronger in the sense that it is
relative to the single-agent modular problem. 2 See Section
3.1 of the full version for proof details.

Theorem 6. Let f be a monotone k-multi-submodular
function, and let F be a family that admits a (poly-
time) β-approximation over modular functions. Denote by
(S∗1 , . . . , S

∗
k) an optimal solution to monotone MVSO(F)

minimization, and by c(S∗1 , . . . , S
∗
k) the curvature of f

with respect to (S∗1 , . . . , S
∗
k). Then there is a (poly-

time)
β
∑

i∈[k] |S
∗
i |

1+(
∑

i∈[k] |S∗i |−1)(1−c(S∗1 ,...,S∗k))
-approximation algo-

rithm for monotone MVSO(F) minimization.

In some situations the above result may lead to approxima-
tion factors highly preferable to those obtained for general
functions (i.e. objectives with curvature 1). Examples of
these include families like F = {V }, spanning trees, or
perfect matchings, where exact algorithms are available for
modular objectives (i.e. β = 1) and any optimal solution
(S∗1 , . . . , S

∗
k) satisfies

∑
i∈[k] |S∗i | = Ω(n). Thus, we go

from polynomial approximation factors (for objectives with
curvature 1) to constant or logarithmic factors (for constant
or order 1− 1

logn curvature).

Moreover, having the curvature c(S∗1 , . . . , S
∗
k) can be much

more beneficial than having the total curvature c. For in-
stance, for the problem min f(S1, . . . , Sk) : S1]· · ·]Sk =

V with f(S1, . . . , Sk) = min{n,
∑k
i=1 |Si|}. Here the to-

tal curvature of f is 1 (hence leading to an n-approximation
in Theorem 6), while the curvature c(S∗1 , . . . , S

∗
k) with re-

spect to any partition (S∗1 , . . . , S
∗
k) is 0 (and thus leading to

an exact approximation via Theorem 6).

In Section 3.1 we give evidence that Theorem 6 is essentially
tight, even for F = {V } where we show the following
curvature dependent information-theoretic lower bound.

Theorem 7. The monotone MVSO(F) minimization prob-
lem over F = {V } and objectives f with total curvature
c cannot be approximated to a ratio o( n/ logn

1+( n
log n−1)(1−c)

) in
the value oracle model with polynomial number of queries.

Finally, we give an approximation in terms of the number
of agents k, which may be preferable in settings where k is
not too large. See Section 3.2 of the full version for details.

Theorem 8. If there is a (polytime) α(n)-approximation
for monotone SO(F) minimization based on rounding
the convex relaxation, then there is a (polytime) kα(n)-
approximation for monotone MVSO(F) minimization.

2A set function f : 2V → R is modular if f(A) + f(B) =
f(A ∪B) + f(A ∩B) for all A,B ⊆ V . Modular functions can
always be expressed in the form f(S) = w(S) :=

∑
v∈S w(v)

for some weight function w : V → R.
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1.3. The Multivariate Model and Applications

Our second objective is to extend the multivariate model and
show that in some cases this larger class remains tractable.
Specifically, we define the capacitated multivariate submod-
ular optimization (CMVSO) problem as follows:

CMVSO(F)
max /min f(S1, S2, . . . , Sk)

s.t. S1 ] · · · ] Sk ∈ F
Si ∈ Fi , ∀i ∈ [k]

where we are supplied with subfamilies Fi.

Our results imply that one maintains good approximations
even while adding interesting side constraints. For example,
for a monotone maximization instance of CMVSO where F
is a p-matroid intersection and the Fi are all matroids, our
results from Section 2 lead to a ( 1

p+1 − ε)-approximation
algorithm via the multilinear relaxation, or a 1/(p + 2)-
approximation via a simple greedy algorithm. We believe
that these, combined with other results from Section 2, sub-
stantially expand the family of tractable models (both in
theory and practice) for maximization.

Many existing applications fit into the CMVSO framework
and some of these can be enriched through the added flex-
ibility of the capacitated model. For instance, one may
include set bounds on the variables: Li ⊆ Si ⊆ Ui for each
i, or simple cardinality constraints: |Si| ≤ bi for each i.
A well-studied (Fleischer et al., 2006; Goundan & Schulz,
2007; Calinescu et al., 2011) application of CMVSO in the
maximization setting is the Separable Assignment Problem
(SAP), which corresponds to the setting where the objective
is separable and modular, the Fi are downward closed (i.e.
hereditary) families, and F = 2V . The following example
illustrates CMVSO’s potential as a general model.

Example 9 (Sensor Placement with Multivariate Objec-
tives). Sensor placement and information gathering prob-
lems have been popular in the submodularity literature
(Krause & Guestrin, 2007; Krause et al., 1973; 2008).
Given a set of sensors V and a set of possible locations
{1, 2, . . . , k}, the goal is to place sensors at some of the
locations so as to maximize the “informativeness” gath-
ered. There is usually also a budget constraint restricting
the total number of sensors that can be deployed. This ap-
plication is well suited to a k-multi-submodular objective
function f(S1, ..., Sk) which measures the “informativeness”
of placing sensors Si at location i. A natural mathematical
formulation for this is given by

max f(S1, S2, ..., Sk)
s.t. S1 ] S2 ] · · · ] Sk ∈ F

Si ∈ Fi,

where F := {S ⊆ V : |S| ≤ b} imposes the budget con-
straint and Fi gives additional modelling flexibility. For

instance, we could impose Fi = {S ⊆ Vi : |S| ≤ bi}
to constrain the types and number of sensors that can be
placed at location i. Notice that in these cases both F and
the Fi are matroids and hence the algorithms from Section
2.4 apply. One may form a multivariate objective by defin-
ing f(S1, S2, . . . , Sn) =

∑
i fi(Si) − R(S1, S2, . . . , Sn)

where the fi’s measure the benefit of placing sensors Si at
location i, and R() is a redundancy function. If the fi’s are
submodular and R() is k-multi-supermodular (i.e. −R() is
k-multi-submodular), then f is k-multi-submodular. In this
setting, it is natural to take the fi’s to be coverage functions,
where fi(Si) measures the coverage of placing sensors Si
at location i. We next propose a family of “redundancy”
functions which are k-multi-supermodular.

SUPERMODULAR PENALTY MEASURES VIA QUADRATIC
FUNCTIONS. We denote S := (S1, S2, . . . , Sn) and zS :=
(|S1|, |S2|, . . . , |Sn|). One can show (see Lemma 28 in
Appendix B of full version) that if A is a matrix satis-
fying aij + aji ≥ 0, then R(S) := zTSAzS is k-multi-
supermodular. Then for this particular example one could
for instance take redundancy coefficients aij as Θ( 1

d(i,j)2 )

where d(i, j) denotes the distance between locations i and
j. This can be further extended so that different sensor
types contribute different weights to the vector zS, e.g., de-
fine zS(i) =

∑
j∈Si

w(j) for an associated sensor weight
vector w.

1.4. Related Work

Submodularity naturally arises in many machine learning
applications such as viral marketing (Kempe et al., 2003),
information gathering (Krause & Guestrin, 2007), image
segmentation (Boykov & Jolly, 2001; Kohli et al., 2009;
Jegelka & Bilmes, 2011), document summarization (Lin
& Bilmes, 2011), news article recommendation (El-Arini
et al., 2009), active learning (Golovin & Krause, 2011), and
speeding up SAT solvers (Streeter & Golovin, 2009).

Single Agent Optimization. Minimizing a submodular
function can be solved in polytime (Grötschel et al., 2012;
Schrijver, 2000; Iwata et al., 2001). Unconstrained maxi-
mization, on the other hand, is known to be inapproximable
for general submodular functions but admits a polytime
constant-factor approximation algorithm when f is nonneg-
ative (Buchbinder et al., 2015; Feige et al., 2011).

For constrained maximization, the classical work
Nemhauser et al. (1978); Nemhauser & Wolsey (1978);
Fisher et al. (1978) established an optimal (1 − 1/e)-
approximation for nonnegative monotone maximization
under a cardinality constraint, and a (1/(k + 1))-
approximation under k matroid constraints. The latter
is almost tight since there is an Ω(log(k)/k) inapprox-
imability result (Hazan et al., 2006). For nonnegative
monotone functions, Vondrák (2008); Calinescu et al.
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(2011) give an optimal (1− 1/e)-approximation based on
the multilinear extension when F is a matroid; and Lee
et al. (2010) gives a local-search algorithm that achieves
a (1/k − ε)-approximation (for any fixed ε > 0) when F
is a k-matroid intersection. For nonnegative nonmonotone
functions, a 0.385-approximation (Buchbinder & Feldman,
2016) is the best factor known for a matroid constraint. In
Lee et al. (2009) a 1/(k+O(1))-approximation is given for
k matroid constraints with k fixed, and Gupta et al. (2010)
gives a simple “multi-greedy” algorithm that matches the
approximation of Lee et al. but is polytime for any k.

For constrained minimization the news is worse (Goel et al.,
2009; Svitkina & Fleischer, 2011; Iwata & Nagano, 2009).
If F consists of spanning trees Goel et al. (2009) show a
lower bound of Ω(n), while if F corresponds to the cardi-
nality constraint {S : |S| ≥ k} Svitkina & Fleischer (2011)
show a lower bound of Ω̃(

√
n). There are a few exceptions.

The problem can be solved exactly when F is a ring family
(Schrijver, 2000), triple family (Grötschel et al., 2012), or
parity family (Goemans & Ramakrishnan, 1995). In the con-
text of NP-Hard problems, there is a 2-approximation (Goel
et al., 2009; Iwata & Nagano, 2009) for submodular vertex
cover, and an O(k)-approximation for k-uniform hitting set.

Multivariate Problems. The notion of k-multi-
submodularity already appeared (under the name of multidi-
mensional submodularity) in the work of Fisher et al. (1978),
where they consider the multivariate monotone maximiza-
tion problem with F = {V } as a motivating example for
submodular maximization subject to a matroid constraint.
They show that for this problem a simple greedy algorithm
achieves a 1/2-approximation. The work of Singh et al.
(2012) considers the special case of 2-multi-submodular
functions (they call them simple bisubmodular). They give
constant factor approximations for maximizing monotone
2-multi-submodular functions under cardinality and parti-
tion constraints, and provide applications to coupled sensor
placement and coupled feature selection problems.

Other different extensions of submodular functions to mul-
tivariate settings have been studied. Some of these include
bisubmodular functions (Qi, 1988; Ando et al., 1996; Fu-
jishige & Iwata, 2005; Bouchet & Cunningham, 1995), k-
submodular functions (Huber & Kolmogorov, 2012; Ward
& Živnỳ, 2014; Ohsaka & Yoshida, 2015), or skew bisub-
modular functions (Huber et al., 2014; Thapper & Živnỳ,
2016; Thapper & Zivny, 2012).

Finally, as mentioned in the introduction, an important class
of (multi-agent submodular optimization) problems arises
when f(S1, . . . , Sk) =

∑
i∈[k] fi(Si). These problems

have been widely studied when F = {V }, both for min-
imization (Hayrapetyan et al., 2005; Svitkina & Tardos,
2010; Ene & Vondrák, 2014; Chekuri & Ene, 2011) and
maximization (Fisher et al., 1978; Lehmann et al., 2006;

Vondrák, 2008), and have also been considered for general
families (Goel et al., 2009; Santiago & Shepherd, 2018).

2. Multivariate Submodular Maximization
We describe two different reductions. The first one reduces
the capacitated multivariate problem CMVSO to a single-
agent SO problem, and it is based on the simple idea of
taking k disjoint copies of the original ground set. We use
this to establish an (optimal) MV gap of 1 for families such
as spanning trees, matroids, and p-systems. The second
reduction is based on the multilinear extension of a set
function. We show that if the single-agent problem admits
approximation via its multilinear relaxation (see Section
2.2), then we may extend this to its multivariate version with
a constant factor loss, in the monotone and nonmonotone
settings. For the monotone case the MV gap is tight.

2.1. The Lifting Reduction

We describe a generic reduction of CMVSO to a single-
agent problem max /min f̄(S) : S ∈ L. The argument is
based on the idea of viewing assignments of elements v
to agents i in a multi-agent bipartite graph. This simple
idea (which is equivalent to making k disjoint copies of the
ground set) already appeared in the classical work of Fisher
et al. (1978), and has since then been widely used (Lehmann
et al., 2006; Vondrák, 2008; Calinescu et al., 2011; Singh
et al., 2012; Santiago & Shepherd, 2018). We review it
briefly here for completeness.

Consider the complete bipartite graph G = ([k] + V,E).
Every subset of edges S ⊆ E can be written uniquely
as S = ]i∈[k]({i} × Si) for some sets Si ⊆ V . This
allows us to go from a multivariate objective (such as the
one in CMVSO) to a univariate objective f̄ : 2E → R
over the lifted space. Namely, for each set S ⊆ E we
define f̄(S) = f(S1, S2, . . . , Sk). The function f̄ is well-
defined because of the one-to-one correspondence between
sets S ⊆ E and tuples (S1, . . . , Sk) ⊆ V k.

We consider two families of sets over E that capture the
original constraints:

F ′ := {S ⊆ E : S1 ] · · · ] Sk ∈ F}
H := {S ⊆ E : Si ∈ Fi, ∀i ∈ [k]}.

We now have:

max /min f(S1, S2, . . . , Sk) =
s.t. S1 ] · · · ] Sk ∈ F

Si ∈ Fi , ∀i ∈ [k]

max /min f̄(S) = max /min f̄(S)
s.t. S ∈ F ′ ∩H s.t. S ∈ L.

where in the last step we just let L := F ′ ∩H.
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Clearly, this reduction is interesting if our new function f̄
and the family of sets L have properties which allow us to
handle them computationally. This depends on the original
structure of the function f , and the set families F and Fi.
The following is straightforward.
Claim 10. If f is a (nonnegative, respectively monotone)
k-multi-submodular function, then f̄ as defined above is
also (nonnegative, respectively monotone) submodular.

In Section 2.4 we discuss several properties of the families
F and Fi that are preserved under this reduction, as well as
their algorithmic consequences.

2.2. Multilinear Extensions for MV Problems

For a set function f : {0, 1}V → R we define its multilinear
extension fM : [0, 1]V → R as

fM (z) =
∑
S⊆V

f(S)
∏
v∈S

zv
∏
v/∈S

(1− zv).

This extension (introduced in Calinescu et al. (2007)) has
several nice properties. One very useful is the following.
Proposition 11. Let f : 2V → R be a submodular function
and fM : [0, 1]n → R its multilinear extension. Then
fM is convex along directions d = evi

− evj
for i, j ∈

{1, 2, . . . , n}, where ev denotes the characteristic vector of
{v}.

This now gives rise to natural relaxations. The single-agent
multilinear extension relaxation is:

(SA-ME) max fM (z) : z ∈ P ∗(F),

and the multivariate multilinear extension relaxation is:

(MV-ME) max f̄M (z1, z2, . . . , zk) : z1 + z2 + · · ·+ zk ∈ P ∗(F),

where P ∗(F) denotes some relaxation of the polytope
conv({χS : S ∈ F}) 3 , and f̄ the lifted univariate function
from the reduction in Section 2.1. Note that f̄ is defined
over vectors z̄ = (z1, z2, . . . , zk) ∈ [0, 1]E , where we think
of zi ∈ Rn as the vector associated to agent i.

The relaxation SA-ME has been widely used (Calinescu
et al., 2011; Lee et al., 2009; Feldman et al., 2011; Ene &
Nguyen, 2016; Buchbinder & Feldman, 2016) for submodu-
lar maximization. The next result discusses its solvability.
We note that MV-ME can be reduced to an instance of
SA-ME, and thus be approximated to the same factor (see
Section 2.2 of full version).
Theorem 12 (Buchbinder & Feldman (2016); Vondrák
(2008)). Let f : 2V → R+ be a nonnegative submodu-
lar function and fM : [0, 1]V → R+ its multilinear ex-
tension. Let P ⊆ [0, 1]V be any downwards closed poly-
tope that admits a polytime separation oracle, and denote

3conv(X) denotes the convex hull of a set X of vectors, and
χS denotes the characteristic vector of the set S.

OPT = max fM (z) : z ∈ P . Then there is a polytime
algorithm (Buchbinder & Feldman, 2016) that finds z∗ ∈ P
such that fM (z∗) ≥ 0.385 ·OPT . Moreover, if f is mono-
tone there is a polytime algorithm (Vondrák, 2008) that finds
z∗ ∈ P such that fM (z∗) ≥ (1− 1/e)OPT .

2.3. A Tight 1− 1/e MV Gap

In this section we prove Theorem 4. The main idea is
that we start with an (approximate) optimal solution z∗ =
z∗1 +z∗2 + · · ·+z∗k to the MV-ME relaxation and build a new
feasible solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk where the ẑi have
supports Vi that are pairwise disjoint. We think of Vi as the
set of items associated (or pre-assigned) to agent i. ‘Once
we have such a pre-assignment we consider the single-agent
problem max g(S) : S ∈ F where

g(S) = f(S ∩ V1, S ∩ V2, . . . , S ∩ Vk). (2)

It is clear that g is nonnegative monotone submodular since
f is nonnegative monotone k-multi-submodular. More-
over, for any feasible solution S ∈ F for this single-
agent problem, we obtain a multivariate solution of the
same cost by setting Si = S ∩ Vi, since then g(S) =
f(S ∩ V1, S ∩ V2, . . . , S ∩ Vk) = f(S1, S2, . . . , Sk).

For a set S ⊆ V and a vector z ∈ [0, 1]V we denote
by z|S the truncation of z to elements of S. That is, we
set z|S(v) = z(v) for each v ∈ S and to zero other-
wise. Then by definition of g we have that gM (z) =
f̄M (z|V1 , z|V2 , . . . , z|Vk

), where f̄ is the lifted function
from Section 2.1. Moreover, if the sets Vi are pairwise dis-
joint, then f̄M (z|V1

, z|V2
, . . . , z|Vk

) = f̄M (z1, z2, . . . , zk).
The next result formalizes this observation.

Proposition 13. Let z =
∑
i∈[k] zi be a feasible solution

to MV-ME such that the vectors zi have pairwise disjoint
supports Vi. Then gM (z) = f̄M (z1, z2, . . . , zk).

We now have all the ingredients to prove our main result
for maximization. We note that a gap of 1− 1/e appeared
in Santiago & Shepherd (2018) for the case of separable
objectives f(S1, . . . , Sk) =

∑
i fi(Si). That argument uses

the component-wise linearity of the multilinear extension,
while our proof for non-separable objectives strongly uses
the convexity property from Proposition 11.

Theorem 4. If there is a (polytime) α(n)-approximation for
monotone SO(F) maximization based on rounding SA-ME,
then there is a (polytime) (1− 1/e) · α(n)-approximation
for monotone MVSO(F ) maximization. Furthermore, given
a downwards closed family F , if there is a (polytime) α(n)-
approximation for nonmonotone SO(F ) maximization based
on rounding SA-ME, then there is a (polytime) 0.385 ·α(n)-
approximation for nonmonotone MVSO(F) maximization.

Proof. We discuss first the case of monotone objectives.
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STEP 1. Let z∗ = z∗1 + z∗2 + · · · + z∗k denote an ap-
proximate solution to MV-ME obtained via Theorem 12,
and let OPTfrac be the value of an optimal solution. We
then have that fM (z∗1 , z

∗
2 , . . . , z

∗
k) ≥ (1−1/e)OPTfrac ≥

(1− 1/e)OPTMV .

STEP 2. For an element v ∈ V let ev denote the char-
acteristic vector of {v}, i.e. the vector in RV which has
value 1 in the v-th component and zero elsewhere. Then by
Proposition 11 we have that the function

h(t) = f̄M (z∗1 , z
∗
2 , . . . , z

∗
i−1, z

∗
i + tev, z

∗
i+1, . . . , z

∗
i′−1,

z∗i′ − tev, z∗i′+1, . . . , z
∗
k)

is convex for any v ∈ V and i 6= i′ ∈ [k]. In particular,
given any v ∈ V such that there exist i 6= i′ ∈ [k] with
z∗i (v), z∗i′(v) > 0, there is always a choice so that increasing
one component and decreasing the other by the same amount
does not decrease the objective value.

Let v ∈ V be such that there exist i 6= i′ ∈ [k] with
z∗i (v), z∗i′(v) > 0. Then, we either set z∗i (v) = z∗i (v) +
z∗i′(v) and z∗i′(v) = 0, or z∗i′(v) = z∗i (v) + z∗i′(v) and
z∗i (v) = 0, whichever does not decrease the objective value.
We repeat until the vectors z∗i have pairwise disjoint support.
Let us denote these new vectors by ẑi and let ẑ =

∑
i∈[k] ẑi.

Then notice that the vector z∗ =
∑
i∈[k] z

∗
i remains invari-

ant after performing each of the above updates (i.e. ẑ = z∗),
and hence the new vectors ẑi remain a feasible solution.

STEP 3. In the last step we use the function g defined in (2),
with sets Vi corresponding to the supports of the ẑi. Given
our α-approximation rounding assumption for SA-ME, we
can round ẑ to find a set Ŝ such that g(Ŝ) ≥ αgM (ẑ). Then,
by setting Ŝi = Ŝ ∩ Vi we obtain a multivariate solution
satisfying

f(Ŝ1, . . . , Ŝk) = g(Ŝ) ≥ αgM (ẑ) = αfM (ẑ1, . . . , ẑk) ≥
αfM (z∗1 , . . . , z

∗
k) ≥ α(1− 1/e)OPTMV ,

where the second equality follows from Proposition 13. This
completes the monotone proof.

For the nonmonotone case the argument is very similar.
Here we restrict our attention to downwards closed families,
since then we can get a 0.385-approximation at STEP 1 via
Theorem 12. We then apply STEP 2 and 3 in the same
fashion as we did for monotone objectives. This leads to
a 0.385 · α(n)-approximation for the multivariate problem.

2.4. Invariance Under the Lifting Reduction

In Section 2.3 we established a MV gap of 1−1/e for mono-
tone objectives and of 0.385 for nonmonotone objectives
and downwards closed families based on the multilinear
formulations. In this section we describe several families

Table 1. Invariant properties under the lifting reduction
(Santiago & Shepherd, 2018)

Multivariate problem Single-agent (i.e. reduced) problem
1 (V,F) a p-system (E,F ′) a p-system
2 F = bases of a p-system F ′ = bases of a p-system
3 (V,F) a matroid (E,F ′) a matroid
4 (V,F) a p-matroid intersection (E,F ′) a p-matroid intersection
5 (V,Fi) a matroid for all i ∈ [k] (E,H) a matroid
6 Fi a ring family for all i ∈ [k] H a ring family

with an (optimal) MV gap of 1. Examples of such family
classes include spanning trees, matroids, and p-systems.

We saw in Section 2.1 that if the original function f is k-
multi-submodular then the lifted function f̄ is submodular.
We now discuss some properties of the original families Fi
and F that are also preserved under the lifting reduction;
these were already proved in Santiago & Shepherd (2018).
It is shown there, for instance, that ifF induces a matroid (or
more generally a p-system) over the ground set V , then so
does the family F ′ over the lifted space E. We summarize
some of these results in Table 1, and discuss next some of
the algorithmic consequences.

In the setting of MVSO this invariance allows us to lever-
age several results from the single-agent to the multivariate
setting. These are based on the following result, which uses
the fact that the size of the lifted space E is nk.

Theorem 14. Let F be a matroid, a p-matroid intersection,
or a p-system. If there is a (polytime) α(n)-approximation
algorithm for monotone (resp. nonmonotone) SO(F) max-
imization (resp. minimization), then there is a (polytime)
α(nk)-approximation algorithm for monotone (resp. non-
monotone) MVSO(F) maximization (resp. minimization).

For both monotone and nonmonotone maximization the
approximation factors α(n) for the family classes described
in Theorem 14 are independent of (the size of the ground set)
n. Hence, we immediately get that α(nk) = α(n) for those
cases, and thus approximation factors for the corresponding
multivariate and single-agent problems are the same. In our
MV gap terminology this implies an MV gap of 1 for such
problems. This proves Theorem 5.

In the setting of CMVSO the results described on entries
5 and 6 of Table 1 provide additional modelling flexibility.
This allows us to maintain good approximations while com-
bining several constraints. For example, for a monotone
maximization instance of CMVSO where F corresponds
to a p-matroid intersection and the Fi are all matroids, the
above invariance results lead to a ( 1

p+1 − ε)-approximation.

The results from this section also imply that algorithms that
behave very well in practice (such as accelerated greedy
variants (Mirzasoleiman et al., 2016a) and distributed algo-
rithms (Mirzasoleiman et al., 2016b)) for the corresponding
single-agent problems, can also be used for the more gen-
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eral multivariate setting while preserving the same approx-
imation guarantees. We believe this makes the CMVSO
framework a good candidate for potential applications in
large-scale machine learning problems.

3. Multivariate Submodular Minimization
In this section we give (almost tight) curvature dependent
approximations for minimization. Due to space limit, we
omit the discussion and proof of Theorem 6 to Section 3.1
of the full version.

3.1. An o( n
logn ) Lower Bound Hardness for F = {V }

In this section we focus on the special case where F = {V },
and show that the curvature dependent approximation fac-
tors obtained in Theorem 6 are essentially tight (see Section
3.3 of the full version for proofs). We follow a technique
from Goemans et al. (2009); Feige et al. (2011); Svitkina
& Fleischer (2011) and build two multivariate submodular
functions that are hard to distinguish with high probability
for any (even randomized) algorithm.

Assume that k = n, and letR := (R1, R2, . . . , Rn) ⊆ V n
be a random partition of V . Notice that

∑n
i=1 |Ri| = n.

Let β = ω(log n) and such that β is integer. Consider the
two nonnegative monotone n-multi-submodular functions
f1, f2 : 2nV → R+ given by:

f1(S1, . . . , Sn) = min{n,
n∑
i=1

|Si|} , (3)

f2(S1, . . . , Sn) = min{f1(S1, . . . , Sn), β +

n∑
i=1

|Si ∩ R̄i|}

where R̄i = V − Ri. We then have the following (see
Section 3.3 of full version for proof details).

Lemma 15. Any algorithm that makes a polynomial num-
ber of oracle calls has probability n−ω(1) of distinguishing
the functions f1 and f2 above.

We now prove our (curvature independent) lower bound.

Theorem 16. The monotone MVSO(F ) minimization prob-
lem over F = {V } cannot be approximated to a ratio
o(n/ log n) in the value oracle model with polynomially
many queries.

Proof. Assume there is a polytime algorithm achieving
an approximation factor of α = o(n/ log n). Choose
β = ω(log n) such that αβ < n. Consider the output
of the algorithm when f2 is given as input. The optimal
solution in this case is the partition R = (R1, . . . , Rk),
with f2(R1, . . . , Rk) = β. So the algorithm produces a
feasible solution (i.e. a partition) (S∗1 , . . . , S

∗
k) satisfying

f2(S∗1 , . . . , S
∗
k) ≤ αβ < n. However, since f1 takes value

exactly n over any partition, there is no feasible solution
(S1, . . . , Sn) such that f1(S1, . . . , Sn) < n. This means
that if the input is the function f1 then the algorithm pro-
duces a different answer, thus distinguishing between f1
and f2, contradicting Lemma 15.

The above result contrasts with the known O(log n) approx-
imation (Svitkina & Tardos, 2010) for the case where the
multivariate objective is separable, that is f(S1, . . . , Sk) =∑
i fi(Si) with fi monotone submodular. These two facts

combined now prove Theorem 3.

We use a construction from Iyer et al. (2013) to explicitly
introduce the effect of curvature into the lower bound. Their
work is for univariate functions, but it can be naturally ex-
tended to the multivariate setting. We modify the functions
f1, f2 from (3) as follows:

fc
i (S1, . . . , Sk) = c·fi(S1, . . . , Sk)+(1−c)

n∑
i=1

|Si| , i = 1, 2.

Both f c1 and f c2 have total curvature c. Moreover,
since f1(S1, . . . , Sk) = f2(S1, . . . , Sk) if and only if
f c1(S1, . . . , Sk) = f c2(S1, . . . , Sk), by Lemma 15 it follows
that any algorithm that makes polynomially many queries
cannot distinguish between f c1 and f c2 with high probability.
In addition, the gap between the optimal solutions for these
two functions is given by

OPT1
OPT2

=
cn+ (1− c)n
cβ + (1− c)n

=
n

cβ + (1− c)n

=
n

β + (n− β)(1− c)
=

n/β

1 + (n/β − 1)(1− c)
.

Then, since β = ω(log n), the lower bound follows.
Theorem 7. The monotone MVSO(F) minimization prob-
lem over F = {V } and objectives f with total curvature
c cannot be approximated to a ratio o( n/ logn

1+( n
log n−1)(1−c)

) in
the value oracle model with polynomial number of queries.

4. Conclusions
We introduce a new class of multivariate submodular opti-
mization problems, and give information theoretic evidence
that this class encodes much more than the separable ver-
sions arising in multi-agent objectives. We provide some
explicit examples and potential applications.

For maximization, we show that practical algorithms such
as accelerated greedy variants and distributed algorithms
achieve good approximation guarantees under very gen-
eral constraints. Moreover, for arbitrary families we show
MV gaps of 1− 1/e and 0.385 for the monotone and non-
monotone problems respectively. For minimization, we give
(essentially tight) approximation factors with respect to the
curvature of the multivariate objective function.
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